

Wireshark	Revealed:	Essential	Skills
for	IT	Professionals

Table	of	Contents

Wireshark	Revealed:	Essential	Skills	for	IT	Professionals
Credits
Preface

What	this	learning	path	covers
What	you	need	for	this	learning	path
Who	this	learning	path	is	for

Reader	feedback
Customer	support

Downloading	the	example	code
Errata
Piracy
Questions

1.	Module	1
1.	Getting	Acquainted	with	Wireshark

Installing	Wireshark
Installing	Wireshark	on	Windows
Installing	Wireshark	on	Mac	OS	X
Installing	Wireshark	on	Linux/Unix

Performing	your	first	packet	capture
Selecting	a	network	interface
Performing	a	packet	capture
Wireshark	user	interface	essentials
Filtering	out	the	noise

Applying	a	display	filter
Saving	the	packet	trace

Summary
2.	Networking	for	Packet	Analysts

The	OSI	model	–	why	it	matters
Understanding	network	protocols
The	seven	OSI	layers

Layer	1	–	the	physical	layer
Layer	2	–	the	data-link	layer
Layer	3	–	the	network	layer

Internet	Protocol
Address	Resolution	Protocol

Layer	4	–	the	transport	layer
User	Datagram	Protocol
Transmission	Control	Protocol

Layer	5	–	the	session	layer
Layer	6	–	the	presentation	layer
Layer	7	–	the	application	layer

Encapsulation
IP	networks	and	subnets
Switching	and	routing	packets

Ethernet	frames	and	switches
IP	addresses	and	routers

WAN	links
Wireless	networking
Summary

3.	Capturing	All	the	Right	Packets
Picking	the	best	capture	point

User	location
Server	location
Other	capture	locations

Mid-network	captures
Both	sides	of	specialized	network	devices

Test	Access	Ports	and	switch	port	mirroring
Test	Access	Port
Switch	port	mirroring

Capturing	packets	on	high	traffic	rate	links
Capturing	interfaces,	filters,	and	options

Selecting	the	correct	network	interface
Using	capture	filters
Configuring	capture	filters
Capture	options

Capturing	filenames	and	locations
Multiple	file	options
Ring	buffer
Stop	capture	options
Display	options

Name	resolution	options
Verifying	a	good	capture
Saving	the	bulk	capture	file
Isolating	conversations	of	interest
Using	the	Conversations	window

The	Ethernet	tab
The	TCP	and	UDP	tabs
The	WLAN	tab

Wireshark	display	filters
The	Display	Filter	window
The	display	filter	syntax
Typing	in	a	display	filter
Display	filters	from	a	Conversations	or	Endpoints	window

Filter	Expression	Buttons
Using	the	Expressions	window	button
Right-click	menus	on	specific	packet	fields

Following	TCP/UDP/SSL	streams
Marking	and	ignoring	packets
Saving	the	filtered	traffic
Summary

4.	Configuring	Wireshark
Working	with	packet	timestamps

How	Wireshark	saves	timestamps
Wireshark	time	display	options
Adding	a	time	column

Conversation	versus	displayed	packet	time	options
Choosing	the	best	Wireshark	time	display	option
Using	the	Time	Reference	option

Colorization	and	coloring	rules
Packet	colorization

Wireshark	preferences
Wireshark	profiles

Creating	a	Wireshark	profile
Selecting	a	Wireshark	profile

Summary
5.	Network	Protocols

The	OSI	and	DARPA	reference	models

Network	layer	protocols
Wireshark	IPv4	filters
Wireshark	ARP	filters

Internet	Group	Management	Protocol
Wireshark	IGMP	filters

Internet	Control	Message	Protocol
ICMP	pings
ICMP	traceroutes
ICMP	control	message	types
ICMP	redirects

Wireshark	ICMP	filters
Internet	Protocol	Version	6

IPv6	addressing
IPv6	address	types
IPv6	header	fields
IPv6	transition	methods

Wireshark	IPv6	filters
Internet	Control	Message	Protocol	Version	6

Multicast	Listener	Discovery
Wireshark	ICMPv6	filters

Transport	layer	protocols
User	Datagram	Protocol

Wireshark	UDP	filters
Transmission	Control	Protocol

TCP	flags
TCP	options

Wireshark	TCP	filters
Application	layer	protocols

Dynamic	Host	Configuration	Protocol
Wireshark	DHCP	filters

Dynamic	Host	Configuration	Protocol	Version	6
Wireshark	DHCPv6	filters

Domain	Name	Service
Wireshark	DNS	filters

Hypertext	Transfer	Protocol
HTTP	Methods
Host

Request	Modifiers
Wireshark	HTTP	filters

Additional	information
Wireshark	wiki
Protocols	on	Wikipedia
Requests	for	Comments

Summary
6.	Troubleshooting	and	Performance	Analysis

Troubleshooting	methodology
Gathering	the	right	information
Establishing	the	general	nature	of	the	problem
Half-split	troubleshooting	and	other	logic

Troubleshooting	connectivity	issues
Enabling	network	interfaces
Confirming	physical	connectivity
Obtaining	the	workstation	IP	configuration
Obtaining	MAC	addresses
Obtaining	network	service	IP	addresses
Basic	network	connectivity

Connecting	to	the	application	services
Troubleshooting	functional	issues
Performance	analysis	methodology

Top	five	reasons	for	poor	application	performance
Preparing	the	tools	and	approach
Performing,	verifying,	and	saving	a	good	packet	capture
Initial	error	analysis
Detecting	and	prioritizing	delays
Server	processing	time	events
Application	turn's	delay
Network	path	latency
Bandwidth	congestion
Data	transport

TCP	StreamGraph
IO	Graph
IO	Graph	–	Wireshark	2.0

Summary
7.	Packet	Analysis	for	Security	Tasks

Security	analysis	methodology
The	importance	of	baselining

Security	assessment	tools
Identifying	unacceptable	or	suspicious	traffic
Scans	and	sweeps

ARP	scans
ICMP	ping	sweeps
TCP	port	scans
UDP	port	scans

OS	fingerprinting
Malformed	packets
Phone	home	traffic
Password-cracking	traffic
Unusual	traffic
Summary

8.	Command-line	and	Other	Utilities
Wireshark	command-line	utilities
Capturing	traffic	with	Dumpcap
Capturing	traffic	with	Tshark
Editing	trace	files	with	Editcap
Merging	trace	files	with	Mergecap

Mergecap	batch	file
Other	helpful	tools

HttpWatch
SteelCentral	Packet	Analyzer	Personal	Edition
AirPcap	adapters

Summary
2.	Module	2

1.	Introducing	Wireshark
Introduction
Locating	Wireshark

Getting	ready
How	to	do	it...

Monitoring	a	server
Monitoring	a	router
Monitoring	a	firewall

How	it	works...

There's	more...
See	also

Starting	the	capture	of	data
Getting	ready
How	to	do	it...

How	to	choose	the	interface	to	start	the	capture
How	to	configure	the	interface	you	capture	data	from

How	it	works...
There's	more...
See	also

Configuring	the	start	window
Getting	ready

Main	Toolbar
Display	Filter	Toolbar
Status	Bar

How	to	do	it...
Configuring	toolbars
Configuring	the	main	window
Name	Resolution
Colorizing	the	packet	list
Auto	scrolling	in	live	capture

Using	time	values	and	summaries
Getting	ready
How	to	do	it...
How	it	works...

Configuring	coloring	rules	and	navigation	techniques
Getting	ready
How	to	do	it...
How	it	works...
See	also

Saving,	printing,	and	exporting	data
Getting	ready
How	to	do	it...

Saving	data	in	various	formats
How	to	print	data

How	it	works...
Configuring	the	user	interface	in	the	Preferences	menu

Getting	ready
How	to	do	it...

Changing	and	adding	columns
Changing	the	capture	configuration
Configuring	the	name	resolution

How	it	works...
Configuring	protocol	preferences

Getting	ready
How	to	do	it...

Configuring	of	IPv4	and	IPv6	Preferences
Configuring	TCP	and	UDP

How	it	works...
There's	more...

2.	Using	Capture	Filters
Introduction
Configuring	capture	filters

Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Configuring	Ethernet	filters
Getting	ready
How	to	do	it...
How	it	works…
There's	more...
See	also

Configuring	host	and	network	filters
Getting	ready
How	to	do	it...
How	it	works…
There's	more...
See	also

Configuring	TCP/UDP	and	port	filters
Getting	ready
How	to	do	it...
How	it	works…

There's	more...
See	also

Configuring	compound	filters
Getting	ready
How	to	do	it...
How	it	works…
There's	more...
See	also

Configuring	byte	offset	and	payload	matching	filters
Getting	ready
How	to	do	it...
How	it	works…
There's	more...
See	also

3.	Using	Display	Filters
Introduction
Configuring	display	filters

Getting	ready
How	to	do	it...

Choosing	from	the	filters	menu
Writing	the	syntax	directly	into	the	display	filter	window
Choosing	a	parameter	in	the	packet	pane	and	defining	it	as	a	filter

How	it	works...
There's	more...

What	is	the	parameter	we	filter?
Adding	a	parameter	column
Saving	the	displayed	data

Configuring	Ethernet,	ARP,	host,	and	network	filters
Getting	ready
How	to	do	it...

Ethernet	filters
ARP	filters
IP	and	ICMP	filters
Complex	filters

How	it	works...
Ethernet	broadcasts
IPv4	multicasts

IPv6	multicasts
See	also

Configuring	TCP/UDP	filters
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Configuring	specific	protocol	filters
Getting	ready
How	to	do	it...

HTTP	display	filters
DNS	display	filters
FTP	display	filters

How	it	works...
See	also

Configuring	substring	operator	filters
Getting	ready
How	to	do	it...
How	it	works...

Configuring	macros
Getting	ready
How	to	do	it...
How	it	works...

4.	Using	Basic	Statistics	Tools
Introduction
Using	the	Summary	tool	from	the	Statistics	menu

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Using	the	Protocol	Hierarchy	tool	from	the	Statistics	menu
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Using	the	Conversations	tool	from	the	Statistics	menu

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Ethernet	conversations	statistics
IP	conversations	statistics
TCP/UDP	conversations	statistics:

Using	the	Endpoints	tool	from	the	Statistics	menu
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Using	the	HTTP	tool	from	the	Statistics	menu
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Configuring	Flow	Graph	for	viewing	TCP	flows
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Creating	IP-based	statistics
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

5.	Using	Advanced	Statistics	Tools
Introduction
Configuring	IO	Graphs	with	filters	for	measuring	network	performance

issues
Getting	ready
How	to	do	it...

Filter	configuration
X-Axis	configuration
Y-Axis	configuration

How	it	works...

There's	more...
Throughput	measurements	with	IO	Graph

Getting	ready
How	to	do	it...

Measuring	throughput	between	end	devices
Measuring	application	throughput

How	it	works...
There's	more...

Graph	SMS	usage	–	finding	SMS	messages	sent	by	a	specific
subscriber

Graphing	number	of	accesses	to	the	Google	web	page
Advanced	IO	Graph	configurations	with	advanced	Y-Axis	parameters

Getting	ready
How	to	do	it...

How	to	monitor	inter-frame	time	delta	statistics
How	to	monitor	the	number	of	TCP	retransmissions	in	a	stream
How	to	monitor	a	number	of	field	appearances

How	it	works...
There's	more...

Getting	information	through	TCP	stream	graphs	–	the	Time-Sequence
(Stevens)	window

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Getting	information	through	TCP	stream	graphs	–	the	Time-Sequence	(tcp-
trace)	window

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Getting	information	through	TCP	stream	graphs	–	the	Throughput	Graph
window

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Getting	information	through	TCP	stream	graphs	–	the	Round	Trip	Time
window

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Getting	information	through	TCP	stream	graphs	–	the	Window	Scaling
Graph	window

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

6.	Using	the	Expert	Infos	Window
Introduction
The	Expert	Infos	window	and	how	to	use	it	for	network	troubleshooting

Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Error	events	and	understanding	them
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Warning	events	and	understanding	them
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Notes	events	and	understanding	them
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

See	also
7.	Ethernet,	LAN	Switching,	and	Wireless	LAN

Introduction
Discovering	broadcast	and	error	storms

Getting	ready
How	to	do	it...

Spanning	Tree	Problems
A	device	that	generates	Broadcasts
Fixed	pattern	broadcasts

How	it	works...
There's	more…
See	also

Analyzing	Spanning	Tree	Protocols
Getting	ready
How	to	do	it...

Which	STP	version	is	running	on	the	network?
Are	there	too	many	topology	changes?

How	it	works...
Port	states

There's	more…
Analyzing	VLANs	and	VLAN	tagging	issues

Getting	ready
How	to	do	it...

Monitoring	traffic	inside	a	VLAN
Viewing	tagged	frames	going	through	a	VLAN	tagged	port

How	it	works...
There's	more…
See	also

Analyzing	wireless	(Wi-Fi)	problems
Getting	ready
How	to	do	it…
How	it	works…

8.	ARP	and	IP	Analysis
Introduction
Analyzing	connectivity	problems	with	ARP

Getting	ready
How	to	do	it...

ARP	poisoning	and	Man-in-the-Middle	attacks
Gratuitous	ARP
ARP	sweeps
Requests	or	replies,	and	who	is	the	sender
How	many	ARPs

How	it	works...
There's	more...

Using	IP	traffic	analysis	tools
Getting	ready
How	to	do	it...

IP	statistics	tools
How	it	works...
There's	more...

Using	GeoIP	to	look	up	physical	locations	of	the	IP	address
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Finding	fragmentation	problems
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Analyzing	routing	problems
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Finding	duplicate	IPs
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Analyzing	DHCP	problems
Getting	ready
How	to	do	it...
How	it	works...

There's	more...
9.	UDP/TCP	Analysis

Introduction
Configuring	TCP	and	UDP	preferences	for	troubleshooting

Getting	ready
How	to	do	it...

UDP	parameters
TCP	parameters

How	it	works...
There's	more…

TCP	connection	problems
Getting	ready
How	to	do	it...
How	it	works...
There's	more…

TCP	retransmission	–	where	do	they	come	from	and	why
Getting	ready
How	to	do	it...

Case	1	–	retransmissions	to	many	destinations
Case	2	–	retransmissions	on	a	single	connection
Case	3	–	retransmission	patterns
Case	4	–	retransmission	due	to	a	non-responsive	application
Case	5	–	retransmission	due	to	delayed	variations
Finding	what	it	is

How	it	works...
Regular	operation	of	the	TCP	Sequence/Acknowledge	mechanism
What	are	TCP	retransmissions	and	what	do	they	cause

There's	more...
See	also

Duplicate	ACKs	and	fast	retransmissions
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

TCP	out-of-order	packet	events
Getting	ready
How	to	do	it...

When	will	it	happen?
How	it	works...

TCP	Zero	Window,	Window	Full,	Window	Change,	and	other	Window
indicators

Getting	ready
How	to	do	it...

TCP	Zero	Window,	Zero	Window	Probe,	and	Zero	Window
Violation

TCP	Window	Update
TCP	Window	Full

How	it	works...
There's	more…

TCP	resets	and	why	they	happen
Getting	ready
How	to	do	it...

Cases	in	which	reset	is	not	a	problem
Cases	in	which	reset	can	indicate	a	problem

How	it	works...
10.	HTTP	and	DNS

Introduction
Filtering	DNS	traffic

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Analyzing	regular	DNS	operations
Getting	ready
How	to	do	it...
How	it	works...

DNS	operation
DNS	namespace
The	resolving	process

There's	more...
Analysing	DNS	problems

Getting	ready
How	to	do	it...

DNS	cannot	resolve	a	name

DNS	slow	responses
How	it	works...
There's	more...

Filtering	HTTP	traffic
Getting	ready
How	to	do	it...
How	it	works...

HTTP	methods
Status	codes

There's	more...
Configuring	HTTP	preferences

Getting	ready
How	to	do	it...

Custom	HTTP	headers	fields
How	it	works...
There's	more...

Analyzing	HTTP	problems
Getting	ready
How	to	do	it...

Informational	codes
Success	codes
Redirect	codes
Client	errors
Server	errors

How	it	works...
There's	more...

Exporting	HTTP	objects
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

HTTP	flow	analysis	and	the	Follow	TCP	Stream	window
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Analyzing	HTTPS	traffic	–	SSL/TLS	basics

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

11.	Analyzing	Enterprise	Applications'	Behavior
Introduction
Finding	out	what	is	running	over	your	network

Getting	ready
How	to	do	it...
There's	more...

Analyzing	FTP	problems
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Analyzing	e-mail	traffic	and	troubleshooting	e-mail	problems	–	POP,
IMAP,	and	SMTP

Getting	ready
How	to	do	it...

POP3	communications
SMTP	communications
Some	other	methods	and	problems

How	it	works...
POP3
SMTP	and	SMTP	error	codes	(RFC3463)

There's	more...
Analyzing	MS-TS	and	Citrix	communications	problems

Getting	ready
How	to	do	it...
How	it	works...
There's	more…

Analyzing	problems	in	the	NetBIOS	protocols
Getting	ready
How	to	do	it...

General	tests
Specific	issues

How	it	works...

There's	more…
Example	1	–	application	freezing
Example	2	–	broadcast	storm	caused	by	SMB

Analyzing	database	traffic	and	common	problems
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

12.	SIP,	Multimedia,	and	IP	Telephony
Introduction
Using	Wireshark's	features	for	telephony	and	multimedia	analysis

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Analyzing	SIP	connectivity
Getting	ready
How	to	do	it...

1xx	codes	–	provisional/informational
2xx	codes	–	success
3xx	codes	–	redirection
4xx	codes	–	client	error
5xx	codes	–	server	error
6xx	codes	–	global	failure

How	it	works...
There's	more...

Analyzing	RTP/RTCP	connectivity
Getting	ready
How	to	do	it...
How	it	works...

RTP	principles	of	operation
The	RTCP	principle	of	operation

There's	more...
Troubleshooting	scenarios	for	video	and	surveillance	applications

Getting	ready
How	to	do	it...
How	it	works...

There's	more...
Troubleshooting	scenarios	for	IPTV	applications

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Troubleshooting	scenarios	for	video	conferencing	applications
Getting	ready
How	to	do	it...

Troubleshooting	RTSP
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

13.	Troubleshooting	Bandwidth	and	Delay	Problems
Introduction
Measuring	total	bandwidth	on	a	communication	link

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Measuring	bandwidth	and	throughput	per	user	and	per	application	over	a
network	connection

Getting	ready
How	to	do	it...
How	it	works...
See	also

Monitoring	jitter	and	delay	using	Wireshark
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Discovering	delay/jitter-related	application	problems
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

14.	Understanding	Network	Security
Introduction
Discovering	unusual	traffic	patterns

Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Discovering	MAC-	and	ARP-based	attacks
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Discovering	ICMP	and	TCP	SYN/Port	scans
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Discovering	DoS	and	DDoS	attacks
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Locating	smart	TCP	attacks
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Discovering	brute-force	and	application	attacks
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

A.	Links,	Tools,	and	Reading
Useful	Wireshark	links

tcpdump
Some	additional	tools

SNMP	tools
SNMP	platforms
The	NetFlow,	JFlow,	and	SFlow	analyzers
HTTP	debuggers
Syslog
Other	stuff

Network	analysers
Interesting	websites
Books

3.	Module	3
1.	Welcome	to	the	World	of	Packet	Analysis	with	Wireshark

Introduction	to	Wireshark
A	brief	overview	of	the	TCP/IP	model
The	layers	in	the	TCP/IP	model
An	introduction	to	packet	analysis	with	Wireshark

How	to	do	packet	analysis
What	is	Wireshark?
How	it	works

Capturing	methodologies
Hub-based	networks
The	switched	environment
ARP	poisoning
Passing	through	routers
Why	use	Wireshark?
The	Wireshark	GUI

The	installation	process
Starting	our	first	capture

Summary
Practice	questions

2.	Filtering	Our	Way	in	Wireshark
An	introduction	to	filters
Capture	filters

Why	use	capture	filters
How	to	use	capture	filters
An	example	capture	filter

Capture	filters	that	use	protocol	header	values
Display	filters

Retaining	filters	for	later	use
Searching	for	packets	using	the	Find	dialog

Colorize	traffic
Create	new	Wireshark	profiles
Summary
Practice	questions

3.	Mastering	the	Advanced	Features	of	Wireshark
The	Statistics	menu

Using	the	Statistics	menu
Protocol	Hierarchy

Conversations
Endpoints
Working	with	IO,	Flow,	and	TCP	stream	graphs
IO	graphs
Flow	graphs
TCP	stream	graphs

Round-trip	time	graphs
Throughput	graphs
The	Time-sequence	graph	(tcptrace)

Follow	TCP	streams
Expert	Infos
Command	Line-fu
Summary
Exercise

4.	Inspecting	Application	Layer	Protocols
Domain	name	system

Dissecting	a	DNS	packet
Dissecting	DNS	query/response
Unusual	DNS	traffic

File	transfer	protocol
Dissecting	FTP	communications

Passive	mode
Active	mode

Dissecting	FTP	packets
Unusual	FTP

Hyper	Text	Transfer	Protocol
How	it	works	–	request/response
Request
Response
Unusual	HTTP	traffic

Simple	Mail	Transfer	Protocol
Usual	versus	unusual	SMTP	traffic
Session	Initiation	Protocol	and	Voice	Over	Internet	Protocol
Analyzing	VOIP	traffic

Reassembling	packets	for	playback
Unusual	traffic	patterns
Decrypting	encrypted	traffic	(SSL/TLS)

Summary
Practice	questions

5.	Analyzing	Transport	Layer	Protocols
The	transmission	control	protocol

Understanding	the	TCP	header	and	its	various	flags
How	TCP	communicates

How	it	works
Graceful	termination
RST	(reset)	packets

Relative	verses	Absolute	numbers
Unusual	TCP	traffic
How	to	check	for	different	analysis	flags	in	Wireshark

The	User	Datagram	Protocol
A	UDP	header
How	it	works

The	DHCP
The	TFTP

Unusual	UDP	traffic
Summary
Practice	questions

6.	Analyzing	Traffic	in	Thin	Air
Understanding	IEEE	802.11

Various	modes	in	wireless	communications
Wireless	interference	and	strength

The	IEEE	802.11	packet	structure

RTS/CTS
Usual	and	unusual	WEP	–	open/shared	key	communication

WEP-open	key
The	shared	key
WPA-Personal
WPA-Enterprise

Decrypting	WEP	and	WPA	traffic
Summary
Practice	questions

7.	Network	Security	Analysis
Information	gathering

PING	sweep
Half-open	scan	(SYN)
OS	fingerprinting

ARP	poisoning
Analyzing	brute	force	attacks

Inspecting	malicious	traffic
Solving	real-world	CTF	challenges

Summary
Practice	questions

8.	Troubleshooting
Recovery	features

The	flow	control	mechanism
Troubleshooting	slow	Internet	and	network	latencies
Client-	and	server-side	latencies
Troubleshooting	bottleneck	issues
Troubleshooting	application-based	issues

Summary
Practice	questions

9.	Introduction	to	Wireshark	v2
The	intelligent	scroll	bar
Translation
Graph	improvements
TCP	streams
USBPcap
Summary
Practice	questions

Bibliography
Index

Wireshark	Revealed:	Essential	Skills
for	IT	Professionals

Wireshark	Revealed:	Essential	Skills
for	IT	Professionals
Copyright	©	2017	Packt	Publishing	All	rights	reserved.	No	part	of	this	course
may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by
any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the
case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	course	to	ensure	the
accuracy	of	the	information	presented.	However,	the	information	contained	in
this	course	is	sold	without	warranty,	either	express	or	implied.	Neither	the
authors,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held	liable
for	any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by	this
course.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of
the	companies	and	products	mentioned	in	this	course	by	the	appropriate	use	of
capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this
information.

Published	on:	December	2017

Production	reference:	1011217

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	-	978-1-78883-322-6

www.packtpub.com

http://www.packtpub.com

Credits
Authors

James	H	Baxter

Yoram	Orzach

Charit	Mishra

Reviewers

Sarath	Lakshman

Bruno	Vernay

Ms.	Samia	Yousif

Charles	L.	Brook

Praveen	Darshan

Ritwik	Ghoshal

Gilbert	Ramirez

Anish	Nath

Content	Development	Editor

Devika	Battike

Graphics

Kirk	D’penha

Production	Coordinator

Aparna	Bhagat

Preface
Wireshark	is	a	popular	and	powerful	tool	used	to	analyze	the	amount	of	bits	and
bytes	that	are	flowing	through	a	network.	The	packet	captures	displayed	in
Wireshark	give	you	an	insight	into	the	security	and	flaws	of	different	protocols,
which	will	help	you	perform	the	security	research	and	protocol	debugging.

What	this	learning	path	covers
Module	1,	Wireshark	Essentials,	introduces	the	Wireshark	network	analyzer	to
IT	professionals	across	multiple	disciplines.

It	starts	off	with	the	installation	of	Wireshark,	before	gradually	taking	you
through	your	first	packet	capture,	identifying	and	filtering	out	just	the	packets	of
interest,	and	saving	them	to	a	new	file	for	later	analysis.	The	subsequent	chapters
will	build	on	this	foundation	by	covering	essential	topics	on	the	application	of
the	right	Wireshark	features	for	analysis,	network	protocols	essentials,
troubleshooting,	and	analyzing	performance	issues.	Finally,	this	module	focuses
on	packet	analysis	for	security	tasks,	command-line	utilities,	and	tools	that
manage	trace	files.

Upon	finishing	this	module,	you	will	have	successfully	added	strong	Wireshark
skills	to	your	technical	toolset	and	significantly	increased	your	value	as	an	IT
professional

Module	2,	Network	Analysis	using	Wireshark	Cookbook,	highlights	the
operations	of	Wireshark	as	a	network	analyzer	tool.	This	book	provides	you	with
a	set	of	practical	recipes	to	help	you	solve	any	problems	in	your	network	using	a
step-by-step	approach.

“Network	analysis	using	Wireshark	Cookbook”	starts	by	discussing	the
capabilities	of	Wireshark,	such	as	the	statistical	tools	and	the	expert	system,
capture	and	display	filters,	and	how	to	use	them.	The	book	then	guides	you
through	the	details	of	the	main	networking	protocols,	that	is,	Ethernet,	LAN
switching,	and	TCP/IP,	and	then	discusses	the	details	of	application	protocols
and	their	behavior	over	the	network.	Among	the	application	protocols	that	are
discussed	in	the	book	are	standard	Internet	protocols	like	HTTP,	mail	protocols,
FTP,	and	DNS,	along	with	the	behavior	of	databases,	terminal	server	clients,
Citrix,	and	other	applications	that	are	common	in	the	IT	environment.

In	a	bottom-up	troubleshooting	approach,	the	book	goes	up	through	the	layers	of
the	OSI	reference	model	explaining	how	to	resolve	networking	problems.	The
book	starts	from	Ethernet	and	LAN	switching,	through	IP,	and	then	on	to
TCP/UDP	with	a	focus	on	TCP	performance	problems.	It	also	focuses	on	WLAN

security.	Then,	we	go	through	application	behavior	issues	including	HTTP,	mail,
DNS,	and	other	common	protocols.	The	book	finishes	with	a	look	at	network
forensics	and	how	to	search	and	find	security	problems	that	might	harm	the
network.

Module	3,	Mastering	Wireshark,	will	help	you	raise	your	knowledge	to	an	expert
level.	At	the	start	of	this	module,	you	will	be	introduced	to	its	interface	so	you
understand	all	its	functionalities.	Moving	forward,	you	will	discover	different
ways	to	create	and	use	capture	and	display	filters.	Halfway	through	the	book,
you’ll	be	mastering	the	features	of	Wireshark,	analyzing	different	layers	of	the
network	protocol,	looking	for	any	anomalies.	As	you	reach	to	the	end	of	the
book,	you	will	be	taught	how	to	use	Wireshark	for	network	security	analysis	and
configure	it	for	troubleshooting	purposes.

What	you	need	for	this	learning	path
The	primary	requirement	is	as	follows:

You	will	need	to	install	the	Wireshark	software	that	can	be	downloaded
from	www.wireshark.org.

http://www.wireshark.org

Who	this	learning	path	is	for
This	book	is	aimed	at	IT	professionals	who	want	to	develop	or	enhance	their
packet	analysis	skills.	A	basic	familiarity	with	common	network	and	application
services	terms	and	technologies	is	assumed.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	course—what	you	liked	or	disliked.	Reader	feedback	is	important	for
us	as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and
mention	the	course’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either
writing	or	contributing	to	a	book,	see	our	author	guide	at
www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	course,	we	have	a	number	of	things
to	help	you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	course	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	course	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly
to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	course	in	the	Search	box.
5.	 Select	the	course	for	which	you’re	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	course	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on
the	course’s	webpage	at	the	Packt	Publishing	website.	This	page	can	be	accessed
by	entering	the	course’s	name	in	the	Search	box.	Please	note	that	you	need	to	be
logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	course	is	also	hosted	on	GitHub	at	:

https://github.com/PacktPublishing/Wireshark-Revealed-Essential-skills-for-IT-
professionals

We	also	have	other	code	bundles	from	our	rich	catalog	of	books,	videos,	and
courses	available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Wireshark-Revealed-Essential-skills-for-IT-professionals
https://github.com/PacktPublishing/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	courses—maybe	a
mistake	in	the	text	or	the	code—we	would	be	grateful	if	you	could	report	this	to
us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	course.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	course,	clicking
on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.
Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata
will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the
course	in	the	search	field.	The	required	information	will	appear	under	the	Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all
media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected
pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you
valuable	content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	course,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Part	1.	Module	1
Wireshark	Essentials

Get	up	and	running	with	Wireshark	to	analyze	network	packets	and
protocols	effectively

Chapter	1.	Getting	Acquainted	with
Wireshark
Since	its	creation	in	1997	by	Gerald	Combs	to	troubleshoot	network	problems	at
a	small	ISP,	Wireshark	(originally	called	Ethereal)	has	now	become	one	of	the
most	popular	tools	available	for	packet-level	analysis	of	network	and	application
protocols.	This	is	mostly	because	it	is	an	open	source	solution,	which	makes	it
freely	available	to	any	technical	professional,	as	well	as	its	extensive	range	of
features,	coverage	of	over	1000	protocols,	and	the	continued	support	and
improvements	made	possible	by	contributions	from	over	800	developers	around
the	globe.

This	introductory	chapter	will	help	you	to	quickly	become	proficient	in
Wireshark	by	installing	it	on	your	system	and	doing	something	fun	and	useful
with	it,	before	diving	into	more	details	and	supporting	concepts.

In	this	chapter,	we	will	cover	the	following	topics:

Installing	Wireshark
Performing	a	packet	capture
Wireshark	user	interface	essentials
Using	display	filters	to	isolate	traffic	of	interest
Saving	a	filtered	packet	trace	file

The	chapters	that	follow	will	build	on	and	provide	the	supporting	concepts	for
these	basic	functions	to	allow	you	to	develop	the	Wireshark	skills	that	are	most
applicable	to	your	technical	role	and	objectives.

Installing	Wireshark
Wireshark	can	be	installed	on	machines	running	32-	and	64-bit	Windows	(XP,
Win7,	Win8.1,	and	so	on),	Mac	OS	X	(10.5	and	higher),	and	most	flavors	of
Linux/Unix.	Installation	on	Windows	and	Mac	machines	is	quick	and	easy
because	installers	are	available	from	the	Wireshark	website	download	page.
Wireshark	is	a	standard	package	available	on	many	Linux	distributions,	and
there	is	a	list	of	links	to	third-party	installers	provided	on	the	Wireshark
download	page	for	a	variety	of	popular	*nix	platforms.	Alternatively,	you	can
download	the	source	code	and	compile	Wireshark	for	your	environment	if	a
precompiled	installation	package	isn't	available.

Wireshark	relies	on	the	WinPcap	(Windows)	or	libpcap	(Linux/Unix/Mac)
libraries	to	provide	the	packet	capture	and	capture	filtering	functions;	the
appropriate	library	is	installed	during	the	Wireshark	installation.

Note

You	might	need	administrator	(Windows)	or	root	(Linux/Unix/Mac)	privileges	to
install	Wireshark	and	the	WinPcap/libpcap	utilities	on	your	workstation.

Assuming	that	you're	installing	Wireshark	on	a	Windows	or	Mac	machine,	you
need	to	go	to	the	Wireshark	website	(https://www.wireshark.org/)	and	click	on
the	Download	button	at	the	top	of	the	page.	This	will	take	you	to	the	download
page,	and	at	the	same	time	attempt	to	perform	an	autodiscovery	of	your
operating	system	type	and	version	from	your	browser	info.	The	majority	of	the
time,	the	correct	Wireshark	installation	package	for	your	machine	will	be
highlighted,	and	you	only	have	to	click	on	the	highlighted	link	to	download	the
correct	installer.

Note

If	you	already	have	Wireshark	installed,	an	autoupdate	feature	will	notify	you	of
available	version	updates	when	you	launch	Wireshark.

https://www.wireshark.org/

Installing	Wireshark	on	Windows
In	the	following	screenshot,	the	Wireshark	download	page	has	identified	that	a
64-bit	Windows	installer	is	appropriate	for	this	Windows	workstation:	

Clicking	on	the	highlighted	link	downloads	a	Wireshark-win64-1.10.8.exe	file
or	similar	executable	file	that	you	can	save	on	your	hard	drive.	Double-clicking
on	the	executable	starts	the	installation	process.	You	need	to	follow	these	steps:

1.	 Agree	to	the	License	Agreement.
2.	 Accept	all	of	the	defaults	by	clicking	on	Next	for	each	prompt,	including

the	prompt	to	install	WinPcap,	which	is	a	library	needed	to	capture	packets
from	the	Network	Interface	Card	(NIC)	on	your	workstation.

3.	 Early	in	the	Wireshark	installation,	the	process	will	pause	and	prompt	you
to	click	on	Install	and	several	Next	buttons	in	separate	windows	to	install
WinPcap.

4.	 After	the	WinPcap	installation	is	complete,	click	through	the	remaining
Next	prompts	to	finish	the	Wireshark	installation.

Installing	Wireshark	on	Mac	OS	X
The	process	to	install	Wireshark	on	Mac	is	the	same	as	the	process	for	Windows,
except	that	you	will	not	be	prompted	to	install	WinPcap;	libpcap,	the	packet
capture	library	for	Mac	and	*nix	machines,	gets	installed	instead	(without
prompting).

There	are,	however,	two	additional	requirements	that	may	need	to	be	addressed
in	a	Mac	installation:

The	first	is	to	install	X11,	a	windowing	system	library.	If	this	is	needed	for
your	system,	you	will	be	informed	and	provided	a	link	that	ultimately	takes
you	to	the	XQuartz	project	download	page	so	you	can	install	this	package.
The	second	requirement	that	might	come	up	is	if	upon	starting	Wireshark,
you	are	informed	that	there	are	no	interfaces	on	which	a	capture	can	be
done.	This	is	a	permissions	issue	on	the	Berkeley	packet	filter	(BPF)	that
can	be	resolved	by	opening	a	terminal	window	and	typing	the	following
command:

bash-3.2$	sudo	chmod	644	/dev/bpf*

If	this	process	needs	to	be	repeated	each	time	you	start	Wireshark,	you	can
perform	a	web	search	for	a	more	permanent	permissions	solution	for	your
environment.

Installing	Wireshark	on	Linux/Unix
The	requirements	and	process	to	install	Wireshark	on	a	Linux	or	Unix	platform
can	vary	significantly	depending	on	the	particular	environment.	Wireshark	is
usually	available	by	default	through	the	package	management	systems	for	your
specific	Linux	distribution.	Guidance	to	install	Wireshark	on	Linux	can	be	found
in	Chapter	2,	Networking	for	Packet	Analysts,	or	in	the	Wireshark	user
documentation	located	at
www.wireshark.org/docs/wsug_html_chunked/ChapterBuildInstall.html.

http://www.wireshark.org/docs/wsug_html_chunked/ChapterBuildInstall.html

Performing	your	first	packet	capture
When	you	first	start	Wireshark,	you	are	presented	with	an	initial	Start	Page	as
shown	in	the	following	screenshot:

	

Don't	get	too	fond	of	this	screen.	Although	you'll	see	this	every	time	you	start
Wireshark,	once	you	do	a	capture,	open	a	trace	file,	or	perform	any	other
function	within	Wireshark,	this	screen	will	be	replaced	with	the	standard
Wireshark	user	interface	and	you	won't	see	it	again	until	the	next	time	you	start
Wireshark.	So,	we	won't	spend	much	time	here.

Selecting	a	network	interface
If	you	have	a	number	of	network	interfaces	on	your	machine,	you	may	not	be
sure	which	one	to	select	to	capture	packets,	but	there's	a	fairly	easy	way	to	figure
this	out.	On	the	Wireshark	start	page,	click	on	Interface	List	(alternatively,	click
on	Interfaces	from	the	Capture	menu	or	click	on	the	first	icon	on	the	icon	bar).

The	Wireshark	Capture	Interfaces	window	that	opens	provides	a	list	and
description	of	all	the	network	interfaces	on	your	machine,	the	IP	address
assigned	to	each	one	(if	an	address	has	been	assigned),	and	a	couple	of	counters,
such	as	the	total	number	of	packets	seen	on	the	interface	since	this	window
opened	and	a	packets/s	(packets	per	second)	counter.	If	an	interface	has	an	IPv6
address	assigned	(which	may	start	with	fe80::	and	contain	a	number	of	colons)
and	this	is	being	displayed,	you	can	click	on	the	IPv6	address	and	it	will	toggle
to	display	the	IPv4	address.	This	is	shown	in	the	following	screenshot:

	
Note

On	Linux/Unix/Mac	platforms,	you	might	also	see	a	loopback	interface	that	can
be	selected	to	capture	packets	being	sent	between	applications	on	the	same
machine.	However,	in	most	cases,	you'll	only	be	interested	in	capturing	packets
from	a	network	interface.

The	goal	is	to	identify	the	active	interface	that	will	be	used	to	communicate	with
the	Internet	when	you	open	a	browser	and	navigate	to	a	website.	If	you	have	a
wired	local	area	network	connection	and	the	interface	is	enabled,	that's	probably
the	active	interface,	but	you	might	also	have	a	wireless	interface	that	is	enabled
and	you	may	or	may	not	be	the	primary	interface.	The	most	reliable	indicator	of

the	active	network	interface	is	that	it	will	have	greater	number	of	steadily
increasing	packets	with	a	corresponding	active	number	of	packets/s	(which	will
vary	over	time).	Another	possible	indicator	is	if	an	interface	has	an	IP	address
assigned	and	others	do	not.	If	you're	still	unsure,	open	a	browser	window	and
navigate	to	one	of	your	favorite	websites	and	watch	the	packets	and	packets/s
counters	to	identify	the	interface	that	shows	the	greatest	increase	in	activity.

Performing	a	packet	capture
Once	you've	identified	the	correct	interface,	select	the	checkbox	on	the	left-hand
side	of	that	interface	and	click	on	the	Start	button	at	the	bottom	of	the	Capture
Interfaces	window.	Wireshark	will	start	capturing	all	the	packets	that	can	be
seen	from	that	interface,	including	the	packets	sent	to	and	from	your
workstation.	You'll	see	a	bewildering	variety	of	packets	going	by	in	the	top
section	(called	the	Packet	List	pane)	of	the	screen;	this	is	normal.	If	you	don't
see	this,	try	a	different	interface.

It's	a	bit	amazing	just	how	much	background	traffic	there	is	on	a	typical	network,
such	as	broadcast	packets	from	devices	advertising	their	names,	addresses,	and
services	to	and	from	other	devices	asking	for	addresses	of	stations	they	want	to
communicate	with.	Also,	a	fair	amount	of	traffic	is	generated	from	your	own
workstation	for	applications	and	services	that	are	running	in	the	background,	and
you	had	no	idea	they	were	creating	this	much	noise.	Your	Wireshark's	Packet
List	pane	may	look	similar	to	the	following	screenshot;	however,	we	can	ignore
all	this	for	now:	

	

We're	ready	to	generate	some	traffic	that	we'll	be	interested	in	analyzing.	Open	a
new	Internet	browser	window,	enter	www.wireshark.org	in	the	address	box,	and
press	Enter.

When	the	https://www.wireshark.org/	home	page	finishes	loading,	stop	the
Wireshark	capture	by	either	selecting	Stop	from	the	Capture	menu	or	by
clicking	on	the	red	square	stop	icon	that's	between	the	View	and	Go	menu
headers.

https://www.wireshark.org/

Wireshark	user	interface	essentials
Once	you	have	completed	your	first	capture,	you	will	see	the	normal	Wireshark
user	interface	main	screen.	So	before	we	go	much	further,	a	quick	introduction	to
the	primary	parts	of	this	user	interface	will	be	helpful	so	you'll	know	what's
being	referred	to	as	we	continue	the	analysis	process.

There	are	eight	significant	sections	or	elements	of	the	default	Wireshark	user
interface,	as	shown	in	the	following	screenshot:	

	

Let's	look	at	the	eight	significant	sections	in	detail:

Title:	This	area	reflects	the	interface	from	where	a	capture	is	being	taken	or
the	filename	of	an	open	packet	trace	file
Menu:	This	is	the	standard	row	of	main	functions	and	subfunctions	in
Wireshark
Main	toolbar	(icons):	These	provide	a	quick	way	to	access	the	most	useful
Wireshark	functions	and	are	well	worth	getting	familiar	with	and	using
Display	filter	toolbar:	This	allows	you	to	quickly	create,	edit,	clear,	apply,
and	save	filters	to	isolate	packets	of	interest	for	analysis
Packet	list	pane:	This	section	contains	a	summary	info	line	for	each

captured	packet,	as	well	as	a	packet	number	and	relative	timestamp
Packet	details	pane:	This	section	provides	a	hierarchical	display	of
information	about	a	single	packet	that	has	been	selected	in	the	packet	list
pane,	which	is	divided	into	sections	for	the	various	protocols	contained	in	a
packet
Packet	bytes	pane:	This	section	displays	the	selected	packets'	contents	in
hex	bytes	or	bits	form,	as	well	as	an	ASCII	display	of	the	data	that	can	be
helpful
Status	bar:	This	section	provides	an	expert	info	indicator,	edit	capture
comments	icon,	trace	file	path	name	and	size	information,	data	on	the
number	of	packets	captured	and	displayed	and	other	info,	and	a	profile
display	and	selection	section

Filtering	out	the	noise
Somewhere	in	your	packet	capture,	there	are	packets	involved	with	loading	the
Wireshark	home	page—but	how	do	you	find	and	view	just	those	packets	out	of
all	the	background	noise?

The	simplest	and	most	reliable	method	is	to	determine	the	IP	address	of	the
Wireshark	website	and	filter	out	all	the	packets	except	those	flowing	between
that	IP	address	and	the	IP	address	of	your	workstation	by	using	a	display	filter.
The	best	approach—and	the	one	that	you'll	likely	use	as	a	first	step	for	most	of
your	post-capture	analysis	work	in	future—is	to	investigate	a	list	of	all	the
conversations	by	IP	address	and/or	hostnames,	sorted	by	the	most	active	nodes,
and	identify	your	target	hostname,	website	name,	or	IP	address	from	this	list.

From	the	Wireshark	menu,	select	Conversations	from	the	Statistics	menu,	and
in	the	Conversations	window	that	opens,	select	the	IPv4	tab	at	the	top.	You'll
see	a	list	of	network	conversations	identified	by	Address	A	and	Address	B,	with
columns	for	total	Packets,	Bytes,	Packets	A→B,	Bytes	A→B,	Packets	A←B,
and	Bytes	A←B.

Scrolling	over	to	the	right-hand	side	of	this	window,	there	are	Relative	Start
values.	These	are	the	times	when	each	particular	conversation	was	first	observed
in	the	capture,	relative	to	the	start	of	the	capture	in	seconds.	The	next	column	is
Duration,	which	is	how	long	this	conversation	persisted	in	the	capture	(first	to
last	packet	seen).

Finally,	there	are	average	data	rates	in	bits	per	second	(bps)	in	each	direction
for	each	conversation,	which	is	the	network	impact	for	this	conversation.	All
these	are	shown	in	the	following	screenshot:	

	

We	want	to	sort	the	list	of	conversations	to	get	the	busiest	ones—called	the	Top
Talkers	in	network	jargon—at	the	top	of	the	list.	Click	on	the	Bytes	column
header	and	then	click	on	it	again.	Your	list	should	look	something	like	the
preceding	screenshot,	and	if	you	didn't	get	a	great	deal	of	other	background
traffic	flowing	to/from	your	workstation,	the	traffic	from
https://www.wireshark.org/	should	have	the	greatest	volume	and	therefore	be	at
the	top	of	the	list.

In	this	example,	the	conversation	between	IP	addresses	162.159.241.165	and
192.168.1.116	has	the	greatest	overall	volume,	and	looking	at	the	Bytes	A->B
column,	it's	apparent	that	the	majority	of	the	traffic	was	from	the
162.159.241.165	address	to	the	192.168.1.116	address.	However,	at	this	point,
how	do	we	know	if	this	is	really	the	conversation	that	we're	after?

We	will	need	to	resolve	the	IP	addresses	from	our	list	to	hostnames	or	website
addresses,	and	this	can	be	done	from	within	Wireshark	by	turning	on	Network
Name	Resolution	and	trying	to	get	hostnames	and/or	website	addresses	resolved
for	those	IP	addresses	using	reverse	DNS	queries	(using	what	is	known	as	a
pointer	(PTR)	DNS	record	type).	If	you	just	installed	or	started	Wireshark,	the
Name	Resolution	option	may	not	be	turned	on	by	default.

https://www.wireshark.org/

This	is	usually	a	good	thing,	as	Wireshark	can	create	traffic	of	its	own	by
transmitting	the	DNS	queries	trying	to	resolve	all	the	IP	addresses	that	it	comes
across	during	the	capture,	and	you	don't	really	want	that	going	on	during	a
capture.	However,	the	Name	Resolution	option	can	be	very	helpful	to	resolve	IP
addresses	to	proper	hostnames	after	a	capture	is	complete.

To	enable	Name	Resolution,	navigate	to	View	|	Name	Resolution	|	Enable	for
Network	Layer	(click	to	turn	on	the	checkmark)	and	make	sure	Use	External
Network	Name	Resolver	is	enabled	as	well.	Wireshark	will	attempt	to	resolve
all	the	IP	addresses	in	the	capture	to	their	hostname	or	website	address,	and	the
resolved	names	will	then	appear	(replacing	the	previous	IP	addresses)	in	the
packet	list	as	well	as	the	Conversations	window.

Note	that	the	Name	Resolution	option	at	the	bottom	of	the	Conversations
window	must	be	enabled	as	well	(it	usually	is	by	default),	and	this	setting	affects
whether	resolved	names	or	IP	addresses	appear	in	the	Conversations	window	(if
Name	Resolution	is	enabled	in	the	Wireshark	main	screen),	as	shown	in	the
following	screenshot:	

	

At	this	point,	you	should	see	the	conversation	pair	between	wireshark.org	and

your	workstation	at	or	near	the	top	of	the	list,	as	shown	in	the	following
screenshot.	Of	course,	your	workstation	will	have	a	different	name	or	may	only
appear	as	an	IP	address,	but	identifying	the	conversation	to	wireshark.org	has
been	achieved.

	
Applying	a	display	filter

You	now	want	to	see	just	the	conversation	between	your	workstation	and
wireshark.org,	and	get	rid	of	all	the	extraneous	conversations	so	you	can	focus
on	the	traffic	of	interest.	This	is	accomplished	by	creating	a	filter	that	only
displays	the	desired	traffic.

Right-click	on	the	line	containing	the	wireshark.org	entry	and	navigate	to
Apply	as	Filter	|	Selected	|	A<->B,	as	shown	in	the	following	screenshot:	

	

Wireshark	will	create	and	apply	a	display	filter	string	that	isolates	the	displayed
traffic	to	just	the	conversation	between	the	IP	addresses	of	wireshark.org	and
your	workstation,	as	shown	in	the	following	screenshot.	Note	that	if	you	create
or	edit	a	display	filter	entry	manually,	you	will	need	to	click	on	Apply	to	apply
the	filter	to	the	trace	file	(or	Clear	to	clear	it).

	

This	particular	display	filter	syntax	works	with	IP	addresses,	not	with	hostnames,
and	uses	an	ip.addr==	(IP	address	equals)	syntax	for	each	node	along	with	the
&&	(and)	logic	operator	to	build	a	string	that	says	display	any	packet	that
contains	this	IP	address	*and*	that	IP	address.	This	is	the	type	of
display	filter	that	you	will	be	using	a	great	deal	for	packet	analysis.

You'll	notice	as	you	scroll	up	and	down	in	the	Packet	List	pane	that	all	the	other
packets,	except	those	between	your	workstation	and	wireshark.org,	are	gone.

They're	not	gone	in	the	strict	sense,	they're	just	hidden—as	you	can	observe	by
inspecting	the	Packet	No.	column,	there	are	gaps	in	the	numbering	sequence;
those	are	for	the	hidden	packets.

Saving	the	packet	trace
Now	that	you've	isolated	the	traffic	of	interest	using	a	display	filter,	you	can	save
a	new	packet	trace	file	that	contains	just	the	filtered	packets.

This	serves	two	purposes.	Firstly,	you	can	close	Wireshark,	come	back	to	it	later,
open	the	filtered	trace	file,	and	pick	up	where	you	left	off	in	your	analysis,	as
well	as	have	a	record	of	the	capture	in	case	you	need	to	reference	it	later	such	as
in	a	troubleshooting	scenario.

Secondly,	it's	much	easier	and	quicker	to	work	in	the	various	Wireshark	screens
and	functions	with	a	smaller,	more	focused	trace	file	that	contains	just	the
packets	that	you	want	to	analyze.

To	create	a	new	packet	trace	file	containing	just	the	filtered/displayed	packets,
select	Export	Specified	Packets	from	the	Wireshark	File	menu.

You	can	navigate	to	and/or	create	a	folder	to	hold	your	Wireshark	trace	files,	and
then	enter	a	filename	for	the	trace	file	that	you	want	to	save.	In	this	example,	the
filename	is	wireshark_website.pcapng.	By	default,	Wireshark	will	save	the
trace	file	in	the	pcapng	format	(which	is	the	preferred	format).	If	you	don't
specify	a	file	extension	with	the	filename,	Wireshark	will	provide	the	appropriate
extension	based	on	the	Save	as	type	selection,	as	shown	in	the	following
screenshot:	

	

Also,	by	default,	Wireshark	will	have	the	All	packets	option	selected,	and	if	a
display	filter	is	applied	(as	it	is	in	this	scenario),	the	Displayed	option	will	be
selected	as	opposed	to	the	Captured	option	that	saves	all	the	packets	regardless
of	whether	a	filter	was	applied.	Having	entered	a	filename	and	confirmed	that	all
the	save	selections	are	correct,	you	can	click	on	Save	to	save	the	new	packet
trace	file.

Note	that	when	you	have	finished	this	trace	file	save	activity,	Wireshark	still	has
all	the	original	packets	from	the	capture	in	memory,	and	they	can	still	be	viewed
by	clicking	on	Clear	in	the	Display	Filter	Toolbar	menu.	If	you	want	to	work
further	with	the	new	trace	file	you	just	saved,	you'll	need	to	open	it	by	clicking

on	Open	in	the	File	menu	(or	Open	Recent	in	the	File	menu).

Summary
Congratulations!	If	you	accomplished	all	the	activities	covered	in	this	chapter,
you	have	successfully	installed	Wireshark,	performed	a	packet	capture,	created	a
filter	to	isolate	and	display	just	the	packets	you	were	interested	in	from	all	the
extraneous	noise,	and	created	a	new	packet	trace	file	containing	just	those
packets	so	you	can	analyze	them	later.	Moreover,	in	the	process,	you	gained	an
initial	familiarity	with	the	Wireshark	user	interface	and	you	learned	how	to	use
several	of	its	most	useful	and	powerful	features.	Not	bad	for	a	first	chapter.

In	the	next	chapter,	we'll	review	some	essential	network	concepts	needed	to
provide	a	solid	foundation	to	perform	packet-level	analysis.	The	main	goal	of	the
next	chapter	is	to	help	you	develop	a	mental	model	of	networking	that	lends
itself	well	to	packet-level	analysis	without	getting	too	tangled	up	in	unnecessary
details.

Chapter	2.	Networking	for	Packet
Analysts
Packet	analysis	is	all	about	analyzing	how	applications	transfer	useful	data	from
point	A	to	point	B	over	networks.	So,	an	understanding	of	how	networks
function	is	essential.

In	this	chapter,	we	will	cover	the	following	topics:

Why	the	seven-layer	OSI	model	matters
IP	networks	and	subnets
Switching	and	routing	packets
Ethernet	frames	and	switches
IP	addresses	and	routers
WAN	links
Wireless	networking

The	seven-layer	OSI	model	will	be	mapped	to	the	most	common	networking
terms,	and	we'll	review	frames,	switching,	IP	addressing,	routing,	and	a	few
other	networking	topics	of	interest.	The	goal	is	to	develop	a	mental	model	of
networking	that	lends	itself	well	to	packet-level	analysis.

The	OSI	model	–	why	it	matters
The	Open	Systems	Interconnections	(OSI)	reference	model	is	an	industry
recognized	standard	developed	by	the	International	Organization	for
Standardization	(ISO)	to	divide	networking	functions	into	seven	logical	layers
to	support	and	encourage	(relatively)	independent	development	while	providing
(relatively)	seamless	interconnectivity	between	each	layer	from	different
hardware/software	environments,	platforms,	and	vendors.	There's	also	a
somewhat	simpler	four-layer	Defense	Advanced	Research	Projects	Agency
(DARPA)	model	that	maps	to	the	OSI	model,	but	the	OSI	version	is	the	most
commonly	referred	to.	I'll	reference	both	models	when	discussing	the	various
layers.

The	following	diagram	compares	the	OSI	and	DARPA	reference	models:	

	

Unless	you're	in	the	business	of	writing	protocols,	there's	no	need	to	study	any	of
the	seven	layers	in	great	depth,	but	it	is	helpful	to	understand	them	conceptually
because	these	layers	are	referred	to	by	the	industry	and	your	IT	peers.

More	importantly,	it's	essential	that	you	know	where	and	how	these	layers	and
their	associated	protocols	are	presented	in	Wireshark's	Packet	Details	pane.
We'll	cover	the	layers	from	this	aspect	to	help	you	remember	them	and	get	the
most	use	from	the	discussion.

Understanding	network	protocols
Network	protocols,	like	the	OSI	layers,	are	a	set	of	industry	standard	rules	and
designs	used	to	exchange	messages	and	data	between	computers	and
applications.	In	any	discussion	about	OSI	layers,	you	are	directly	or	indirectly
referring	to	the	protocols	associated	with	a	given	layer—the	most	commonly
known	protocols	are	IP,	UDP,	TCP,	HTTP,	and	so	on—and	the	significant
functions	they	perform.

For	example,	you'll	often	hear	the	terms	network	layer	and	IP	layer	used
interchangeably,	and	it	is	assumed	and	understood	that	you	are	talking	about	the
layer	and	the	associated	protocol	that	contains	and	uses	IP	addresses	to	route
packets	from	point	A	to	point	B	across	the	network.	The	discussions	that	follow
will	tie	the	OSI	and	DARPA	layers	to	their	associated	protocols.

The	seven	OSI	layers
As	we	cover	the	OSI	layers	starting	from	layer	1	and	working	up	to	layer	7,	I'll
outline	how	each	layer's	associated	protocol(s)	are	displayed	in	Wireshark	and/or
used	in	networking	hardware.	The	mental	model	you	develop	from	this	approach
should	be	the	most	accurate	and	useful	for	packet	analysis.

Layer	1	–	the	physical	layer

The	physical	layer	encompasses	the	electrical	characteristics	and	mechanical
standards	to	get	data	bits	transmitted	from	a	computer's	Network	Interface
Card	(NIC)	to	a	switch	port	or	between	switch	and	router	ports.	The	most
common	standards,	terms,	and	devices	you'll	encounter	at	this	layer	include	the
following:

Ethernet:	This	is	a	family	of	networking	technologies	for	local	area
networks	(LANs).
RJ-45:	These	are	8-pin	modular	connectors	found	on	both	ends	of	a	copper
Ethernet	cable	that	are	plugged	into	the	NIC	on	a	computer	and	a	wall	jack
or	switch	port
Cat	5	(Cat	5e	or	Cat	6)	cables:	These	are	Ethernet	cables	that	use	twisted-
pair	copper	wires.	"Cat"	stands	for	the	category	of	cable	and	reflects	its
quality	and	data	speed	capabilities.
100Base-T,	1000Base-T,	and	1000Base-LX:	These	represent	a	particular
Ethernet	standard.	100Base-T	is	100	Mbps	over	twisted-pair	cable	using
RJ-45	connectors,	1000Base-LX	is	1000	Mbps	over	fiber,	and	so	on.
Single-mode	and	multimode	fiber	optic	cables:	These	use	pulses	of	light
from	solid-state	LEDs	or	lasers	to	transmit	data	bits.

The	Ethernet	standards	used	to	connect	NICs	to	switches	are	also	used	to
connect	switches	together	and	to	connect	switches	to	routers	or	other	network
devices,	although	the	cables	and	connectors	used	may	vary	depending	on	cable
type	and	speed.

There	are	other	layer	1	standards	in	common	use,	including	802.11	Wireless,
Frame	Relay,	and	ATM;	the	last	two	are	used	in	long	distance	wide	area
networks	(WANs).

Layer	2	–	the	data-link	layer

The	data-link	layer	organizes	raw	bits	from	the	physical	layer	(typically
Ethernet)	into	frames,	which	is	the	first	manifestation	of	what	is	generally	called
a	packet	that	you'll	see	in	Wireshark.	This	layer	is	a	dividing	line	between
physical	networking,	electrical/mechanical	standards,	and	the	logical	structures
(protocols)	used	to	format	and	transmit,	receive,	and	decode	packets	of	data	in
the	higher	layers.

In	the	DARPA	reference	model,	the	physical	and	data-link	OSI	layers	are
combined	and	called	the	network	interface	layer.	The	significant	features	and
functions	of	this	layer	(for	Ethernet	II	frames)	include:

Media	Access	Control	(MAC)	addresses:	These	are	the	network	addresses
used	in	LANs.	They	are	6-byte	network	hardware	addresses	burned	into
memory	chips	on	NICs,	switches,	routers,	or	other	network	device
ports/interfaces:

The	first	three	bytes	of	a	MAC	address	are	assigned	to	and	can	be
associated	with	a	specific	manufacturer.	Wireshark	has	a	list	of	these
and	can	display	MAC	addresses	as	a	combination	of	the	manufacturer
code	and	the	last	three	bytes.	The	manufacturer	creates	a	unique	last-
three-bytes	address	for	every	interface	so	that	each	MAC	address	is
unique	across	the	globe.	(Although,	an	NIC	might	be	programmed	to
use	another	arbitrary	MAC	address,	which	is	done	for	MAC	spoofing
for	malicious	attacks.	But	this	is	a	very	bad	idea	as	another	card	may
be	using	the	same	address	and	can	cause	a	loss	of	data	and	some	very
confusing	packet	switching	problems.)
Ethernet	frames	include	a	destination	and	source	MAC	address.	MAC
addresses	are	used	to	switch	(not	route—we'll	make	the	distinction
shortly)	frames	between	computers	on	the	same	LAN	or	between
computers	and	a	router	or	other	device	port	on	a	LAN.

Type	(or	EtherType)	field:	This	indicates	the	next	higher	protocol	layer
(typically	IP	(0800)	or	ARP	(0806)).	Wireshark	uses	this	to	determine	the	next
protocol	dissector	to	apply	in	packet	decodes.
Payload:	This	is	the	packet	or	datagram	carried	by	the	Ethernet	frame.
The	frame	check	sequence:	This	is	a	4-byte	Cyclic	Redundancy	Check

(CRC)	error-detection	code	calculated	from	all	the	bits	in	a	frame	and	added	to
the	end	of	the	frame.	This	is	used	to	detect	frames	that	have	been	corrupted
usually	because	of	faulty	cables,	noise	induced	on	the	wires	in	a	cable	from
outside	electrical	signals,	and	so	on.	When	a	frame	is	received,	this	code	is

recalculated	based	on	the	bits	received	and	compared	to	the	FCS	field.	The	bad
frames	are	then	discarded.

The	following	diagram	illustrates	the	layout	of	the	fields	in	an	Ethernet	frame:	

	

A	key	point	here—and	this	is	important	to	understand—is	that	Ethernet	frames
and	their	MAC	addresses	are	only	able	to	transmit	frames	between	devices	on
the	local	area	network	(LAN	and	IP	subnet)	they	belong	to.

Routers	form	the	boundary	between	LANs	by	virtue	of	their	IP	subnet
(subnetwork)	addressing.	All	the	devices	belonging	to	the	same	IP	subnet	are
part	of	the	same	LAN,	and	getting	packets	to	or	from	a	different	subnet	requires
a	router.

Once	a	frame	enters	a	router	port	to	get	routed	to	a	different/distant	network,	the
Ethernet	frame	with	its	MAC	addresses	and	FCS	is	stripped	off	and	discarded.
The	payload	inside	the	frame	is	routed	to	the	port	and	it	will	leave	on	its	way	to
the	next	device,	and	another	frame	with	a	different	MAC	address	and
recalculated	FCS	is	created	to	encase	the	packet.	This	frame	is	then	transmitted
to	the	next	destination.

The	network	devices	that	work	at	this	layer—usually	switches—are	commonly
referred	to	as	layer	2	devices	or	layer	2	switches.

Finally,	you	should	be	aware	that	layer	2	switches	can	support	several
networking	enhancements	such	as	Virtual	LAN	(VLAN)	and	Class	of	Service
(CoS)	tagging,	which	is	accomplished	by	adding	a	4-byte	802.1Q	field	between
the	MAC	addresses	and	EtherType	field.	You	might	see	these	frames	between
switches	(but	not	on	user	ports).

VLAN	is	a	layer	2	solution	that	allows	administrative	partitioning	of	various
ports	on	a	switch	into	separate	broadcast	domains.	Devices	located	on	different
VLANs	are	effectively	isolated	from	each	other	as	if	they	were	on	separate
physical	networks.	VLANs	can	be	dispersed	across	multiple	switches	without
running	separate	cables	for	each	VLAN	if	the	switches	support	VLAN	tagging.
Communication	between	devices	on	separate	VLANs	generally	requires	using	a
router.

In	the	following	Wireshark	packet	details	screenshot,	the	Ethernet	II	frame
Destination	and	Source	MAC	addresses,	Type	(indicating	that	the	next	layer
protocol	is	IP),	and	Frame	check	sequence	are	circled,	as	is	the	Frame
summary.

Note

Wireshark	displays	a	summary	of	each	frame	that	includes	frame	sizes,	captured
timestamps	and	interframe	times,	and	other	useful	information.	This	is	metadata
calculated	by	Wireshark	to	aid	in	analysis	and	not	a	part	of	the	captured	frame.

The	following	screenshot	highlights	the	significant	fields	of	an	Ethernet	frame:	

	
Note

Any	additional	analysis	provided	by	Wireshark	in	any	area	of	the	Packet	Details
pane	that	is	calculated	or	otherwise	not	part	of	actual	packet	contents	will	be
encased	in	brackets.

Layer	3	–	the	network	layer

The	network	layer	(called	the	Internet	layer	in	the	DARPA	model)	primarily
handles	the	routing	of	packets	across	and	to	other	networks	along	the	path	from
source	computers	to	destination	hosts	based	on	the	destination	IP	address.	The
two	most	common	protocols	seen	at	this	layer	are	Internet	Protocol	and	Address
Resolution	Protocol.

Internet	Protocol

The	most	common	protocol	in	use	at	this	layer	is	Internet	Protocol	Version	4
(IPv4),	which	includes	several	essential	fields	to	accomplish	the	task	of	routing
packets	across	networks:

Differentiated	Services	(DiffServ):	This	field	supports	an	enhancement	to
the	IP	that	is	generally	called	Quality	of	Service	(QoS)	and	allows
classification	of	certain	types	of	traffic	(voice,	video,	and	so	on)	so	that
these	packets	can	receive	priority	handling	in	cases	of	network	congestion.
Total	length:	This	is	the	total	length	of	the	packet	(minus	the	Ethernet
MAC	header).
Identification	(IP	ID):	This	an	incrementing	number	used	to	support
fragmentation.
Flags:	These	are	used	to	support	fragmenting	(dividing	a	packet	into	two	or
more	smaller	ones)	in	case	the	large	packets	have	to	be	divided	into	several
smaller	ones	to	traverse	a	packet-size-limited	link.	These	flags	along	with
the	IP	ID	field	values	allow	proper	reassembly	of	the	fragmented	packets
into	the	original.
Fragment	offset:	If	the	Flag	field	is	1	(more	fragments),	the	value	in	this
field	indicates	the	offset	from	the	start	of	the	original	payload	in	bytes	that
this	fragment	packet	contains.
Time	to	Live	(TTL):	This	is	a	"hop"	or	time	counter	that	is	decremented
every	time	a	packet	passes	through	a	router.	If	the	TTL	reaches	zero,	the
packet	is	discarded.	The	primary	purpose	is	to	keep	packets	from	living
forever	and	crashing	the	network	in	the	case	of	an	inadvertent	path	loop.
Protocol:	This	identifies	the	protocol	in	the	IP	packet's	payload.	Wireshark
uses	this	to	determine	the	next	protocol	dissector	to	apply	to	packet
decodes.
Source	and	destination	IP	addresses:	These	are	the	IP	addresses	of	the
sending	machine	and	the	ultimate	destination	machine.	IP	addresses	are	4
bytes	long	and	are	represented	as	four	octets	(numbered	0	through	255

decimal)	separated	by	periods.

In	the	following	screenshot,	the	significant	IPv4	fields	are	circled.	These	are	the
fields	you'll	want	to	inspect	and	be	comfortable	with	when	doing	packet	analysis
at	this	layer.

	
Address	Resolution	Protocol

Another	protocol	you'll	see	at	the	network	layer	is	Address	Resolution	Protocol
(ARP),	which	is	used	by	a	device	to	obtain	the	MAC	address	of	another	device
when	it	only	knows	that	device's	IP	address.

In	the	following	Wireshark	packet	details	screenshot,	note	that	the	Ethernet
frame	destination	MAC	address	is	Broadcast	(ff:ff:ff:ff:ff:ff),	Type	is	ARP
(0x0806),	and	the	station	has	provided	its	own	MAC	and	IP	address	in	the	ARP
protocol	Sender	fields	(which	other	stations	listen	to	and	use	to	build	a	table	of
MAC	and	IP	addresses).	It	provides	the	IP	address	of	the	target	device	and	puts
all	zeros	in	the	Target	MAC	Address	field.	The	target	device	should	return	a
similar	ARP	packet	addressed	to	the	requestor	with	its	MAC	address	in	the
Sender	field.

A	station	will	send	an	ARP	request	only	in	the	following	situations:

The	station	that	requires	a	MAC	address	for	a	target	device	hasn't	heard	a

previous	broadcast	of	that	station's	MAC	address,	or	its	ARP	table	has
timed	out	(ARP	entries	are	only	kept	for	a	period).
The	station	that	requires	a	MAC	address	for	a	target	device	has	calculated
(from	the	target's	IP	address	and	its	own	subnet	mask)	that	the	target	device
should	be	on	the	same	LAN.	Otherwise,	the	station	assumes	the	target
device	is	on	a	different	network	and	sends	its	first	session	initiation	packet
to	the	default	gateway	(router)	MAC	address	based	on	the	entry	in	the
sending	station's	default	gateway	configuration	setting.	The	default	gateway
will	forward	the	packet	to	the	appropriate	egress	port	to	route	it	to	the
destination.
The	station	that	needs	to	send	a	packet	to	a	distant	network	doesn't	know
the	MAC	address	of	its	default	gateway	(for	example,	just	after	a	power-
up).

The	following	screenshot	highlights	the	significant	fields	of	an	ARP	packet:	

	

Other	protocols	utilized	at	this	layer	include	Internet	Control	Message
Protocol	(ICMP),	which	is	used	to	send	network	error	messages	between
devices,	and	Internet	Group	Management	Protocol	(IGMP),	which	is	used	by
hosts	and	adjacent	routers	to	establish	multicast	(one-to-many)	group
memberships	for	network	applications	such	as	streaming	video	and	gaming.

Layer	4	–	the	transport	layer

The	transport	layer,	as	it's	called	in	both	the	OSI	and	DARPA	models,	is

responsible	for	transporting	packets	of	data	in	unique	sessions	between
applications	or	a	user	and	an	application	by	means	of	port	numbers.	The
combination	of	a	device	or	user's	IP	address	and	that	device	or	user's	assigned
port	number	(referred	to	as	a	socket)	will	be	different	from	another	devices	or
users'	IP	address	and	port	numbers	(on	the	client	side).

If	the	source	host	for	a	packet	is	a	server,	the	source	port	is	likely	to	be	a	well-
known	number	for	standard	applications	and	services,	such	as	port	80	for	HTTP.

The	transport	layer	typically	uses	one	of	two	protocols,	User	Datagram	Protocol
or	Transmission	Control	Protocol,	with	the	latter	being	the	more	prevalent	for
most	applications.

User	Datagram	Protocol

The	User	Datagram	Protocol	(UDP)	is	a	fairly	simple	protocol.	It	is	considered
an	unreliable	transport	as	there's	no	guarantee	of	packet	delivery	or	ordering,	but
it	has	lower	overhead	and	is	used	by	time-sensitive	applications	such	as	voice
and	video	traffic,	as	well	as	by	network	services	applications	such	as	DNS.

The	UDP	header	is	only	8	bytes	long	and	consists	of	the	following:

Source	and	Destination	port	number:These	are	2	bytes	each.
Length:	This	is	the	length	of	the	UDP	header	plus	the	payload.	This	is	a	2-
byte	field.
Checksum:	This	is	the	2-byte	field	used	to	check	errors	of	the	UDP	header
and	data.	If	no	checksum	was	generated	by	the	transmitter,	this	will	be	all
zeros.

The	following	screenshot	shows	the	fields	contained	in	a	UDP	header:	

	

Transmission	Control	Protocol

Unlike	UDP,	the	Transmission	Control	Protocol	(TCP)	provides	reliable
delivery	of	data	by	detecting	lost,	duplicated,	or	out-of-order	packets,	requesting
retransmission	of	lost	data,	or	rearranging	packets	in	the	right	order	before
delivering	them	to	the	application.	TCP	can	also	accept	a	large	chunk	of	data
from	an	application	and	handle	getting	the	data	transported	to	the	other	end
reliably	using	multiple	packets	and	reassembling	them	at	the	other	end	(as	can
UDP,	but	not	reliably;	the	application	has	to	determine	and	recover	from	lost
packets).

The	TCP	header	contents	and	length	can	vary	depending	on	the	options	that	may
be	in	use,	but	in	its	simplest	implementation,	it	consists	of:

Source	and	Destination	ports	(2	bytes	each):	These	are	well-known
registered	ports	that	are	used	(on	servers)	to	access	standard	application
services	such	as	HTTP,	FTP,	SMTP,	databases,	and	so	on.	Port	numbers
assigned	to	client/user	sessions	are	usually	in	a	higher	number	range	and
assigned	sequentially.
Sequence	number	(4	bytes):	This	is	a	number	that	represents	the	first	octet
in	any	given	segment.	Sequence	numbers	are	initialized	at	the	beginning	of
new	sessions	as	a	random	number,	and	then	incremented	as	data	bytes	and
sent.
Acknowledgment	number	(4	bytes):	When	the	ACK	flag	bit	is	set,	this
field	contains	the	next	sequence	number	expected	from	the	sender,	which	in
turn	acknowledges	receipt	of	all	the	bytes	received	up	to	that	point.

Note

The	use	of	sequence	and	acknowledgment	numbers	are	how	the	TCP
ensures	reliable	delivery	of	data	by	tracking	the	number	and	order	of
received	bytes.

Sequence	and	acknowledgment	numbers	are	large	and	difficult	for	humans
to	follow;	Wireshark	can	convert	and	display	these	as	relative	values	that
start	with	0	at	the	beginning	of	a	session	to	make	it	easier	to	inspect	them
and	relate	the	values	to	the	number	of	bytes	transmitted	and	received.

Flags	(9	bits):	These	bits	are	used	to	control	connection	setups,

terminations,	and	flow	control	mechanisms.
Window	size	(2	bytes):	This	indicates	the	current	size	of	the	buffer	on	this
host	used	to	store	received	data	until	it	can	be	handed	off	to	the	receiving
application.	This	information	lets	the	sending	host	adjust	data	flow	rates	in
case	of	network	or	host	congestion.

The	following	screenshot	highlights	the	significant	fields	of	a	TCP	header:	

	
Layer	5	–	the	session	layer

The	session	layer	handles	setting	up,	controlling,	and	ending	sessions	within	an
application	between	two	computers.	This	is	not	necessarily	the	same	thing	as,	for
example,	a	TCP	connection,	although	the	two	will	be	related.	The	application
sessions	can	span	and	outlive	multiple	network	connections.	An	example	of	a
networking	protocol	that	operates	at	this	layer	is	Network	Basic	Input/Output
System	(NetBIOS).

Layer	6	–	the	presentation	layer

The	presentation	layer	converts	incoming	and	outgoing	data	from	one	format	to
another	and	handles	encryption/decryption	and/or	compression	if	any	of	these
are	required.	The	presentation	layer	is	also	responsible	for	the	delivery	and
formatting	of	information	to	the	application	layer	for	further	processing	or
display.	An	example	of	a	presentation	service	would	be	the	conversion	of	an
EBCDIC-coded	text	computer	file	to	an	ASCII-coded	file.

Layer	7	–	the	application	layer

The	application	layer,	which	may	(or	may	not)	perform	separate	functions	from
the	application	itself,	handles	message	formatting,	human	to	machine	interfaces,
and	so	on.	This	layer	represents	the	services	that	directly	support	applications
such	as	software	for	file	transfers,	database	access,	e-mail,	and	so	on.

In	many	widely	used	applications,	no	distinction	is	made	between	the
presentation	and	application	layers.	For	example,	HyperText	Transfer	Protocol
(HTTP),	which	is	generally	regarded	as	an	application-layer	protocol,	has
presentation-layer	aspects	such	as	the	ability	to	identify	character	encoding	for
proper	conversion,	which	is	then	done	in	the	application	layer.

In	the	DARPA	model,	the	OSI	layers	5-7	are	combined	into	an	application	layer.
From	a	packet	analysis	standpoint,	the	particular	manifestations	and	visibility	(in
Wireshark)	of	the	functions	in	the	top	layer(s)	will	vary	depending	on	the
applications	and	specific	protocols	employed	to	support	them.

The	following	diagram	summarizes	the	OSI	and	DARPA	layers	and	how	various
networking	protocols	and	services	align	with	these	layers	and	each	other:	

	
Encapsulation

You	may	have	observed	by	now	that	packets	encapsulate	various	protocols	into
successive	layers,	just	like	peeling	an	onion.	An	Ethernet	frame	contains	a
datagram	payload;	this	datagram	is	a	packet	with	an	IP	header	and	payload.	The
IP	packet	payload	consists	of	a	TCP	header	and	data	segment,	which	in	turn	may
contain	an	HTTP	header	and	payload.	This	encapsulation	is	easier	to	visualize
when	working	within	Wireshark's	Packet	Details	pane.

IP	networks	and	subnets
Before	moving	on,	a	short	review	of	typical	IP	subnetting	terms	and	typical
applications	should	help	clarify	the	terms	used	in	this	book	and	will	act	as	a
refresher	for	those	already	versed	in	IP	addressing.

A	/24	designator	placed	after	a	network	IP	address	in	diagrams	or	device
configurations	is	a	Classless	Inter-Domain	Routing	(CIDR)	designator	that
indicates	the	following:

The	first	24	out	of	the	32	bits	in	the	4-byte	IP	address	represents	the
network	portion	of	any	IP	address	on	this	network.	This	network	is
designated	as	10.1.1.0	(the	next	/24	network	would	be	10.1.2.0,	then
10.1.3.0,	and	so	on).
The	last	8	bits	of	the	32-bit	address	can	be	used	to	give	workstations,	hosts,
and	other	devices	an	IP	address,	with	the	following	exceptions:

The	first	host	address	on	this	network	is	reserved	as	a	network
designator	to	build	routing	tables:	10.1.1.0	(typically	called	the
loopback	address)
The	last	host	address	on	this	network	is	reserved	as	an	IP	broadcast
address:	10.1.1.255

The	8	bits	binary	is	equal	to	256	decimal,	minus	the	preceding	two	exceptions.
This	leaves	254	usable	IP	addresses	for	devices,	starting	with	10.1.1.1,
10.1.1.2,	and	so	on	up	to	10.1.1.254.
Another	way	of	expressing	subnet	masks	is	in	a	dotted	decimal	format,

255.255.255.0,	which	again	indicates	that	the	first	24	bits	of	an	IP	address	is	the
network	and	the	remaining	8	bits	are	for	hosts.
There	are	Class	A,	Class	B,	and	Class	C	address	ranges,	as	well	as	a	subset	of

IP	ranges	reserved	as	private	addresses	to	use	within	organizations.

The	following	table	shows	the	IP	address	ranges	in	the	three	major	classes:

Class	of	IP	address Starting	IP	address Ending	IP	address

A 1.0.0.0 126.255.255.255

B 128.0.0.0 191.255.255.255

C 192.0.0.0 223.255.255.255

The	following	table	shows	the	private	IP	address	ranges:

Class	of	private	IP	addresses Starting	IP	address Ending	IP	address

A 10.0.0.0 10.255.255.255

B 172.16.0.0 172.32.255.255

C 192.168.0.0 192.168.255.255

Subnet	masks	can	be	configured	to	allow	more	or	fewer	hosts	per	subnet	with
a	corresponding	tradeoff	in	having	fewer	or	greater	network	addresses	with
which	to	build	multiple	networks	within	larger	organizations.

A	deeper	review	of	IP	addressing	and	subnetting	is	beyond	the	scope	of	this
book.	If	you're	not	familiar	with	these	concepts,	some	additional	study	would	be
advisable	as	a	solid	understanding	of	IP	subnetting	is	essential	for	most	analysis
activities.

Switching	and	routing	packets
So	far,	we've	covered	the	topics	required	to	discuss	how	packets	of	data	get
routed	from	computer	A	to	host	B	across	LANs	and/or	WANs	over	distances	that
may	range	from	across	a	room	to	across	the	globe.	The	important	concepts	to
remember	are	that	Ethernet	frames	work	with	switches	and	IP	packets	work	with
routers	to	accomplish	this	feat,	which	we'll	cover	in	the	next	section.

Ethernet	frames	and	switches
To	reiterate	what	was	outlined	in	the	layer	2	(the	data-link	layer)	discussion,
Ethernet	frames	are	switched	from	the	entry	port	to	the	appropriate	destination
port	based	on	the	destination	MAC	address.	Network	switches	build	tables	of
which	MAC	addresses	belong	to	each	port,	compare	a	frame's	destination	MAC
address	to	these	tables,	and	switch	the	frame	to	the	appropriate	egress	port	if	the
destination	is	on	the	same	switch	or	out	a	trunk	port	to	another	switch	or	router
otherwise.

Note	that	the	first	time	a	switch	sees	a	destination	MAC	address	it	doesn't
recognize,	it	sends	the	packet	(which	will	usually	be	an	ARP	packet)	out	all	the
ports	until	a	device	answers	and	it	can	add	the	new	MAC	address	to	its	content
addressable	memory	(CAM)	table	that	maps	MAC	addresses	to	specific	ports.

Frames	carrying	packets	destined	for	remote	networks	are	sent	to	the	default
gateway	port	MAC	address.	If	you	look	at	a	list	of	MAC	addresses	in	the
Ethernet	tab	of	a	Conversations	table	in	Wireshark	and	see	an	address	with	a
drastically	higher	volume	of	traffic	than	the	other	stations,	this	is	likely	a	default
gateway	(router)	port	MAC	address.	This	port	is	the	pathway	into/out	of	this
LAN	from/to	other	networks.

On	any	given	LAN,	you'll	see	workstations,	servers,	and	routers	generating	ARP
and	Domain	Name	Service	(DNS)	requests:

ARP:	This	is	used	to	resolve	IP	addresses	to	MAC	addresses
DNS:	This	is	used	to	resolve	hostnames	to	IP	addresses

In	the	following	diagram,	there	are	two	user	workstations	and	a	server	that	are
connected	together	in	a	LAN	residing	on	the	10.1.1.0/24	IP	network.	A	router
is	attached	to	this	network,	which	has	a	WAN	link	to	another	location.

	

The	following	two	scenarios	leverage	this	drawing	to	show	how	MAC	addresses
are	utilized	to	switch	Ethernet	frames	around	local	area	networks:

The	workstation	with	MAC	address	B	wants	to	use	an	application	on	the
server	Venus,	which	is	unknown	to	all	the	network	devices	as	it	was	just
powered	up.	The	workstation	knows	the	IP	address	of	Venus	as	the	IP
address	was	preconfigured	in	the	client	application,	but	it	doesn't	know	the
server's	MAC	address.

The	workstation	broadcasts	an	ARP	packet	with	its	own	MAC	and	IP
address	as	the	sender,	the	IP	address	of	the	Venus	server,	and	all	the	zeros
for	the	MAC	address	in	the	Target	fields.	Venus	responds	to	the
workstation	with	an	ARP	response	that	includes	its	MAC	address	of	C	in
the	sender	MAC	address.

The	workstation	then	sends	a	session	initiation	packet	to	the	server	using
the	server's	MAC	address	as	the	destination	MAC	in	the	Ethernet	frame.

These	Ethernet	frames	traversed	switch	3,	which	learned	both	devices'
MAC	addresses	from	observing	the	ARP	conversations.	The	rest	of	the
switches	in	the	LAN	network	learned	workstation	C's	MAC	address	when	it
broadcasted	its	ARP	packet	(because	switch	3	sent	this	ARP	packet	out	all
ports),	but	not	the	server's	MAC	as	the	server	responded	directly	to	C.
The	workstation	with	MAC	address	A	now	wants	to	use	an	application	on
the	server	Venus.	It	doesn't	know	the	server's	MAC	address	either,	so	it
sends	an	ARP	request	as	well,	which	switch	2	broadcasts	out	all	its	ports,	as
does	switch	1	and	switch	3	as	the	switches	only	look	at	MAC	addresses	and
the	destination	MAC	address	of	any	ARP	request	is	ff:ff:ff:ff:ff:ff,	so	each
switch	is	obliged	to	send	the	broadcast	frame	out	all	ports.

However,	when	the	server	Venus	responds	to	A's	ARP	packet,	using	A's
MAC	address,	each	switch	in	the	path	has	learned	which	ports	it	saw	A's
MAC	address	come	in	on.	So,	each	switch	only	sends	Venus'	response	out
the	appropriate	port	back	to	workstation	A.	The	same	is	true	for	learned
non-broadcast	frames.	If	a	switch	doesn't	recognize	a	destination	MAC
address	of	a	nonbroadcast	frame,	these	are	sent	out	all	ports	the	first	time	as
well.

As	switch	CAM	tables	get	populated	with	MAC	addresses	and	their
associated	ports,	the	number	of	frames	that	must	be	sent	to	every	device	in
the	LAN	as	well	as	the	workload	on	all	these	devices	is	reduced
significantly.

IP	addresses	and	routers
When	packets	need	to	leave	the	LAN	to	get	to	a	remote	IP	network,	routers	are
required	to	route	the	packets	based	on	their	destination	IP	addresses.	The
following	scenario	(still	referring	to	the	preceding	screenshot)	illustrates	some	of
the	details	involved	in	one	possible	situation.

Workstation	A	now	wants	to	use	an	application	on	the	server	Mars,	which
resides	on	a	different	network	than	in	the	previous	scenarios.	And	in	this	case,
workstation	A	doesn't	know	the	IP	address	of	the	server;	it	only	needs	its	name.
Workstation	A	will	send	a	DNS	request	packet	to	the	DNS	server	IP	address
configured	in	its	network	settings	(the	DNS	server	isn't	shown	here)	with	the
hostname	Mars;	the	DNS	server	will	return	the	IP	address	of	Mars	10.1.2.25.
Workstation	A	calculates	that	this	host	isn't	on	its	own	network	from	a
comparison	of	its	IP	address	and	subnet	mask	with	Mars'	IP	address,	so	it	sends
the	session	initiation	packet	to	router	1,	which	was	configured	as	its	default
gateway	in	its	network	settings.	We'll	assume	that	Workstation	A	already	knows
the	MAC	address	of	router	1's	port	from	a	previous	ARP	exchange	to	find	router
1's	MAC	address	from	the	given	IP	address.

When	the	router	receives	A's	frame,	which	was	sent	to	the	router	port's	MAC
address,	it	inspects	the	destination	IP	address	inside	the	IP	header	and	looks	up
the	appropriate	port	to	forward	the	packet	to.	This	routing	process	is	supported
by	routing	table	entries	the	router	builds	from	route	information	broadcasted	by
other	routers;	each	router	tells	all	the	others	what	networks	it	knows	a	route	to.

In	this	case,	the	Ethernet	frame	surrounding	A's	packet	is	stripped	off	and	the
remaining	payload	(packet)	is	sent	across	the	WAN	link	to	router	2,	which	also
inspects	the	IP	header	destination	IP	address	and	looks	up	the	correct	port	to
forward	the	packet	to.	Router	2	wraps	the	packet	in	a	new	Ethernet	frame	with
its	own	MAC	address	X	as	the	source	and	the	Mars	server's	Y	address	as	the
destination	MAC	(assuming	the	router	already	has	the	server	in	its	MAC	table),
and	transmits	the	packet	out	onto	the	LAN	to	get	switched	to	the	Mars	server,	as
shown	in	the	following	diagram:

	

WAN	links
Actually,	network	packets	may	traverse	several	routers	and	WAN	links	to	reach
the	destination	network,	and	each	router	traversed	is	called	a	hop.	In	the	context
of	packet	analysis,	you	should	be	aware	that	WAN	links	can	introduce	packet
delivery	delays	or	latency	due	to	the	following	four	major	factors:

Physical	speed-of-light	propagation	delay:	This	is	the	amount	of	time
required	for	electrical	or	light	signals	to	travel	across	copper/fiber	cables
over	long	distances.
Network	routing/geographical	distance:	The	WAN	link	routes	are	never
in	a	straight	line	between	points.	They	have	to	traverse	major	telephony
switching	centers	and	route	along	railways,	roads,	and	other	opportunistic
paths.
Serialization	delay	into	and	across	WAN	links:	The	WAN	links	are	often
slower	speed	links,	and	it	takes	a	finite	amount	of	time	to	send	packet	data
across	these	links	one	bit	at	a	time.
Queuing	delays:	In	network	device	buffers,	including	additional	delays	that
may	be	induced	by	Quality	of	Service	policies,	some	packets	receive
priority	and	others	have	to	wait	longer	for	their	turn	to	be	transmitted.

The	effects	of	network	delay	incurred	across	LAN	and	WAN	links	can	be	seen
and	measured	in	Wireshark	packet	traces	by	inspecting	the	elapsed	times
between	session	setup	packets.

Wireless	networking
Wireless	networks	utilize	a	range	of	802.11	specifications	to	provide
connectivity	over	2.4	or	5	GHz	frequency	bands	at	a	variety	of	speeds.	The
significant	differences	between	wireless	frames	and	those	found	on	wired
networks	are	as	follows:

Wireless	networks	employ	carrier	sense	(every	station	is	listening),	multiple
access	(shared	medium),	and	collision	avoidance	(avoiding	collisions
instead	of	just	recovering	from	them)	techniques,	which	reduce	the
throughput
In	addition	to	data	frames,	which	get	forwarded	to	the	wired	network,
wireless	frame	types	include	the	following:

Management	frames:	This	is	used	for	authentication	and	association
tasks
Control	frames:	This	controls	send/receive	functions	on	the	shared
media	to	help	avoid	collisions

Wireshark	can	be	used	to	capture	and	analyze	packets	on	Wireless	networks.
However,	in	order	to	analyze	the	control	and	management	frames,	as	well	as
select	the	radio	channels	to	capture	on	without	having	to	associate	with	a
specific	channel,	specialized	adapters	are	required.	These	adapters	are	available
from	various	networking	vendors.

These	wireless	adapters	and	their	drivers	enable	Wireshark	to	display	a	pseudo
header	just	below	the	frame	header	in	the	Packet	Details	pane,	which	includes
information	about:

Data	rate:	This	is	the	maximum	data	transfer	rate	possible	across	the	radio
channel
Channel	frequency:	This	is	the	RF	channel	frequency	that	the	station	is
using
Channel	type:	This	is	the	802.11	protocol	used,	and	the	common	types	are
a,	b,	g,	and	n
RF	signal	and	noise	levels:	This	is	the	received	RF	signal	strength	and
background	noise	levels;	the	larger	the	difference	between	these	two	the
better	the	signal	can	be	decoded

Remember	when	analyzing	wireless	networks,	the	wireless	access	points	utilize
a	wired	LAN	connection	to	the	rest	of	the	network	that	may	warrant	a	separate
analysis.	The	access	point	strips	off	the	802.11	header	and	encapsulates	a	packet
in	an	Ethernet	frame	before	sending	the	packet	off	on	the	wired	network.

The	following	screenshot	illustrates	the	contents	of	a	typical	Radiotap	Header
and	IEEE	802.11	frame;	note	the	Data	Rate,	Channel	frequency,	and
Signal/Noise	values:	

	
Note

There	are	numerous	reference	materials	and	books	that	you	can	read	to	learn
more	about	networking	and	network	protocols.	One	of	the	classic	sources	is
TCP/IP	Illustrated	Volumes	I,	II,	and	III,	W.	Richard	Stevens,	Addison-Wesley
Professional,	available	online	or	in	book	formats.

Summary
The	important	points	covered	in	this	chapter	included	how	Ethernet	frames	are
switched	to	the	appropriate	switch	ports	on	a	LAN	based	on	destination	MAC
addresses	that	packets	are	routed	across	and	to	remote	networks	based	on
destination	IP	addresses,	and	how	the	frames	carrying	packets	destined	for
remote	networks	based	on	the	destination	IP	address	are	sent	to	the	default
gateway's	port	MAC	address.

We	also	covered	how	and	why	slower	and/or	longer	distance	WAN	links	can	add
significant	amounts	of	delay	to	packet	transmissions,	which	slows	application
data	exchanges	and	increases	user	response	times.	We	finished	the	chapter	by
discussing	how	Wireshark	can	capture	and	analyze	packets	on	802.11	wireless
networks	using	specialized	adapters.

In	the	next	chapter,	we'll	cover	in	detail	how	to	capture	and	filter	packets	using
Wireshark.

Chapter	3.	Capturing	All	the	Right
Packets
In	order	to	analyze	packets	to	troubleshoot	connectivity,	performance,	or	security
issues,	you	have	to	successfully	capture	all	of	the	right	packets	and	then	identify
and	filter	out	just	the	packets	that	pertain	to	the	goal	at	hand.

In	this	chapter,	we	will	cover	the	following	topics:

Picking	the	best	capture	point
TAPs	and	switch	port	mirroring
Wireshark's	capture	interfaces,	filters,	and	options
Verifying	a	good	capture
Isolating	the	conversation(s)	of	interest
Using	the	Wireshark	Conversations	window
Wireshark's	display	filters
Filtering	expression	buttons
Following	TCP/UDP/SSL	streams
Marking	and	ignoring	packets
Saving	filtered	traffic

You'll	recognize	that	many	of	these	activities	are	the	same	ones	that	we
accomplished	in	Chapter	1,	Getting	Acquainted	with	Wireshark,	to	perform	a
capture	and	filter	just	the	packets	involved	in	loading	a	web	page.	In	this	chapter,
we'll	expand	and	finish	rounding	out	your	skills	in	all	these	topics.

Picking	the	best	capture	point
Determining	the	best	location	to	perform	a	packet	capture	depends	on	several
considerations:

The	nature	of	the	issue	being	investigated
The	relative	ability	to	perform	a	capture	in	a	location	that	provides	the
highest	degree	of	usefulness	to	the	analysis
The	amount	of	technical	difficulty,	risk,	and	time	required	to	perform	a
capture	at	a	given	location

User	location
If	you're	troubleshooting	a	user	complaint,	the	first	capture	point	should	be	at	the
user's	workstation	to	gain	a	view	from	the	user's	perspective	and	verify/clarify
the	situation	that	the	user	is	reporting.	From	this	vantage	point,	you	can:

Ensure	that	basic	network	services	such	as	ARP	and	DNS	are	working
correctly
Analyze	the	initial	login	process	if	the	user	authentication	involves	a
different	device	than	the	target	application	server
Measure	network	round	trip	times	from	the	user	to	the	target	host(s)
Determine	whether	the	TCP	session	setup	handshake	is	appropriate	for	the
application	being	accessed
Measure	service	response	times	(such	as	HTTP	or	SMB	response	times)
Determine	whether	the	user	is	experiencing	packet	loss	and	retransmissions,
out-of-order	packets,	or	other	network-related	anomalies
Capture	any	application	error	messages	being	sent	to	the	user	and	the
requests	that	resulted	in	those	errors

Capturing	from	a	user's	location	is	usually	much	simpler	from	a	practical
standpoint	and	there	is	a	lot	less	traffic	to	deal	with,	which	makes	capture	sizes
smaller	and	filtering	the	packets	of	interest	simpler.	Disconnecting	a	user's
Ethernet	cable	for	a	few	minutes	to	insert	a	TAP	(we'll	discuss	these	in	the	next
section)	or	installing	Wireshark	on	the	user's	workstation	does	not	typically
require	special	authorization	or	preparation	as	the	risk	to	other	users	is
negligible.

Server	location
If	a	capture	from	a	complaining	user's	workstation	isn't	possible	or	practical,	a
capture	from	the	server	end	can	still	be	useful,	but	it	might	be	advantageous	to
apply	a	capture	filter	to	gather	just	the	traffic	to/from	the	user's	workstation
(based	on	the	user's	IP	address)	to	limit	the	capture	file	size.	You	can	still
measure	network	round	trip	times,	server	response	times,	analyze	TCP
handshake	details,	and	detect	retransmissions	caused	by	packet	loss,	and	perhaps
the	login/authentication	process	from	this	location.

Capturing	from	a	server	location	is	also	appropriate	when	analyzing	backend
service	response	times.	For	example,	if	users	interact	with	an	application	server
but	that	app	server	performs	transactions	with	a	backend	database	in	order	to
fulfill	user	requests	and	if	there	are	complaints	of	slow	response	times,	then	an
analysis	of	application	server-to-database	server	interactions	can	help	isolate	the
true	source	of	the	poor	performance	to	one	or	the	other	host	and	the	types	of
requests	that	result	in	slow	or	erroneous	responses.

Other	capture	locations
For	the	majority	of	packet	captures,	you'll	likely	be	at	user	workstations	or	server
switch	ports,	but	there	will	also	be	some	cases	where	captures	will	need	to	be
performed	at	other	locations.

Mid-network	captures

Identifying	the	source	of	excessive	packet	loss	or	disordering	over	a	network
path	may	require	performing	packet	captures	at	various	points	along	that	path,
typically	at	distribution	or	core	switch	trunks,	or	interfaces	to	routers,	firewalls,
and	so	on,	to	find	the	network	segment	where	packet	loss	becomes	apparent.

Both	sides	of	specialized	network	devices

Today's	modern	networks	often	employ	a	number	of	network	devices	that	can
actually	alter	the	contents	of	packets	flowing	between	clients	and	servers;	in
some	(occasional	or	last	resort)	cases,	it	may	be	necessary	to	capture	on	both
sides	of	these	devices	to	isolate	or	prove	a	functional	or	configuration	problem:

Routers	and	gateways:	These	are	also	called	Internet	gateways	in	some
configurations	and	may	be	configured	to	perform	a	Network	Address
Translation	(NAT)	function	that	alters	and	hides	the	user's	actual	IP
address	from	an	outside	network.	This	is	done	by	substituting	a	public	IP
address	for	the	user's	real	address.	This	usually	involves	translating	port
numbers	as	well	so	that	a	single	public	IP	address	can	be	used	to	support
multiple	sessions;	in	which	case,	the	solution	is	called	Port	Address
Translation	(PAT).	The	end	result	of	the	PAT	functionality	is	that	a	capture
from	the	client	side	and	a	capture	at	the	server	side	of	the	same	session
conversation	will	involve	different	IP	addresses	and	port	numbers.

The	following	diagram	illustrates	how	a	PAT	device	translates	IP	addresses
and	ports	from	an	internal	private	network	to	and	from	an	externally	visible
IP	address	and	has	translated	the	ports	used	for	an	individual	user	session:	

	
Proxy	servers	and	firewalls:	Devices	such	as	these	can	act	as	an	intermediary

between	clients	wanting	to	use	resources	from	other	(usually	external)	servers.
These	devices	are	most	typically	deployed	between	users	inside	a	company	and
outside	(web)	services	accessed	via	the	Internet.	These	devices	are	employed	for
their	security	capabilities,	allowing	administrative	control	over	what	can	be
accessed	and	the	type	of	data	content	that	can	be	relayed	between	the	two
networks,	malware	scanning,	and	so	on.	From	a	packet	analysis	standpoint,	you
should	be	aware	that	in	addition	to	performing	a	NAT/PAT	function,	some
implementations	of	these	devices	may	actually	terminate	a	user	session	on	one
side	and	initiate	a	completely	different	session	between	the	device	and	the
outside	host	on	the	other	side,	on	behalf	of	the	user,	such	that	the	TCP	handshake
and	session	parameters,	IP	addresses	and	port	numbers,	and	packet	sizes	can	all
differ	on	either	side.
IP	tunnels	using	Generic	Routing	Encapsulation:	These	are	used	to	connect

two	IP	networks	that	don't	otherwise	have	a	native	routing	path	to	each	other.
The	original	packets	are	encapsulated	inside	packets	with	different	IP	addresses
appropriate	for	the	network	media	that	they	will	traverse.	The	most	common	use
of	IP	tunneling	is	to	connect	private	corporate	networks	together	through	public
Internet	connections	or	to	connect	Internet	Protocol	Version	6	(IPv6)	networks
together	over	traditional	IPv4	network	paths.	IP	tunnels	can	be	configured
between	routers	and	high-end	switches.

Although	it	may	be	necessary	(to	validate	an	issue	to	other	support	teams)	or

more	practical	to	capture	at	or	near	the	interfaces	to	the	devices	described	earlier,
it	is	usually	easier	and	just	as	effective	to	perform	the	captures	at	user	and/or
server	locations.	Unless	you're	part	of	a	network	support	team,	you	won't	have	to
conduct	an	analysis	in	such	an	advanced	and	complicated	environment.

Test	Access	Ports	and	switch	port
mirroring
If	you're	capturing	from	a	user	location	and	cannot	or	do	not	wish	to	install
Wireshark	on	the	user's	machine	or	you're	capturing	at	another	location	in	the
network,	you	have	two	options	to	obtain	a	copy	of	the	packets	traversing	the
network:	Test	Access	Ports	or	switch	port	mirroring.

Test	Access	Port
A	Test	Access	Port	(TAP)	is	a	device	that	copies	all	the	packets	flowing	through
it	to	one	or	more	monitor	ports.	A	station	with	Wireshark	installed	on	it	can	be
connected	to	one	of	the	monitor	ports	to	capture	the	packets.

You	should	select	an	aggregating	TAP	that	supports	the	link	speed	of	the
network	ports	being	analyzed	(usually	100	Mbps	or	1	Gbps)	and	that	will	copy
and	combine	the	packets	flowing	in	both	directions	(transmit	data	from	the	user's
workstation	and	receive	data	from	the	network);	the	aggregating	TAP	funnels	the
traffic	to	a	single	connection	(transmit	to	the	Wireshark	station)	so	that	you	can
capture	the	traffic	in	both	directions	with	a	single	network	interface	on	the
Wireshark	station.	Be	aware	that	since	you're	copying	packets	from	two
directions	into	one	pipe	to	the	Wireshark	station,	it	is	possible	to	oversubscribe
the	monitor	port	if	traffic	rates	are	extremely	high.	If	this	happens,	the	excess
packets	will	be	dropped.	Oversubscription	usually	isn't	a	concern	at	user
workstations,	but	it	could	be	for	switch	trunks	or	other	high	traffic	areas.

The	following	figure	illustrates	how	a	TAP	is	inserted	between	a	user
workstation	and	that	workstation's	switch	port,	and	how	a	Wireshark	workstation
is	attached	to	capture	packets:

	

Switch	port	mirroring
Switch	port	mirroring,	also	known	as	a	Switched	Port	Analyzer	(SPAN)	feature
or	spanning	a	port,	is	the	practice	of	configuring	a	network	switch	to	perform	the
same	function	as	a	TAP:	to	make	a	copy	of	the	packets	flowing	in	and	out	of	a
specified	port	and	send	them	to	an	otherwise	unused	monitor	port	where	a
Wireshark	station	is	attached	to	capture	the	packets.

The	advantage	of	using	port	mirroring	is	that	no	connections	need	to	be	broken
to	insert	a	TAP.	The	monitor	port	can	be	easily	configured	by	a	switch
administrator	and	just	as	easily	disabled.

The	potential	issues	with	this	option	include	the	fact	that	not	all	switches	support
port	mirroring,	and	there	is	some	evidence	to	suggest	that	using	this	feature	can
affect	the	performance	of	the	switch,	at	least	for	the	port	being	monitored.	The
possibility	of	oversubscribing	the	monitor	port	from	excessive	transmit	plus
receiving	traffic	levels	also	exists	for	port	mirroring,	as	is	the	case	when	using	a
TAP,	and	this	is	likely	when	monitoring	switch	trunks	to	other	switches,	as	these
will	be	carrying	traffic	for	multiple	users.

The	following	diagram	is	a	simple	illustration	of	a	port	mirroring	scenario	on	a
switch.	The	packets	to	and	from	the	workstation	port	are	copied	to	the	port
where	the	Wireshark	station	is	connected.

	
Capturing	packets	on	high	traffic	rate	links

If	you	need	to	capture	packets	on	a	high	traffic	rate	link	such	as	a	trunk	link
between	larger	switches,	Wireshark	is	probably	not	the	best	solution.	It	may	not
be	able	to	keep	up	with	a	busy	link.	Wireshark	is	actually	a	GUI	tool	that	calls	a
command-line	executable	called	dumpcap,	which	captures	the	packets	and
saves	them	to	a	disk	file.	Wireshark	reads	this	file	and	presents	the	processed
packets	to	the	user	interface.	An	alternative	to	Wireshark	is	to	use	the	dumpcap
or	tcpdump	executable	directly	(these	are	covered	in	Chapter	8,	Command-line
and	Other	Utilities)	or	a	high	performance	capture	appliance	offered	by
numerous	vendors.

Capturing	interfaces,	filters,	and
options
Capturing	packets	with	Wireshark	consists	of	selecting	the	correct	network
interface	to	capture	packets	from,	applying	any	capture	filters	that	may	be
appropriate,	and	applying	the	correct	options	to	accomplish	the	capture	in	the
desired	manner.	We'll	cover	these	three	topics	in	the	following	sections.

Selecting	the	correct	network	interface
As	discussed	in	Chapter	1,	Getting	Acquainted	with	Wireshark,	if	you	have
multiple	network	interfaces	on	your	machine,	you	need	to	determine	and	select
the	correct	interface	to	capture	packets.	In	Wireshark's	Capture	menu,	click	on
Interface	or	click	on	the	first	icon	on	the	icon	bar.

The	Wireshark	Capture	Interfaces	window	provides	a	list	and	description	of
the	network	interfaces	on	your	machine,	the	IP	addresses	assigned,	and	the	total
packets	and	packets	per	second	counters	for	each	interface.	If	an	interface	has	an
IPv6	address	assigned	and	this	is	being	displayed,	you	can	click	on	the	address
to	toggle	and	display	the	IPv4	address.

The	following	screenshot	illustrates	a	typical	Capture	Interfaces	window	listing
a	LAN	and	wireless	interface	along	with	their	IP	addresses	and	packet	counters:	

	

The	Capture	Interfaces	window	provides	the	following	two	options:

Clicking	on	the	Details	button	for	any	of	the	listed	interfaces	opens	an
Interface	Details	window	that	provides	a	wide	range	of	information	that
can	be	useful	to	verify	the	interface's	operation.	The	status	of	the	Link	and
Link	Speed	information	is	displayed	in	the	Characteristics	tab,	and	the
MAC	address	of	the	selected	NIC	is	displayed	in	the	802.3	(Ethernet)	tab.
The	rest	of	the	capture	options	are	configured	in	the	Capture	Options
window,	which	is	opened	by	clicking	on	the	Options	button	in	the	Capture
Interfaces	window,	or	by	selecting	Options	from	the	Capture	menu,	or	by
clicking	on	the	second	icon	in	the	icon	bar.

The	following	screenshot	illustrates	a	typical	Capture	Options	window	with	a

number	of	options	specified.	You	can	refer	to	it	for	examples	of	the	topics	on
Capture	Options.

	

As	seen	in	the	preceding	screenshot,	the	Capture	Options	window	displays	the
available	interfaces	and	their	IP	addresses	and	allows	you	to	select	one	or	more
of	these	interfaces	to	perform	the	capture.	Wireshark	can	capture	from	multiple
interfaces	simultaneously,	as	well	as	from	virtual	interfaces.	The	primary
advantage	of	starting	with	the	Capture	Interfaces	window	is	the	availability	of
the	packet	counters	to	aid	in	identifying	active	interfaces,	a	feature	not	available

in	the	Capture	Options	window.	Otherwise,	if	you	know	which	interface	you'll
want	to	use,	you	can	skip	using	the	Capture	Interfaces	window	and	start	here.

Clicking	on	the	Manage	Interfaces	button	in	the	Capture	Options	window
brings	up	an	Interface	Management	window.	From	the	Local	Interfaces	tab,
you	can	select	to	hide	interfaces	that	you	do	not	wish	to	see	displayed	in	the
Capture	Interfaces	and	Capture	Options	windows.

There	is	an	option	to	quickly	enable	Capture	on	all	interfaces	and	a	Use
promiscuous	mode	on	all	interfaces	option	that	is	enabled	by	default.	In	most
cases,	this	option	should	be	left	enabled	so	that	the	chosen	interface(s)	can
capture	and	save	all	the	packets	seen.	Otherwise,	only	the	packets	that	are	being
sent	to	the	Wireshark	workstation's	MAC	address,	broadcast,	and/or	multicast
packets	will	be	seen	and	captured,	which	basically	negates	its	usefulness	as	a
capture	device.	The	Compile	selected	BPFs	button	provides	a	machine
language	display	of	the	compiled	capture	filter,	but	has	no	other	functional
purpose.

Note

The	Capture	Filter	field	has	a	highlighting	feature	that	indicates	valid	versus
invalid	filter	syntax.	A	green	background	indicates	a	good	filter	and	a	red
background	indicates	an	invalid	or	incomplete	filter.

Using	capture	filters
Capture	filters	are	used	to	reduce	the	amount	of	traffic	saved	during	a	packet
capture.	In	practice,	capture	filters	should	be	used	sparingly,	if	used	at	all,	to	help
make	sure	that	no	packets	that	are	important	for	an	analysis	are	inadvertently
missed	because	they	fall	outside	the	capture	filter	parameters.	Remember	that
you	can	always	filter	out	unwanted	traffic	from	a	capture,	but	you	can't	do
anything	about	missed	packets	once	the	capture	is	finished.	If	you're	unsure
about	a	capture,	perform	the	capture	again	with	a	more	generous	capture	filter	or
none	at	all.

One	scenario	where	a	capture	filter	is	appropriate	is	when	you	want	to	let	a
capture	run	for	a	long	period	of	time.	Then,	you	should	filter	out	as	much
extraneous	traffic	as	possible	to	keep	capture	file	sizes	under	control.	However,
take	care	to	make	sure	the	capture	filter	you	apply	doesn't	exclude	any	traffic
that	may	be	useful	for	the	analysis.

It's	usually	a	good	idea	to	do	some	trial	captures	when	using	capture	filters	to
verify	that	the	filter	is	working	as	desired	before	doing	the	official	capture	that
you	want	to	keep.

Configuring	capture	filters
Wireshark	provides	a	Capture	Filter	window	that	makes	it	easy	to	select	a
preconfigured	capture	filter,	or	you	can	configure	your	own	based	on	your	needs.

Click	on	the	Capture	Filter	button	in	the	Capture	Options	window	to	open	the
Capture	Filters	window.	From	this	window,	you	can	select	from	a	number	of
useful	preconfigured	capture	filters,	create	a	new	and	unique	capture	filter	for
your	purposes,	or	delete	unwanted	or	erroneous	filters.	Creating	a	new	filter	only
involves	giving	the	filter	a	name,	entering	the	capture	filter	syntax,	clicking	on
New	to	save	the	filter,	and	then	finally	clicking	on	OK.	Alternatively,	you	can
click	on	an	existing	filter	and	then	click	on	New,	which	will	create	a	copy	of	that
filter	at	the	bottom	of	the	list	that	can	then	be	modified	for	your	purposes.

The	following	screenshot	illustrates	a	typical	Capture	Filter	window.	In	this
case,	a	capture	filter	that	will	only	allow	traffic	to	and	from	a	specific	Ethernet
MAC	address	has	been	selected:	

	

Wireshark's	capture	filters	use	a	syntax	that	is	known	as	the	Berkley	Packet
Filter	(BPF)	format,	which	has	legacy	roots	in	the	Unix	world	and	is	still	in	use
today	with	packet-level	drivers.	Note	that	the	syntax	used	to	capture	filters	in
Wireshark	differs	significantly	from	the	syntax	used	for	display	filters.

The	default	selection	of	capture	filters	from	the	Capture	Filter	window	is
helpful	in	providing	examples	of	capture	filter	syntax.	Some	additional	examples
of	capture	filter	syntax	and	examples	of	that	syntax	are	outlined	in	the	following
table:

Description Syntax Examples

Filter	on	an	Ethernet	MAC	address

Filter	to	capture	just	the	traffic	from	or	to	a	MAC	address

ether	host
xx:xx:xx:xx:xx:xx

ether	src	or	ether
dst

ether	host
00:1c:25:99:db:85

ether	src
00:1c:25:99:db:85

Filter	on	an	IP	address	or	hostname	Filter	to	capture	just	the
traffic	between	two	IP	addresses	Filter	traffic	in	one	direction
only	between	two	hosts

host
xxx.xxx.xxx.xxx

src	host	and	dst
host

host

192.168.1.115

host

www.wireshark.org

host

192.168.1.115	and
host	10.1.1.125

src	host

192.168.1.115	and
dst	host

10.1.1.125

Filter	based	on	a	port	number

Filter	for	DNS	packets

Filter	for	DHCP	packets

port,	dst	port,	and
src	port

port	53

port	67

Filter	based	on	a	protocol

Filter	for	HTTP	traffic	only

arp,	icmp,	ip,	upd,
tcp,	http,	ip6,	and
icmp6

http

Capture	filter	logical	operators =,	!=,	>,	<,	>=,	<=,	!, not	arp	and	port
not	53

Filter	to	exclude	ARP	and	DNS	packets not,	&&,	and,	||,	or
!	arp	&&	port	!

53

More	information	and	examples	of	capture	filters	can	be	found	on	the	Wireshark
wiki	at	http://wiki.wireshark.org/CaptureFilters	and	the	protocol-specific	capture
filter	syntax	is	included	in	the	reference	information	found	at
http://wiki.wireshark.org/ProtocolReference.

http://wiki.wireshark.org/CaptureFilters
http://wiki.wireshark.org/ProtocolReference

Capture	options
The	Wireshark	Capture	Options	window	offers	a	variety	of	controls	to
configure	captures	to	suit	a	particular	need.

Capturing	filenames	and	locations

Clicking	on	the	Browse	button	on	the	File	option	allows	you	to	navigate	to	a
chosen	directory	in	which	you	can	store	the	capture	files	and	enter	a	filename	for
the	capture	files.

When	the	File	option	is	used,	Wireshark	will	append	a	file	number	and	date-time
stamp	to	the	filename	you	specify	and	will	not	provide	a	file	extension.	You
should	specify	a	.pcapng	extension	in	the	filename.	This	is	better	illustrated	with
an	example.

The	user	provided	directory	and	filename	is
C:\Wireshark\long_capture.pcapng,	and	Wireshark	will	create	and	save
packets	to	files	in	the	format
C:\Wireshark\long_capture_00001_20140724132952.pcapng.

If	Wireshark	is	configured	to	capture	to	more	than	one	file	(this	will	be	discussed
later),	the	file	numbers	and	date-time	stamps	will	be	incremented	accordingly	as
the	capture	progresses,	for	example,
long_capture_00002_20140724133343.pcapng	and
long_capture_00003_20140724133612.pcapng.

Multiple	file	options

Wireshark	can	be	configured	to	save	packets	to	multiple	files	to	allow	long-term
captures,	and	offers	a	number	of	options	to	control	how	this	is	accomplished.

Selecting	the	Use	multiple	files	option	causes	the	appropriate	underlying
controls	to	become	active	as	specific	options	are	enabled.	You	can	choose	to	start
a	new	(next)	file	when	each	file	reaches	a	given	size	and/or	after	a	configurable
period.

Note

Wireshark	can	become	very	sluggish	or	might	even	crash	when	working	with
capture	file	sizes	of	much	greater	than	100	MB,	so	you	should	consider	this	as	a
good	maximum	file	size.

Ring	buffer

The	Ring	buffer	option	works	in	conjunction	with	the	Next	File	every	option	to
cause	Wireshark	to	fill	the	specified	number	of	files,	and	as	the	capture	continues
to	progress,	it	deletes	the	oldest	files.

This	feature	is	useful	to	keep	a	capture	running	while	waiting	for	some
intermittent	problem	or	an	event	to	occur,	after	which	the	capture	is	manually
stopped.	The	ring	buffer	files	provide	historical	capture	data	for	a	period	just
prior	to	stopping	the	capture,	without	filling	a	hard	drive	with	an	excessive
number	of	large	capture	files.

Stop	capture	options

Wireshark	has	options	to	automatically	stop	a	capture	after	a	specified	number	of
packets,	file	size,	or	time	period.	If	the	Use	multiple	files	option	is	enabled,	an
option	to	stop	the	capture	after	a	specified	number	of	files	can	be	employed.
Otherwise,	the	capture	can	be	stopped	after	a	specified	number	of	packets,	file
size,	or	time	period	has	elapsed.

Display	options

The	Update	list	of	packets	in	real	time	option	specifies	that	Wireshark	is	to
periodically	read	the	capture	file	as	it	is	being	written	during	the	capture	and
update	the	Packet	List	contents	accordingly.	Otherwise,	the	Wireshark	user
interface	will	be	grayed	out	during	the	capture.

The	Automatically	scroll	during	live	capture	option	specifies	that	Wireshark
updates	and	displays	the	latest	captured	packets	in	the	Packet	List	pane	such
that	the	packets	seem	to	scroll	up	as	the	list	is	updated.	The	Update	list	of
packets	in	real	time	option	must	be	enabled	for	this	option	to	function.

Both	of	these	options	have	a	processing	time	cost	that	could	result	in	lost	packets
and/or	a	sluggish	display	and	should	be	disabled	if	capturing	on	a	very	busy	link.
However,	the	ability	to	view	and	confirm	that	the	expected	packet	flows	are

occurring	during	the	capture	will	be	lost.

The	Hide	capture	info	dialog	option	(which	is	enabled	by	default)	controls
whether	a	simple	window	is	displayed	during	the	capture	that	displays	the	packet
counts	and	percentages	by	protocol.	Unless	specifically	needed,	it	is	best	to	leave
this	window	hidden.

Name	resolution	options

If	the	Resolve	MAC	addresses	option	is	enabled,	it	causes	Wireshark	to	display
MAC	addresses	with	an	assigned	manufacturer	code	in	place	of	the	first	three
octets.	For	example,	Wireshark	will	display	CiscoCon_21:b7:ec	instead	of
c8:d7:19:21:b7:ec.	The	list	of	manufacturer's	codes	is	kept	in	the	manuf	file	of
the	Wireshark	installation	directory.

The	Resolve	network-layer	names	option	works	in	conjunction	with	Use
external	network	name	resolver	to	determine	if	or	how	captured	IP	addresses
are	resolved	into	their	hostnames,	as	follows:

The	Resolve	network-layer	names	option	specifies	that	Wireshark	should
attempt	to	resolve	IP	addresses	into	hostnames.	If	the	Use	external
network	name	resolver	option	is	enabled,	Wireshark	will	perform	reverse
DNS	lookups	for	each	unique	IP	address.	This	causes	Wireshark	to	generate
traffic	of	its	own.
If	the	Use	external	network	name	resolver	option	is	disabled,	Wireshark
will	attempt	to	resolve	the	IP	addresses	using	a	hosts	text	file	provided	by	a
user	(which	uses	typical	IP	address	<tab>	hostname	syntax)	located	in	the
Wireshark	installation	directory	when	using	a	default	profile	or	in	the
appropriate	profile	directory	when	using	a	custom	profile.

During	a	capture,	it	is	better	to	leave	the	Resolve	network-layer	names	option
disabled	so	that	Wireshark	isn't	creating	additional	network	traffic	while	trying
to	resolve	IP	addresses	during	a	capture.	This	feature	can	always	be	temporarily
enabled	(by	navigating	to	View	|	Name	Resolution	|	Enable	for	network	layer
from	the	menu)	after	the	capture	is	finished.

If	the	Resolve	transport-layer	name	option	is	enabled,	it	causes	Wireshark	to
display	the	human-readable,	port-	and	protocol-specific	services'	names	instead
of	the	port	numbers	in	the	Info	display	field	in	the	Packet	List	pane.	For

example,	TCP	port	80	will	be	displayed	as	HTTP.	The	list	of	port	number
services	is	kept	in	the	services	file	in	the	Wireshark	installation	directory.

The	screenshot	at	the	beginning	of	this	section	illustrates	a	Capture	Option
window	set	to	use	the	LAN	interface,	a	filter	to	capture	traffic	only	to	and	from	a
specific	Ethernet	MAC	address,	to	save	up	to	five	files	of	100	MB	each	in	a	ring
buffer	scenario,	and	to	save	those	files	in	a	provided	directory	with	a	specific
leading	filename	and	extension.	The	Display	Options	and	Name	Resolution
options	have	been	left	in	their	default	settings.

Once	all	the	desired	Capture	Options	have	been	selected,	clicking	on	the	Start
button	will	start	the	capture.

Having	covered	all	the	most	useful	Capture	Options	features,	now	is	probably
the	right	time	to	tell	you	that	for	many	of	your	captures,	especially	from	a
relatively	low	traffic	volume	location	such	as	from	a	user	workstation,	you	don't
want	or	need	to	set	any	capture	options	(except	the	appropriate	interface	to
capture	from)	and	can	simply	jump	into	starting	a	capture	using	all	the	defaults
by	clicking	on	the	third	(green	shark-fin	shaped)	icon	on	the	icon	bar	or	selecting
Start	from	the	Capture	menu.	Not	using	a	capture	filter	allows	you	to	capture
all	the	relevant	packets—without	missing	anything—and	filter	any	unwanted
traffic	out	using	display	filters	after	the	capture	is	done.

Verifying	a	good	capture
After	a	capture	is	complete,	you	should	scroll	through	and	inspect	the	packets	in
the	Packet	List	pane	to	ensure	that	you're	seeing	the	traffic	you	were	expecting
—usually	traffic	to	and	from	a	specific	host.

You	should	also	ensure	there	were	no	dropped	packets,	which	would	be
displayed	in	the	Packet	Information	section	of	the	Status	Bar	at	the	bottom
center	of	the	Wireshark	user	interface.	Dropped	packets	indicate	that	Wireshark
or	the	selected	NIC	could	not	keep	up	with	the	traffic	volume	and	had	to	discard
packets,	which	could	of	course	affect	the	quality	of	your	analysis.	If	dropped
packets	occur,	you	may	need	to	use	a	higher	performance	workstation	to	perform
the	captures	or	select	a	lower	traffic	volume	capture	location.

Saving	the	bulk	capture	file
After	completing	and	verifying	a	good	capture,	you	should	save	the	bulk	(all
captured	packets)	capture	file	(assuming	a	single	file	capture)	to	your	directory
of	choice.	You	will	later	be	filtering	and	saving	a	subset	of	packets	to	a	smaller
file,	but	it	is	advantageous	to	be	able	to	load	the	original	capture	file	again	at	a
later	time	if	during	the	analysis	you	discover	that	you	might	have	inadvertently
filtered	out	more	packets	than	you	wanted.

Using	the	Save	As	option	in	the	File	menu,	navigate	to	the	directory	of	your
choice	and	give	the	file	a	name.	If	no	file	extension	is	specified,	Wireshark	will
append	a	file	extension	based	on	the	Save	as	type	option	selected;	the	default	is
the	.pcapng	format.	However,	you	can	save	the	file	in	several	other	popular
vendor-specific	formats	if	you	intend	to	share	the	capture	file	with	someone	who
is	using	a	different	protocol	analysis	tool.

If	multiple	files	were	saved	using	one	of	the	multiple	file	and/or	ring	buffer
capture	options,	navigate	to	the	File	|	File	Set	|	List	Files	to	select	and	open	one
of	the	files.

Isolating	conversations	of	interest
After	you	have	completed	a	packet	capture	and	saved	a	bulk	capture	file,	you'll
be	with	an	almost	overwhelming	number	of	packets	of	various	types	and
addresses	in	the	Packet	List	pane.	It's	now	time	to	par	this	down	to	just	the
packets	that	pertain	to	the	analysis	task	at	hand.

The	idea	is	to	progressively	eliminate	unrelated	packets;	analyze	the	pertinent
conversations	looking	for	anomalies;	and	again	progressively	filter,	measure,	and
analyze	packet	flow	and	application	behavior	until	you	have	discovered	and	can
document	the	root	cause	of	the	issue.

There	are	two	basic	ways	to	isolate	and	inspect	packets	and	conversations	of
interest,	and	you'll	likely	use	both	of	the	following	methods	in	most	of	your
analysis	activities:

Conversations:	This	window	creates	a	list	of	conversation	pairs	by	MAC
or	IP	address	and/or	TCP/UDP	ports	that	can	be	sorted.	It	displays	filters
that	will	isolate	and	display	only	the	selected	conversation	packets	can	be
quickly	applied	from	this	window.
Display	Filters:	These	filters	are	based	on	MAC	or	IP	addresses	and/or
protocol-specific	fields	that	limit	the	packets	displayed	in	the	Packet	List
pane.

We'll	discuss	each	of	these	methods	in	the	following	sections.

Using	the	Conversations	window
The	basics	of	using	the	Conversations	window	were	covered	during	the	first
capture	in	Chapter	1,	Getting	Acquainted	with	Wireshark.	In	this	section,	we'll
cover	a	few	other	handy	features	of	the	Conversations	window.

The	Ethernet	tab
The	Conversations	window	exhibits	specific	behaviors	in	the	Ethernet	tab,
depending	on	the	available	Name	Resolution	settings.	If	Enable	for	Network
Layer	in	the	Name	Resolution	menu,	which	can	be	found	in	the	View	menu,	is
enabled	and	Name	Resolution	is	also	enabled	in	the	Conversations	window,
then	the	IP	address	that	is	associated	with	a	given	device's	MAC	address	is
displayed	as	an	IP	address	instead	of	a	MAC	address.	Toggling	the	Name
Resolution	option	in	this	scenario	is	useful	for	easily	associating	a	devices'	IP
address	with	its	MAC	address.

If	the	Enable	for	Network	Layer	option	is	not	enabled,	then	the	Name
Resolution	option	in	the	Conversations	window	controls	whether	the	MAC
addresses	are	displayed	with	manufacturer	prefixes	or	as	the	basic	6-octet	MAC
address.

The	TCP	and	UDP	tabs
The	TCP	and	UDP	tabs	of	the	Conversations	window	list	all	of	the
conversations	between	devices	based	on	IP	addresses	and	ports.	Considering	that
network	communications	between	a	pair	of	devices,	each	with	their	associated	IP
addresses,	could	include	multiple	sequential	or	simultaneous	sessions	with
differing	port	numbers,	the	TCP	and	UDP	tabs	(depending	on	the	protocol	in
use)	make	it	much	easier	to	inspect	the	number	and	relative	size	and
start/duration	of	these	individual	sessions.

As	can	be	done	in	any	of	the	other	tabs	in	the	Conversations	window,	a	display
filter	can	be	quickly	prepared	or	applied	using	the	right-click	functionality.

A	helpful	practice	when	investigating	TCP	or	UDP	sessions	is	to	apply	a	display
filter	on	just	the	IP	addresses	initially	and	then	enabling	the	Limit	to	display
filter	option	at	the	bottom	of	the	Conversations	window.	Upon	returning	to	the
TCP	or	UDP	tab,	only	the	port-level	sessions	between	the	filtered	host	pair	are
displayed,	which	makes	investigating	these	sessions	much	easier	than	picking
them	out	from	the	entire	list.

The	following	screenshot	shows	the	multiple	TCP	sessions	that	were	involved	in
loading	the	https://www.wireshark.org/	home	page	after	applying	a	display	filter
(from	the	bulk	capture	file)	and	enabling	the	Limit	to	display	filter	option	in	the
Conversations	window.	It	can	be	seen	that	the	(top)	conversation	between	port
54581	on	the	user	workstation	and	port	80	(HTTP)	carried	the	vast	majority	of
the	traffic;	the	remaining	ports	carried	much	smaller	amounts	of	traffic.

https://www.wireshark.org/

	

The	WLAN	tab
Since	the	Conversations	window	tabs	are	ordered	alphabetically,	the	WLAN	tab
comes	at	the	end.	This	tab	displays	the	wireless	station	MAC	addresses,	as	well
as	the	Bytes,	Packets,	and	other	columns	offered	in	the	other	tabs.

Wireshark	display	filters
Wireshark	provides	a	very	wide	range	of	protocol-specific	display	filters	that	can
be	extremely	useful	for	analysis	activities	by	allowing	you	to	focus	on	specific
packets,	based	on	criteria	that	you	define.	You	can	filter	on	just	the	traffic	that
you	want	to	see	or	filter	undesired	traffic	out	of	view.	Display	filters	are	one	of
the	most	helpful	features	of	Wireshark,	so	they	warrant	becoming	very	familiar
with.

Display	filters	can	be	created	in	several	ways:

By	applying	display	filters	from	the	Display	Filter	window
By	typing	in	the	display	filter	syntax	(using	autocomplete)
By	applying	display	filters	from	the	Conversations	(or	Endpoints)
window
By	applying	saved	display	filters	from	Filter	Expression	Buttons
Using	the	Expressions	button	for	assistance	creating	filters
Using	right-click	menus	on	specific	packet	fields
Note

Remember	that	display	filters	use	a	proprietary	Wireshark	filter	format,
which	is	protocol-dependent	and	significantly	different	from	capture	filter
syntax.

The	Display	Filter	window
You	can	open	the	Display	Filter	window	by	selecting	Display	Filters	from	the
Analyze	menu,	by	clicking	on	the	Edit/apply	display	filter	icon	on	the	icon	bar,
or	by	just	clicking	the	Filters	button	next	to	the	display	filter	textbox	on	the
display	filter	bar.

The	Display	Filter	window	looks	and	functions	in	a	similar	fashion	to	the
capture	filters	window,	as	shown	in	the	following	screenshot.	You	can	create	a
new	custom	display	filter	to	be	added	to	this	window	by	entering	a	filter	name
and	the	appropriate	syntax	and	clicking	on	New	or	clicking	an	existing	filter.
Click	on	New	and	modify/rename	as	per	your	requirements.

	

Display	filters	listed	in	this	window	were	saved	in	a	dfilters	file	in	the
Wireshark	installation	directory	for	the	default	profile	and	in	the	appropriate
Personal	configuration	directory	when	custom	profiles	are	in	use.

When	you	apply	a	display	filter,	the	Status	Bar	at	the	bottom	of	the	Wireshark
user	interface	screen	reflects	the	total	number	of	packets	and	the	packets
displayed,	as	illustrated	in	the	following	screenshot:	

	

The	display	filter	syntax
The	default	selection	of	capture	filters	from	the	Display	Filter	window	shown
previously	provides	examples	of	basic	capture	filter	syntax.	Additional	examples
of	display	filter	syntax	are	outlined	in	the	following	table:

Description Syntax Examples

Basic	protocols arp,	bootp,	dns,	dhcp6,	eth,	snmp,
smb,	smb2,	icmp,	rtp,	ip,	ipv6,	udp,
tcp,	http,	and	sip

Same	as	syntax	examples

Display	filter	comparison
operators

eq,	==,	ne,	!=,	gt,	>,	lt,	<,	ge,	>=,	le,
<=,	!,	not,	and,	&&,	or,	||,	XOR,	and	^^

ip.addr	==	192.168.1.115	and	!
(ip.addr	==	192.168.1.125)

Protocol-specific	extensions protocol-specific ip.addr,	tcp.port,	tcp.dstport,
tcp.analysis,	udp.port,	and
udp.srcport

Classless	InterDomain
Routing	(CIDR)	notation	on
IPv4	addresses

A.B.C.D/CIDR	notation ip.addr	==	192.168.1.0/24	that
matches	any	IP	address	in	the
192.168.1.0	subnet

Note

Using	the	!=	operator	on	expressions	such	as	eth.addr,	ip.addr,	tcp.port,	and
udp.port	and	alike	may	not	work	as	expected	as	there	are	usually	two	addresses
and	ports	in	a	packet,	and	the	!	operator	will	not	match	both	instances.

Use	!(ip.addr	==	x.x.x.x)	or	a	similar	syntax	for	these	types	of	filters.

More	information	and	examples	of	display	filters	can	be	found	on	the	Wireshark
wiki	at	http://wiki.wireshark.org/DisplayFilters	and	protocol-specific	display
filter	syntax	is	included	in	the	reference	information	found	at
http://wiki.wireshark.org/ProtocolReference.

http://wiki.wireshark.org/DisplayFilters
http://wiki.wireshark.org/ProtocolReference

Typing	in	a	display	filter
You	can	type	a	display	filter	syntax	directly	into	the	Filter	textbox	in	the	display
filter	bar,	and	then	click	on	Apply	to	apply	the	filter	or	Clear	to	clear	a	filter	and
start	over.

A	helpful	feature	of	typing	the	display	filter	syntax	into	the	textbox	is	the
autocomplete	function.	Upon	typing	a	protocol	and	then	a	period	(.),	the	textbox
will	display	a	list	of	available	protocol-related	extensions	that	can	be	selected
and	then	the	appropriate	comparison	operator	and	value	added	before	clicking	on
Apply.

The	textbox	also	has	a	color-coded	background	indicating	the	display	filter
syntax	status.	If	the	syntax	is	incorrect	or	incomplete,	the	background	is	red	and
a	correct	filter	results	in	a	green	background.	A	yellow	background	is	a	warning
that	the	entered	syntax	may	not	work	as	expected.

Display	filters	from	a	Conversations	or
Endpoints	window
Creating	a	display	filter	to	be	applied	from	a	Conversations	window	has	already
been	covered.	The	same	functionality	is	available	from	an	Endpoints	window,
which	can	be	opened	by	selecting	Endpoint	List	from	the	Statistics	menu	and
one	of	the	listed	protocols.

Filter	Expression	Buttons
Filter	Expression	Buttons	are	buttons	you	can	create	that	are	based	on	display
filters;	these	can	be	used	to	quickly	apply	previously-saved	display	filters	to	your
capture	data	to	identify	network	and	application	problems.

For	example,	to	create	a	Filter	Expression	Button	option	that	displays	just	TCP
SYN,	SYN/ACK,	FIN,	or	RST	packets	to	analyze	the	TCP	session	setup
parameters,	network	round-trip	delay	times,	and	session	terminations:

1.	 Type	the	following	display	filter	string	into	the	Filter	textbox	on	the
Display	Filter	Bar:

(tcp.flags&02	&&	tcp.seq==0)	||		(tcp.flags&12	&&	tcp.seq==0)	

||	(tcp.flags.ack	&&	tcp.seq==1	&&	!tcp.nxtseq	>	0	&&	!tcp.ack	

>1)		||	tcp.flags.fin	==	1	||	tcp.flags.reset	==1

Clicking	on	Apply	will	apply	this	filter	to	a	capture	that	you	have	loaded	so
that	you	can	confirm	that	it	is	working	properly.
Then,	click	on	Save	and	give	the	button	a	name,	such	as	TCP	Handshake	(as

illustrated	in	the	following	screenshot).	Then,	click	on	OK:	

	

The	filter	expression	buttons	you	create	will	appear	on	the	right-hand	side	of	the
initial	controls	in	the	display	filter	bar,	as	illustrated	in	the	following	screenshot:	

	

The	filter	expression	button	definitions	are	stored	in	the	preferences	file	for	the
profile	you	are	using.	You	can	edit	the	button	display	order,	edit	the	name	or

filter	syntax,	or	delete	the	buttons	in	Wireshark's	Preferences	window.

Using	the	Expressions	window	button
To	the	right-hand	side	of	the	textbox	on	the	display	filter	toolbar	is	the
Expression	button.	Clicking	on	this	button	opens	a	Filter	Expression	window
that	allows	you	to	select	a	protocol	and	the	extension	to	that	protocol,	one	of	the
appropriate	relation	(comparison)	operators,	and	assign	a	comparison	value.
Click	on	OK	to	populate	the	display	filter	textbox	with	the	resultant	display
filter	syntax	and	then	click	on	Apply	to	apply	the	filter.

Right-click	menus	on	specific	packet	fields
If	you	right-click	on	a	specific	field	in	the	Packet	List	or	Packet	Details	panes,
you	can	select	the	Apply	as	Filter	or	Prepare	a	Filter	option	and	the	required
submenu	option	to	create	display	filter	syntax,	as	illustrated	in	the	following
screenshot.	This	is	a	very	quick	way	of	creating	display	filter	syntax:	

	

If	you	are	selecting	a	field	and	using	the	right-click	functionality	to	create
display	filter	syntax,	it	is	usually	better	to	use	the	Prepare	a	Filter	option,	which
will	allow	you	to	edit	the	syntax	before	clicking	on	Apply	to	apply	the	filter.

Note

Clicking	on	a	protocol	field	in	the	Packet	Details	pane	results	in	that	field	and
the	display	filter	syntax	that	reflects	that	field	to	be	displayed	in	the	bottom-left
Status	bar	field.	This	is	very	helpful	for	starting	a	display	filter	string	that	will
use	a	particular	field.

Following	TCP/UDP/SSL	streams
Selecting	a	packet	in	a	conversation,	right-clicking,	and	selecting	a	Follow	TCP
Stream,	Follow	UDP	Stream,	or	Follow	SSL	Stream	option	(as	appropriate)
from	the	menu	provides	a	display	window	that	contains	a	textual	depiction	of	the
payload	data	from	all	of	the	packets	in	a	conversation.	This	is	an	excellent	way
to	inspect	the	contents	of	a	stream	without	having	to	select	and	inspect	multiple
packets.	Viewing	the	exchanges	between	the	client	and	server	can	be	very
helpful	for	troubleshooting	purposes.

When	a	Follow	Stream	option	is	selected	for	a	given	packet,	a	display	filter	is
automatically	created	and	applied	to	support	creation	of	this	window.	The
following	screenshot	illustrates	a	Follow	TCP	Stream	window.	Also,	note	the
display	filter	syntax	(tcp.stream	eq	15)	that	was	created	and	applied	when	this
stream	was	selected:	

	

Marking	and	ignoring	packets
You	can	toggle	Mark/Unmark	Packet	or	Ignore/Unignore	Packet	from	the
Wireshark	Edit	menu,	or	by	right-clicking	on	a	packet	in	the	Packet	List	pane
and	selecting	Mark	Packet	(toggle)	or	Ignore	Packet	(toggle).

The	menu	displayed	by	right-clicking	on	a	packet	in	the	Packet	List	pane	is

shown	in	the	following	screenshot:	

	

Wireshark	allows	you	to	mark	one	or	more	packets	in	the	Packet	List	pane	to
make	it	easier	to	find	those	packets	later	by	giving	the	packet	entry	a	black
background	with	white	font.	This	marking	can	be	toggled	on	and	off	on	a	per-
packet	basis.	Marking	a	packet	has	no	other	effect	on	the	display	or	packet
context.

You	can	also	ignore	one	or	more	packets.	However,	when	you	invoke	the	ignore
function	on	a	packet	that	packet	entry	disappears	from	the	Packet	List,	Packet
Details,	and	Packet	Bytes	panes	and	it	effectively	ceases	(temporarily)	to	be
part	of	the	capture	file.	Note	that	ignoring	packets	can	result	in	Wireshark
reporting	re-transmissions	or	other	error	conditions	caused	by	the	missing
packet.

The	ignored	packets	aren't	actually	deleted	from	the	capture	file	as	you	can	use
the	Reload	option	in	the	View	menu	or	click	the	Reload	icon	on	the	icon	bar	to
recover	the	ignored	packets.

Saving	the	filtered	traffic
During	or	after	completing	an	analysis,	you	will	want	to	save	a	set	of	filtered
packets	into	a	new	capture	file.	Saving	a	filtered	subset	of	the	bulk	capture	data
and	opening	the	new,	smaller	file	in	Wireshark	is	helpful	to	reduce	the
distracting	background	noise	packets	displayed	when	clearing	display	filters,
working	with	Conversations	windows,	and	so	on	during	your	analysis.	Finally,
upon	completing	your	analysis,	you	will	want	a	filtered	capture	file	that
represents	the	analysis	evidence	and	conclusion	and	can	be	quickly	loaded	for
review	at	a	later	time.

Use	the	Export	Specified	Packets	option	in	the	File	menu	to	save	a	new	capture
file	consisting	of	just	your	filtered	packets.	Navigate	to	the	desired	directory;
enter	a	filename	(Wireshark	will	provide	the	appropriate	filename	extension);
make	the	appropriate	selections	to	save	all	the	Displayed	packets,	Marked
packets,	and/or	to	Remove	Ignored	packets;	and	then	click	on	Save.
Remember	to	save	the	complete	capture	using	the	Save	As	option	in	the	File
menu	as	well,	because	you	may	need	this	file	again.

The	following	screenshot	illustrates	a	typical	Export	Specified	Packets	window
and	its	selections:	

	

Summary
The	important	points	covered	in	this	chapter	included	picking	an	optimal	capture
point,	selecting	between	TAPs	and	mirrored/SPAN	ports,	Wireshark's	capture
filters	and	options,	verifying	a	good	capture,	using	Wireshark's	Conversation
windows	and	display	filters	to	isolate	packets	of	interest,	creating	Filter
Expression	Buttons,	marking	and	ignoring	packets,	and	saving	the	filtered	traffic
for	later	or	more	detailed	analysis.

In	the	next	chapter,	we'll	cover	the	rest	of	Wireshark's	basic	packet	analysis
features.

Chapter	4.	Configuring	Wireshark
Wireshark	offers	a	number	of	features	that	can	be	configured	to	enhance	the
accuracy	and	ease	of	performing	packet	analysis	activities	such	as
troubleshooting	a	functional	or	performance	problem.	Selecting	the	best	format
to	measure	the	elapsed	time	between	packets	is	an	important	factor.	There	are	a
number	of	protocol-specific	options	that	affect	how	Wireshark	displays	time-
related	information	that	are	useful	as	well.	Coloring	rules,	preferences	settings,
and	profiles	let	you	customize	Wireshark	for	your	particular	style	of	analysis,	as
well	as	the	different	environments	that	you	might	work	in.

In	this	chapter,	we	will	cover	the	following	topics:

Working	with	packet	timestamps
Colorization	and	coloring	rules
Wireshark	preferences
Wireshark	profiles

These	topics	will	wrap	up	our	introduction	to	the	most	essential	and	useful
features	and	options	of	Wireshark.

Working	with	packet	timestamps
Understanding	how	Wireshark	handles	time	and	using	the	right	incarnation	of
packet	timestamp	displays	is	crucial	to	properly	analyze	packet	flows	and
identify	time-related	anomalies.

How	Wireshark	saves	timestamps
When	packets	are	captured,	Wireshark	gives	each	packet	a	timestamp	derived
from	the	system	clock	of	the	machine	from	where	the	capture	takes	place.	This
timestamp	is	converted	to	Universal	Coordinated	Time	(UTC)	based	on	an
offset	calculated	from	the	time	zone	setting	and	any	Daylight	Savings	Time
(DST)	rules	that	apply	for	the	capture	machine,	and	then	converted	again	to	an
epoch	number	(the	UTC-based	number	of	seconds	since	January	1,	1970).	This
is	the	time	value	that	gets	saved	in	the	capture	file	for	each	packet.	When
Wireshark	reads	the	capture	file,	it	turns	the	epoch	number	back	to	the	familiar
date	and	time	display,	adjusted	for	the	time	zone	and	DST	offsets	for	your
machine.

This	means	that	if	a	packet	capture	is	conducted	on	a	machine	in	Los	Angeles,
which	has	an	offset	from	UTC	of	-8	hours,	and	you	look	at	the	same	capture	file
on	a	machine	in	Berlin,	which	is	UTC	+1	hour	(an	overall	difference	of	9	hours,
plus	any	DST	differences),	a	packet	that	was	captured	at	10	a.m.	local	time	in
Los	Angeles	will	display	a	timestamp	of	7	p.m.	in	Berlin.

Examples	of	the	timestamp	displays	in	different	time	zones	are	shown	in	the
following	table:

Los	Angeles London Berlin Bangalore

Capture	file	time	(UTC) 10:00 10:00 10:00 10:00

Local	offset	to	UTC -8 0 +1 +5:30

Displayed	time	(local	time) 02:00 10:00 11:00 17:30

If	you're	going	to	look	at	a	packet	capture	someone	has	sent	you	and	the	absolute
time	when	an	event	occurred	is	important	to	the	analysis,	you'll	need	to	know	or
ask	what	time	zone	the	capture	was	taken	in,	determine	the	offset	between	your
time	zone	and	the	capture	location	time	zone,	and	mentally	make	the	time
difference	adjustment	for	the	timestamps	that	Wireshark	will	display.	Otherwise,
this	difference	won't	matter	as	you're	usually	more	interested	in	the	elapsed	time
or	the	time	between	specific	events	in	the	capture.

Wireshark	time	display	options
There	are	a	wide	variety	of	packet	time	displays	available	for	use	in	Wireshark.
By	default,	Wireshark	provides	a	Time	column	in	the	Packet	List	pane
configured	to	display	Seconds	Since	Beginning	of	Capture	with	microsecond
resolution	(123.123456)	for	each	packet.

However,	the	way	in	which	time	is	displayed	in	this	column	can	be	changed	by
selecting	the	desired	format	from	the	Time	Display	Format	option	in	the	View
menu,	which	is	illustrated	in	the	following	screenshot:	

	

If	the	Seconds	Since	Beginning	of	Capture	option	is	in	use,	the	first	packet	in	a
capture	displays	a	time	value	of	0.000000;	all	other	packets	are	timed	in
reference	to	this	first	packet	such	that	the	elapsed	time	from	the	beginning	of	the
capture	is	displayed.

The	time	display	menu	options	provide	examples	of	their	formats	and	are	fairly
self-explanatory,	except	perhaps	Seconds	Since	Previous	Captured	Packet	and
Seconds	Since	Previous	Displayed	Packet.	The	Seconds	Since	Previous
Captured	Packet	option	provides	the	elapsed	time	between	each	captured

packet,	while	the	Seconds	Since	Previous	Displayed	Packet	option	displays	the
elapsed	time	from	the	previous	packet	that	is	visible	when	a	display	filter	is
applied.

The	way	the	Displayed	Packet	option	works	is	illustrated	in	the	following
screenshot.	You	can	see	how	the	Captured	Packet	timestamps	continue	to
increment,	while	the	Displayed	Packet	timestamps	show	the	time	since	the	last
displayed	packet.

	

The	time	display	precision	options	in	the	Time	Display	Format	menu	are	also
shown	with	examples	of	the	display	format	and	are	self-explanatory,	except	for
the	Automatic	(File	Format	Precision)	setting,	which	requires	a	description.

Wireshark	relies	on	the	NIC	driver	and	the	capture	devices'	system	clock	for
packet	timestamps.	The	accuracy	of	these	timestamps	in	terms	of	the	precision
and	number	of	subsecond	digits	(milliseconds,	microseconds,	and	nanoseconds)
will	vary,	but	usually	a	millisecond	resolution	is	available.	This	precision	value
is	saved	in	the	capture	file.	The	Automatic	(File	Format	Precision)	setting	tells
Wireshark	to	display	timestamps	using	this	precision	value.

The	ability	to	use	the	Nanoseconds	precision	setting	depends	on	having	an	NIC
driver	that	supports	this	level	of	precision.	If	you	select	this	option	and	the
capture	file	doesn't	contain	the	higher	resolution,	the	last	three	digits	of	each

timestamp	will	be	all	zeroes.

Adding	a	time	column
It	is	often	helpful	to	have	two	(or	more)	time	columns	in	the	Packet	List	pane	to
provide	a	variety	of	time	display	types	without	having	to	change	the	format	of	a
single	time	column	back	and	forth.	You	can	add	a	new	time	column	using	one	of
two	methods.

The	following	is	the	first	method,	the	preferences	settings	method:

1.	 Go	to	Preferences	from	the	Edit	menu,	or	click	on	the	Preferences	icon	to
open	the	Preferences	window.

2.	 Select	Columns.
3.	 Click	on	Add	to	add	a	new	entry	at	the	bottom	of	the	list.
4.	 Click	on	the	Title	area	of	the	new	entry	and	give	the	column	a	name.
5.	 Ensure	that	the	new	entry	is	highlighted,	and	select	the	desired	time	display

format	from	the	drop-down	Field	type	box.
6.	 Click	and	drag	the	new	entry	up	the	list	to	select	its	relative	position	in	the

Packet	List	pane.
7.	 Finally,	click	on	OK.

The	selectable	options	in	the	Field	type	box	for	time	display	columns	include
the	following:

Absolute	date,	as	YYYY-MM-DD,	and	time:	This	is	the	actual	capture
date	and	time	based	on	the	time	zone	of	the	capture	device.
Absolute	date,	as	YYYY/DOY,	and	time:	This	is	another	format	to
display	the	date	and	time	based	on	the	time	zone	of	the	capture	device.
Relative	time:	This	is	the	time	from	the	first	packet	in	a	capture	file.	This	is
similar	to	the	Seconds	Since	Beginning	of	Capture	option.
Relative	time	(conversation):	This	is	the	time	from	the	first	packet	in	the
trace	file	for	a	conversation	(this	doesn't	work).
Delta	time:	This	is	the	elapsed	time	from	the	previous	packet	to	the	current
packet.
Delta	time	(conversation):	This	is	the	time	from	the	previous	packet	to	the
current	packet	in	a	conversation	(this	doesn't	work).
Delta	time	displayed:	This	is	the	time	from	the	end	of	one	packet	to	the
end	of	the	next	displayed	packet	only.

Custom:	The	Relative	time	(conversation)	and	Delta	time	(conversation)
options,	which	are	also	listed	in	the	preferences	settings,	no	longer	work	in
the	version	of	Wireshark	currently	available	(v1.12)	as	of	this	writing.	You
can	accomplish	the	previously	offered	functionality	with	these	options	by
using	the	Custom	option	with	display	filter-style	Field	types	instead.	Select
the	Custom	Field	type	and	enter	either	tcp.time_relative	or
tcp.time_delta	in	the	Field	name	field,	leaving	the	Field	occurrence
field	with	the	default	entry	of	0.

An	example	of	creating	a	functional	Delta	time	(conv)	time	column	using	the
Custom	option	and	the	tcp.time_delta	display	filter	is	shown	in	the	following
screenshot:	

	

For	the	tcp.time_relative	and	tcp.time_delta	fields	to	work	properly,	you	must
also	enable	Calculate	conversation	timestamps	in	the	preferences	settings
using	the	following	steps:

1.	 In	the	Preferences	window,	select	TCP	from	the	Protocols	menu.

2.	 Enable	the	Calculate	conversation	timestamps	option.
3.	 Finally,	click	on	OK.

An	example	of	enabling	Calculate	conversation	timestamps	is	depicted	in	the
following	screenshot:	

	

The	following	steps	show	you	the	second	method,	the	right-click	method	of
adding	a	column:

1.	 Select	an	appropriate	packet	in	the	Packet	List	pane.
2.	 In	the	Packet	Details	pane,	expand	the	Frame	header,	or	if	applicable,

expand	the	Transmission	Control	Protocol	header.
3.	 Locate	the	desired	time	value	field	in	the	Frame	or	TCP	sections	(these	are

surrounded	by	brackets).	If	you	are	selecting	a	time	value	in	the	TCP
section,	you	will	need	to	expand	the	[Timestamps]	section	to	see	the
values.

4.	 Right-click	on	the	desired	time	field	and	select	Apply	as	Column	from	the
menu.

5.	 The	new	column	will	appear	beside	the	Info	column	in	the	Packet	List
pane.	Click	and	drag	the	new	column	to	the	desired	location.

6.	 You	can	right-click	on	the	new	column	header,	select	Edit	Column	Details,
and	give	the	column	a	shorter	name	if	desired.

As	previously	discussed	in	the	preferences	settings	method,	you	must	enable
Calculate	conversation	timestamps	in	the	TCP	protocol	option	of	the
preferences	settings	to	view	and	use	the	time	values	in	the	TCP	section.

Conversation	versus	displayed	packet	time	options

The	difference	between	time	displays	for	a	conversation	versus	a	displayed
packet	time	option	is	perhaps	subtle	but	important.

As	illustrated	previously,	if	you	are	using	one	of	the	displayed	packet	time
options,	the	time	value	shown	for	a	given	packet	will	be	the	elapsed	time	since
the	previous	packet	was	displayed	in	the	Packet	List	pane.	This	time	value
option	has	no	useful	value	until	you	apply	a	display	filter,	after	which	you	can
easily	see	the	elapsed	time	between	each	packet	being	displayed	with	no	other
mental	math	or	adjustments	necessary.	This	is	very	useful	if	you're	sequentially
filtering,	clearing,	and	viewing	more	than	one	conversation	using,	for	example,	a
tcp.stream==xx	display	filter	setting.

If	you	are	not	using	a	display	filter,	however,	there	may	be	packets	from	multiple
conversations	displayed	in	the	Packet	List	pane.	If	you	are	using	one	of	the
conversations	time	displays,	the	time	value	shown	for	a	given	packet	will	be	the
elapsed	time	since	the	previous	packet	for	that	conversation,	regardless	of	other
packets	that	may	be	interspersed	and	visible	between	the	packet	you're	looking	at
and	the	previous	packet	in	that	conversation.	This	allows	a	quick	perusal	of
conversation	packet	times	without	having	to	apply	a	display	filter.

Choosing	the	best	Wireshark	time	display
option
With	so	many	time	display	options	available,	it	may	be	difficult	to	know	when
and	where	to	use	a	given	option.	Choosing	the	optimal	time	display	in	a
Wireshark	time	column	depends	greatly	upon	the	objectives	of	the	analysis:

If	you	need	to	know	the	specific	date	and	time	of	day	when	an	event
occurred	in	a	capture,	as	might	be	the	case	if	you're	trying	to	find	and
correlate	packets	with	user-reported	events	or	log	entries,	you	should	use
one	of	the	Absolute	time	formats.
If	you're	looking	for	an	event	that	occurred	some	known	period	of	time
after	a	capture	started,	use	one	of	the	Relative	time	formats.
On	the	other	hand,	if	you	just	need	to	measure	the	time	between	certain
packets,	such	as	when	measuring	the	time	between	a	request	and	a
response,	one	of	the	Delta	time	formats	will	be	the	most	helpful.

Using	the	Time	Reference	option
Another	useful	Wireshark	feature	is	the	Time	Reference	menu	option,	which
can	be	used	to	measure	time	from	one	packet	to	another	in	the	midst	of	a	capture
file.	You	can	click	on	a	specific	packet	and	toggle	this	option	on	and	off	for	that
packet	using	either	the	Set/Unset	Time	Reference	option	from	the	Edit	menu,
or	by	right-clicking	and	selecting	the	Set	Time	Reference	(toggle)	option	from
the	pop-up	menu.	The	packet	will	be	marked	with	a	*REF*	designator	in	the
first	time	column,	and	any	relative	timestamps	following	the	Time	Reference
packet	will	be	displayed	relative	to	that	packet.

The	Time	Reference	setting	is	temporary;	it	isn't	saved	to	a	capture	file	and	will
disappear	if	you	reload	the	file.

Colorization	and	coloring	rules
Colorization	of	packets	displayed	in	the	Packet	List	pane	can	be	an	effective
tool	to	identify	and	highlight	packets	of	interest,	especially	the	packets	that
contain	or	indicate	some	kind	of	error	condition.

Wireshark	has	predefined	coloring	rules	that	are	enabled	by	default	and	which
can	result	in	a	kaleidoscope	of	colored	packets	in	the	Packet	List	pane.	You	can
enable	or	disable	the	coloring	rules	by	selecting	Colorize	Packet	List	from	the
View	menu	or	by	clicking	on	the	Colorize	Packet	List	icon	in	the	icon	bar	if
this	becomes	overwhelming.

You	can	also	view,	enable/disable,	add,	delete,	reorder,	and	edit	the	coloring
rules	by	selecting	Coloring	Rules	from	the	View	menu	or	by	clicking	on	the
Edit	Coloring	Rules	icon	in	the	icon	bar.	There	is	a	Clear	button	that	removes
all	the	changes	you	may	have	made	to	the	rules	and	restores	them	to	default
settings	if	needed.

A	Coloring	Rules	window	is	depicted	in	the	following	screenshot:	

	

Coloring	rules	employ	display	filter	formats	with	specific	values	to	identify
packets	that	should	be	colored.	The	rules	are	compared	to	packets	starting	with
the	top	rule	and	working	down	through	the	list.	Only	the	first	rule	that	matches	a
packet's	condition	is	applied,	so	the	ordering	of	the	rules	dictates	which	rule	gets
applied	if	more	than	one	rule	matches	a	packet.	If	you	create	or	modify	a	rule,
you	have	to	check	the	ordering	to	make	sure	you	get	the	desired	behavior.

Clicking	on	a	rule	and	then	clicking	on	Edit	allows	you	to	modify	the
foreground	and	background	colors	for	that	rule,	as	well	as	change	the	filter	string
if	desired.

You	can	also	export/import	coloring	rules	if	you	want	to	share	them	with	others.
Coloring	rules	are	stored	in	a	file	called	colorfilters	in	one	of	your	personal
configuration	directories	depending	on	the	profile	in	use.

Packet	colorization
You	can	also	temporarily	color	a	series	of	packets	in	a	conversation	by	selecting
one	of	the	conversation	packets,	selecting	Colorize	Conversation	from	the
View	menu,	and	selecting	a	color	from	the	adjoining	menu,	or	by	right-clicking
on	a	packet,	selecting	Colorize	Conversation	from	the	menu,	selecting	one	of
the	protocol-specific	options,	and	then	selecting	the	desired	color.	This
colorization	will	disappear	when	the	capture	file	is	reloaded,	or	you	can	select
Reset	Coloring	1-10	from	the	View	menu.

Wireshark	preferences
In	the	Adding	a	time	column	section,	we	opened	the	Preferences	window	using
Preferences	in	the	Edit	menu	or	by	clicking	on	the	Preferences	icon	in	the	icon
bar	to	configure	the	time	display	column	options.	There	are	quite	a	number	of
Preferences	options	that	you	should	be	aware	of	and	may	want	to	adjust	to
customize	your	Wireshark	environment:

Layout:	This	is	used	to	select	the	ordering	of	the	Packet	List,	Packet
Details,	and	Packet	Bytes	panes.
Columns:	This	is	used	to	add,	remove,	and	move	columns	in	the	Packet
List	pane.
Capture:	This	is	used	to	set	the	default	capture	options.
Filter	Expressions:	This	is	used	to	add,	remove,	or	move	the	Filter
Expression	buttons.
Name	Resolution:	This	is	used	to	set	the	MAC,	transport,	and	network	(IP)
resolution	options.
Protocols:	There	are	options	that	can	be	set	for	all	of	the	protocols	that
Wireshark	supports;	some	of	the	most	important	and	useful	of	these	options
include:

HTTP:	This	is	used	to	add	any	additional	TCP	ports	that	should	be
recognized	as	HTTP	traffic	in	your	environment.
IEEE	802.11:	This	is	used	to	add/edit	the	Wireless	Decryption	keys	if
needed	to	decode	an	encrypted	wireless	session.
IPv4:	You	may	want	to	disable	Validate	IPv4	checksum	if	possible	to
avoid	inadvertent	error	messages	caused	by	an	NIC	option	called
checksum	offloading,	wherein	checksums	are	checked	after	the	packet
is	sent	to	Wireshark.
RTP:	Enable	Allow	subdissector	to	reassemble	RTP	streams	to
support	decoding	audio	from	VoIP	captures.
SMB:	Enable	Reassemble	SMB	Transaction	payload	to	support
exporting	file	objects	from	an	SMB	stream	in	a	packet	capture.
SSL:	Wireshark	can	decrypt	the	SSL/TLS	traffic	if	you	have	the
private	key	file.	To	add	a	key	to	Wireshark,	go	to	the	Preferences
window	and	click	on	the	RSA	keys	list	Edit	button.	Then,	in	the	SSL
Decrypt	window,	click	on	New	and	complete	the	SSL	Decrypt:	New
fields	(IP	address	of	the	SSL	server;	Port,	which	is	usually	443	for

HTTP;	Protocol,	such	as	HTTP;	and	Key	File,	which	is	used	to	select
the	path	to	an	RSA	private	key	(if	the	key	file	is	a	PKCS#12	keystore
(usually	has	a	.pfx	or	.p12	extension),	the	Password	field	must	be
completed)),	and	finally,	click	on	OK	to	close	each	subsequent
window.
TCP:	This	provides	you	with	multiple	options,	as	follows:

Validate	TCP	checksum	if	possible:	Disable	this	to	avoid
inadvertent	error	messages	caused	by	checksum	offloading.
Allow	subdissector	to	reassemble	TCP	streams:	Enable	this	to
support	exporting	file	objects	from	a	TCP	stream.
Relative	sequence	numbers:	Enable	this	to	make	it	easier	to	read
and	track	TCP	sequence	numbers	in	a	capture	file.
Track	number	of	bytes	in	flight:	This	is	a	value	calculated	and
displayed	in	the	TCP	protocol	header	in	the	Packet	Details	pane,
which	is	useful	for	performance	analysis.
Calculate	conversation	timestamps:	This	is	the	setting
discussed	earlier	that	is	needed	to	support	the	tcp.time_relative
and	tcp.time_delta	time	displays.

There	are	numerous	other	preferences	settings	that	may	be	pertinent	to	your
personal	preference	or	analysis	environment;	you	will	have	to	investigate	most
or	all	of	these	options.	If	you	are	unsure	of	a	particular	setting,	you	can	get	more
information	by	clicking	on	the	Help	button	at	the	bottom	of	the	Preferences
window.

The	preferences	settings	are	stored	in	a	file	called	preferences	in	one	of	your
Personal	configuration	directories,	depending	on	the	profile	in	use.

Wireshark	profiles
As	we	have	covered	the	numerous	Wireshark	configuration	options	that	are
saved	in	specific	files,	such	as	cfilters	for	Capture	Filters,	dfilters	for
Display	Filters,	colorfilters	for	Coloring	Rules,	and	preferences	for
preferences	settings,	it	was	mentioned	that	these	files	were	saved	in	one	of	your
Personal	configuration	directories,	but	I	have	left	a	full	explanation	of	profiles
and	these	configuration	directories	until	now	so	that	you	would	better	understand
what	makes	up	a	profile	and	why	they	are	useful.

A	profile	is	a	collection	of	Wireshark	configuration	files	customized	for	your
specific	needs	and	tastes	in	capture	and	display	filters,	coloring	rules,	columns
and	layouts,	and	so	on	for	the	particular	environment	you	are	working	in.	You
can	create	one	or	more	profiles	and	quickly	reconfigure	Wireshark	to	work	best
in	differing	environments	by	selecting	the	appropriate	profile.

When	you	first	install	Wireshark,	it	operates	with	a	default	set	of	configuration
files	that	are	located	in	the	Global	configuration	directory,	which	is	usually	the
same	as	the	System	directory	where	the	Wireshark	program	files	reside.	When
you	change	any	of	the	default	settings,	the	changes	are	saved	in	new
configuration	files	that	are	stored	in	a	Personal	configuration	directory,	the
location	of	which	varies	depending	upon	your	installation.	You	can	determine
and	quickly	open	the	Personal	configuration	directory	for	your	installation
from	Wireshark	by	clicking	on	the	About	Wireshark	option	in	the	Help	menu
and	clicking	on	the	Folders	tab.	Within	this	tab	is	a	list	of	all	the	directories	that
Wireshark	uses,	as	shown	in	the	following	screenshot:	

	

You	can	double-click	on	a	Wireshark	directory	link	to	open	a	window	to	that
directory.

Double-clicking	on	the	Personal	configuration	link	in	the	Folders	tab	opens
the	directory	where	(under	a	profiles	subdirectory)	your	custom	profile	files
are	stored.	Each	profile	is	stored	in	a	separate	subdirectory	that	reflects	the	name
you	give	a	profile,	as	shown	in	the	following	screenshot:	

	

Each	custom	profile	directory	contains	all	the	Wireshark	configuration	files
that	determine	how	that	profile	controls	Wireshark's	features.	You	can	copy	and
share	these	custom	profile	directories	with	other	Wireshark	users;	copying	the
profile	directory	into	their	Personal	configuration	directory	makes	that	profile
available	for	selection.

Creating	a	Wireshark	profile
To	create	a	new	Wireshark	profile,	follow	these	steps:

1.	 Right-click	on	the	Profile	section	(on	the	right-hand	side	pane)	of	Status
Bar	at	the	bottom	of	the	Wireshark	user	interface	and	click	on	New,	or
navigate	to	Edit	|	Configuration	Profiles	|	New	in	the	menu	bar.

2.	 In	the	Create	New	Profile	window	that	appears,	you	can	give	the	profile	a
name.	You	can	also	choose	to	create	the	profile	starting	with	the	settings
from	an	existing	profile	by	making	a	selection	from	the	Create	from	drop-
down	list	or	start	from	scratch.	The	Create	New	Profile	window	is	shown

in	the	following	screenshot:	
Clicking	on	OK	will	save	the	new	profile	in	its	own	directory	by	the	same

name	in	your	Profiles	directory	in	the	Personal	configuration	menu.

Selecting	a	Wireshark	profile
You	can	select	one	of	your	custom	profiles	by	selecting	Configuration	Profiles
from	the	Edit	menu,	clicking	on	one	of	the	listed	profiles,	and	clicking	on	OK.
A	quicker	method	is	just	clicking	on	the	Profile	section	of	Status	Bar	and
selecting	a	profile	from	the	pop-up	menu,	as	shown	in	the	following	screenshot:	

Summary
The	topics	covered	in	this	chapter	included	working	with	Wireshark's	time
displays,	colorization	and	coloring	rules,	selecting	the	appropriate	Wireshark
preferences	for	a	given	analysis	environment,	and	saving	all	of	these	settings	in
profiles	that	can	be	selected	as	required.

In	the	next	chapter,	we'll	cover	a	selection	of	network	layer,	transport	layer,	and
application	layer	protocols	in	common	use	in	modern	networks,	which	will	help
you	to	prepare	for	more	advanced	packet	analysis	activities	in	the	later	chapters.

Chapter	5.	Network	Protocols
Effective	packet	analysis	requires	familiarity	with	the	primary	protocols	in	use	in
modern	networks.	In	this	chapter,	we	will	review	the	most	common	protocols	in
their	respective	layers:

Network	layer	protocols
Transport	layer	protocols
Application	layer	protocols

We'll	cover	the	significant	purpose	and	relevant	fields	to	support	network
connectivity	and/or	application	functionality	in	each	protocol,	as	well	a	sampling
of	Wireshark	capture	and	display	filters	for	each	protocol.

The	OSI	and	DARPA	reference
models
We	reviewed	the	purpose	of	the	OSI	and	DARPA	reference	models	in	Chapter	2,
Networking	for	Packet	Analysts.	The	visual	depiction	of	their	layers	is	repeated
in	the	following	diagram	as	a	reference	and	summary	of	some	of	the	primary
protocols	and	where	they	fit	into	their	respective	layers:	

Network	layer	protocols
Network	layer	protocols,	also	known	as	Internet	layer	protocols	in	the	DARPA
reference	model,	provide	basic	network	connectivity	and	internetwork
communications	services.	In	this	layer,	you	will	predominantly	find	the	IP
protocol	being	used	to	get	packets	transported	across	the	network,	along	with
ARP,	IGMP,	and	ICMP.

We	covered	the	IP	and	ARP	protocol	packet	header	structures	and	fields	in
Chapter	2,	Networking	for	Packet	Analysts,	so	this	information	won't	be
repeated.	However,	basic	Wireshark	capture	and	display	filters	are	provided	here
and	also	for	the	remaining	protocols	in	the	following	sections:

Wireshark	IPv4	filters

Capture	filter(s):	ip

Display	filter(s):	ip	ip.addr==192.168.1.1	ip.src==	ip.dst==	ip.id	>
2000

Wireshark	ARP	filters

Capture	filter(s):	arp

Display	filter(s):	arp	arp.opcode==1	arp.src.hw_mac==00:1c:25:99:db:85

Internet	Group	Management	Protocol
The	Internet	Group	Management	Protocol	(IGMP)	is	used	by	hosts	to	notify
adjacent	routers	of	established	multicast	(one-to-any)	group	memberships.	In
other	words,	IGMP	enables	a	computer	that	provides	content	(video	feeds),	for
example,	to	provide	such	content	to	a	distributed	group	of	users	using	one	set	of
the	multicast	address	ranges	(in	the	224.0.0.0	to	239.255.255.255	class	D
multicast	range).	This	multicast	capability	depends	on	routers	that	are	capable
and	configured	to	support	this	service;	clients	must	join	the	multicast	group.
When	a	host	wants	to	start	a	multicast,	it	sends	an	IGMP	Membership	Report
message	to	the	224.0.0.2	(all	multicast	routers)	address	that	specifies	the
multicast	IP	address	for	this	particular	group.	Clients	who	wish	to	join	or	leave
this	group	(so	they	can	receive	the	multicast	content)	send	an	IGMP	join	or	leave
message	to	the	router.	The	following	table	shows	the	various	ranges	for
addresses:

Starting	address
range

Ending	address
range Description

224.0.0.0 224.0.0.255 These	are	reserved	for	special	well-known	multicast
addresses

224.0.1.0 238.255.255.255 These	are	globally-scoped	(Internet-wide)	multicast
addresses

239.0.0.0 239.255.255.255 These	are	locally-scoped	and	administered	multicast
addresses

The	following	screenshot	shows	the	significant	fields	in	the	IGMP	protocol
header:	

	

The	preceding	significant	fields	in	the	IGMP	protocol	header	include:

Type:	This	is	a	type	of	IGMP	message.	Type	22	is	IGMPv3	Membership
Report.
Record	Type:	There	are	different	types	of	Group	Records.	The	value	of
Record	Type	3	is	Change	To	Include	Mode,	which	indicates	that	content
from	the	source	device	is	to	be	forwarded	to	the	in-group	hosts	by	the
multicast	router.
Multicast	Address:	This	is	the	multicast	IP	address	for	a	specific	group.

You	should	also	note	the	following	interesting	fields	in	the	previous	protocol
layers:

The	Ethernet	frame	destination	MAC	address	is	one	of	a	range	of	multicast
MAC	addresses	(01:00:5e:00:00:00	–	01:00:5e:7f:ff:ff)
The	Protocol	field	in	the	IP	header	specifies	IGMP	2

The	IP	layer	destination	IP	Address	is	224.0.0.22,	which	is	a	reserved
IGMPv3	multicast	IP	address

The	IGMP	protocol	has	multiple	versions	and	is	rather	complex.	Refer	to	the
protocol	references	provided	at	the	beginning	of	this	chapter	for	more
information.

Wireshark	IGMP	filters

Capture	filter(s):	igmp

Display	filter(s):	igmp	igmp.type==0x22	igmp.record_type==4
igmp.maddr==244.0.1.60

Internet	Control	Message	Protocol
The	Internet	Control	Message	Protocol	(ICMP)	is	used	by	network	devices
such	as	routers	to	send	error	messages	indicating	that	a	requested	service	is	not
available,	or	a	host	or	network	router	could	not	be	reached.	ICMP	is	a	control
protocol.	This	means	that	although	it	is	transported	as	IP	datagrams,	it	does	not
carry	the	application	data—instead,	it	carries	the	information	about	the	status	of
the	network	itself.

ICMP	pings

One	of	the	most	well-known	uses	of	ICMP	is	to	ping,	wherein	a	device	sends	an
ICMP	echo	request	(Type	8,	Code	0)	packet	to	a	distant	host	(via	that	host's	IP
address),	which	will	(if	the	ICMP	service	isn't	disabled	or	blocked	by	an
intermediate	firewall)	respond	with	an	ICMP	echo	reply	(Type	0,	Code	0)
packet.	Pings	are	used	to	determine	whether	the	target	host	is	available	and	can
be	reached	over	the	network.	By	measuring	the	time	that	expires	between	ping
requests	and	replies,	we	know	the	round	trip	time	(RTT)	delay	time	over	the
network	path.

ICMP	traceroutes

A	variation	of	ping	functionality	is	used	to	perform	a	traceroute	(also	known	as
traceroute),	which	is	a	list	of	the	IP	addresses	of	the	router	interfaces	that	packets
traverse	to	get	from	a	sending	device	to	a	target	host	or	device.	The	traceroutes
are	used	to	determine	or	confirm	the	network	path	taken	from	a	sending	device
to	a	target	host	or	device.

A	traceroute	is	accomplished	by	sending	the	ICMP	echo	request	packets	to	a
distant	host	just	as	in	a	normal	ping,	but	with	modifications	to	the	Time-to-Live
(TTL)	field	in	the	IP	header	of	each	packet.	The	traceroute	function	takes
advantage	of	the	fact	that	each	router	in	a	network	path	decrements	the	TTL
value	in	a	packet	by	1,	so	as	the	packet	traverses,	the	routers	in	a	path	and	the
TTL	value	will	decrease	accordingly	along	the	way.	If	a	router	receives	a	packet
with	a	TTL	value	of	1,	it	will	send	an	ICMP	TTL	exceeded	in	transit	(Type	11,
Code	0)	error	message	back	to	the	sender	(along	with	a	copy	of	the	request
packet	it	received)	and	otherwise	discard	(not	forward)	the	packet.

The	traceroute	works	by	sequentially	setting	the	TTL	in	multiple	ICMP	request
packets	to	1,	then	to	2,	then	3,	and	so	on,	which	results	in	each	router	in	the
network	path	sending	TTL	exceeded	error	messages	back	to	the	sender.	Since
these	returned	messages	are	sent	by	the	in-path	router	using	the	IP	address	of	the
interface	where	the	ICMP	packet	was	received,	the	traceroute	utility	can	build
and	display	a	progressive	list	of	router	interface	IP	addresses	in	the	path	and	the
RTT	delay	to	each	router.

ICMP	control	message	types

A	sampling	of	the	most	commonly	seen	types	of	ICMP	control	messages,
including	their	type	and	code	(subtype)	numbers,	are	provided	in	the	following
table:

Type Code Description

0 0 This	indicates	echo	reply	(ping)

3 0 This	indicates	destination	network	unreachable

3 1 This	indicates	destination	host	unreachable

3 4 This	indicates	fragmentation	required	and	do	not	fragment	bit	set

3 6 This	indicates	destination	network	unknown

3 7 This	indicates	destination	host	unknown

5 0 This	indicates	redirect	datagram	for	the	network

5 1 This	indicates	redirect	datagram	for	the	host

8 0 This	indicates	echo	request	(ping)

11 0 This	indicates	TTL	expired	in	transit	(seen	in	traceroutes)

The	Wireshark	packet	details	fields	for	the	ICMP	packet	illustrated	in	the

following	screenshot	depict	a	Time-to-live	exceeded	message	as	seen	in	a
typical	traceroute	capture:

	

The	following	points	are	significant	to	analyze	this	packet:

The	source	IP	address	seen	in	the	IPv4	header	summary	is	10.192.128.1,
which	is	the	IP	address	of	the	router	interface	sending	the	ICMP	message	to
the	originator,	192.168.1.115
The	ICMP	packet	is	Type	11,	Code	0	(TTL	exceeded	in	transit)

The	second	set	of	IPv4	and	ICMP	headers	that	follow	the	first	IPv4	and	ICMP
headers	are	copies	of	the	original	packet	transmitted	by	the	sender.	This	copy	is
returned	to	allow	determination	of	the	packet	that	caused	the	ICMP	message.
The	significant	points	in	the	packet	details	of	this	ICMP	message	copy	include:

The	target	destination	IP	address,	where	the	echo	request	packet	was
intended	to	be	sent	(and	would	have	been	if	the	TTL	value	hadn't	been

altered)	is	205.251.242.51.
The	TTL	value	was	1	when	this	packet	reached	the	10.192.128.1	router
interface.	This	packet	cannot	be	forwarded,	resulting	in	the	TTL	exceeded
message	being	sent	back	to	the	sender.
The	original	ICMP	packet	was	a	Type	8,	Code	0	echo	request	message.
The	Header	Data	section	of	the	ICMP	packet	for	the	echo	requests	and
replies	will	include	a	16-bit	identifier	and	16-bit	sequence	number,	which
are	used	to	match	echo	replies	to	their	requests.

ICMP	redirects

Another	common	use	of	ICMP	is	to	redirect	a	client	to	use	a	different	default
gateway	(router)	to	reach	a	host	or	network	than	the	gateway	it	originally	tried	to
use.	In	the	ICMP	Redirect	packet	depicted	in	the	following	screenshot,	a
number	of	packet	fields	should	be	noted:

The	source	IP	address	of	the	ICMP	redirect	packet	is	192.168.1.1,	which
was	the	client's	default	gateway;	this	is	the	router	sending	the	redirect
packet	back	to	the	client
The	ICMP	Type	is	5	(Redirect)	and	Code	is	1	(Redirect	for	host)
The	gateway	IP	address	that	the	router	192.168.1.1	is	telling	the	client	to
use	to	reach	the	desired	target	host	is	192.168.1.2
The	IP	address	of	the	target	host	was	10.1.1.125

The	following	screenshot	shows	the	ICMP	Redirect	packets:

	
Wireshark	ICMP	filters

Capture	filters(s):	icmp

Display	filter(s):	icmp	icmp.type==8	||	icmp.type==0	(pings)
icmp.type==5

&&	icmp.code==1	(host	redirects)

Internet	Protocol	Version	6
The	Internet	Protocol	Version	6	(IPv6)	is	the	latest	version	of	Internet
protocol,	and	although	it	is	in	its	earliest	stages	of	adoption,	it	is	intended	to
eventually	replace	IPv4—mostly	to	alleviate	the	shortage	of	IP	addresses	that
can	be	assigned	to	network	devices.	IPv4,	with	its	32-bit	address	space,	provides
approximately	4.3	billion	addresses,	nearly	all	of	which	have	been	assigned	to
companies	and	private	interests	worldwide.

IPv6	utilizes	a	128-bit	address	space,	which	allows	2128	or	approximately	3.4	x
1038	addresses;	that	number	is
340,282,366,920,463,463,374,607,431,768,211,456	unique	addresses.

IPv6	addressing

The	128	bits	of	an	IPv6	address	are	represented	in	eight	groups	of	16	bits	each,
written	as	four	hexadecimal	digits	separated	by	colons	(:).	An	example	of	an
IPv6	address	is	2001:0db8:0000:0000:0000:ff00:0042:8329.

For	convenience,	an	IPv6	address	may	be	abbreviated	to	shorter	notations	by
application	of	the	following	rules,	wherever	possible:

One	or	more	leading	zeroes	from	any	groups	of	hexadecimal	digits	are
removed;	this	is	usually	done	to	either	all	or	none	of	the	leading	zeroes.	For
example,	the	hexadecimal	group	0042	can	be	converted	to	just	42.
Consecutive	sections	of	zeroes	are	replaced	with	a	double	colon	(::).	The
double	colon	may	only	be	used	once	in	an	address,	as	multiple	use	would
render	the	address	indeterminate.	A	double	colon	must	not	be	used	to
denote	a	single	section	of	omitted	zeroes.

An	example	of	applying	these	rules	to	IPv6	addresses	is	as	follows:

Initial	address:	2001:0db8:0000:0000:0000:ff00:0042:8329
After	removing	all	leading	zeroes:	2001:db8:0:0:0:ff00:42:8329
After	omitting	consecutive	sections	of	zeroes:	2001:db8::ff00:42:8329

The	128	bits	of	an	IPv6	address	are	logically	divided	into	a	network	prefix	and	a
host	identifier.	The	Class	Inter-Domain	Routing	(CIDR)	notation	is	used	to

represent	IPv6	network	prefixes,	for	example,	2001:DB8:0:CD30::/64	represents
network	2001:DB8:0000:CD30::.

IPv6	address	types

There	are	three	basic	types	of	IPv6	addresses:

Unicast:	These	packets	from	one-to-one	device	use	a	single	interface
address.	Unicast	addresses	can	be	of	one	of	the	following	three	types:

Global	Unicast:	This	is	routable	to	and	over	the	Internet.	Global
Unicast	addresses	generally	start	with	2xxx	(such	as	2000::/3).
Link-local:	This	is	automatically	assigned	to	an	interface	and	used	on
the	local	network	link;	this	is	not	routable	to	the	Internet,	much	like	a
MAC	address.	Link-local	Unicast	addresses	start	with	FE80
(FE80::/10).	They	are	automatically	assigned	to	an	interface	when	it	is
initialized	using	an	algorithm	that	uses	a	rearranged	version	of	the
NIC's	48-bit	MAC	address	in	the	IPv6	address	and	are	used	to
communicate	on	the	local	link.	These	addresses	are	not	routable.	IPv6
uses	link-local	addresses	for	neighbor	discovery	functions.
Unique	local:	This	is	not	routable	to	the	Internet,	but	it	is	routable
within	an	enterprise	(similar	to	IPv4	private	addresses).	Unique	local
Unicast	addresses	start	with	FC00	(FC00::/7).	This	block	of	addresses
is	reserved	for	use	in	private	IPv6	networks.

Multicast:	These	are	packets	from	one-to-many	devices.	Multicast	addresses
start	with	FFxx.	An	example	of	a	multicast	address	is	FF01:0:0:0:0:0:0:101,
which	can	be	shortened	to	FF01::101.	There	is	no	broadcast	address	in	IPv6;
multicasts	are	used	as	a	replacement.	Some	well-known	multicast	addresses	are
shown	in	the	following	table:

Address Description Scope

ff01:0:0:0:0:0:0:1 All	nodes
address

Interface-local	(spans	only	a	single	interface	on	a	node	useful	only
for	loopback	transmission	of	multicast	packets)

ff02:0:0:0:0:0:0:1 All	nodes
address

Link-local	(all	nodes	on	the	local	network	segment)

ff01:0:0:0:0:0:0:2 All	routers
address

Interface-local

ff02:0:0:0:0:0:0:2 All	routers
address

Link-local

ff05:0:0:0:0:0:0:2 All	routers
address

Site-local	(spans	a	single	site)

ff02:0:0:0:0:0:1:2 DHCPv6
servers/agents

Link-local

ff05:0:0:0:0:0:1:3 DHCPv6
servers/agents

Site-local

Anycast:	These	packets	are	from	one	to	the	nearest	of	a	group	of	interfaces.
There	is	no	special	addresses	scheme	for	Anycast	addresses;	they	are	similar	to
Unicast	addresses.	An	Anycast	address	is	created	automatically	when	a	Unicast
address	is	assigned	to	more	than	one	interface.	Anycast	addresses	can	be	used	to
set	up	a	group	of	devices	so	that	any	one	of	the	group	devices	can	respond	to	a
request	sent	to	a	single	IPv6	address.

Further	discussion	of	IPv6	addressing	would	cover	quite	a	number	of	additional
features,	which	are	beyond	the	scope	of	this	book.	The	reader	is	encouraged	to
research	IPv6	addressing	further	online	and/or	by	reading	Request	For
Comments	(RFC)	4291	(IP	Version	6	Addressing	Architecture).

IPv6	header	fields

An	example	of	an	IPv6	protocol	header	is	illustrated	in	the	following	screenshot:

	

The	IPv6	header	fields	are	similar	to	many	IPv4	headers	and	the	fields	include:

Version:	This	is	the	IP	version	number,	6	for	IPv6.
Traffic	class:	This	is	similar	to	the	IPv4	DiffServ	field;	it	is	used	to	identify
different	classes	or	priorities	of	IPv6	packets.
Flow	label:	These	are	used	to	identify	sequences	of	packets	that	are	labeled
as	a	set.	An	IPv6	flow	is	defined	by	the	20-bit	Flow	Label	field	and	the
source	and	destination	IPv6	address	fields.
Payload	length:	This	is	the	length	of	the	IPv6	payload,	not	including	any
packet	padding.
Next	header:	This	field	indicates	what's	coming	next	in	the	packet.	This	is
equivalent	to	the	IPv4	Protocol	field.	In	the	preceding	example,	the	next
layer	is	a	normal	TCP	(6)	header.
Hop	limit:	This	field	is	roughly	equivalent	to	the	Time	To	Live	field	in
IPv4;	it	is	decremented	by	one	by	each	device	that	forwards	the	IPv6
packet.	When	the	value	reaches	one,	the	packet	cannot	be	forwarded.
Source	and	Destination	addresses:	These	are	the	128-bit	IPv6	source	and
destination	addresses.

IPv6	supports	extension	headers	that	provide	additional	information	fields	and
that	also	extend	the	length	of	the	IPv6	header.	There	is	specific	Next	Header
code	that	indicates	the	presence	of	this	added	functionality.

IPv6	transition	methods

As	part	of	the	transition	to	IPv6,	the	current	TCP/IP	devices	support	dual	stacks
(IPv4	and	IPv6	simultaneously)	and	the	ability	to	encapsulate	and	tunnel	IPv6
packets	inside	IPv4	packets	so	that	they	can	be	routed	by	IPv4	networks.	The
three	of	the	most	popular	encapsulation	methods	are:

6to4	tunneling:	In	this	tunneling	method,	an	IPv6	header	follows	an	IPv4
header;	the	Protocol	field	of	the	IPv4	header	will	contain	41	(IPv6),	and	the
source	IPv6	address	in	the	IPv6	header	will	start	with	2002.
Teredo:	In	this	tunneling	method,	an	IPv6	header	is	encapsulated	inside	a
UDP	packet.	This	method	was	developed	to	accommodate	NAT	devices
that	do	not	handle	protocol	41.	Teredo	tunneling	can	be	identified	in	the
UDP	packet	header	by	a	destination	port	of	3544.
ISATAP:	This	tunneling	method	uses	a	locally	assigned	IPv4	address	to
create	a	64-bit	interface	identifier.	For	example,	in	ISATAP,	the	IPv4

address	24.6.173.220	becomes	::0:5EFE:1806:addc.	ISATAP
encapsulates	IPv6	headers	within	IPv4	as	in	6to4	tunneling.

Wireshark	IPv6	filters

Capture	filter(s):	ip6	host	fe80::1	ip	proto	41	(capture	IPv6-over-IPv4
tunneled	traffic)

Display	filter(s):	ipv6	ipv6.addr	==	fe80::f61f:c2ff:fe58:7dcb
ipv6.addr	==	ff02::1

Internet	Control	Message	Protocol	Version	6
Internet	Control	Message	Protocol	Version	6	(ICMPv6)	is	an	integral	part	of
IPv6,	and	the	base	protocol	must	be	fully	implemented	by	every	IPv6	node.
ICMPv6	provides	services	for	an	IPv6	environment	that	are	provided	by	other
distinct	protocols	in	an	IPv4	environment,	such	as	Neighbor	Solicitation	to
replace	ARP.

The	following	table	contains	some	of	the	common	ICMPv6	packet	types:

ICMPv6
packet	type

ICMPv6
type Purpose

Echo	request 128 Ping	request

Echo
response

129 Ping	response

Multicast
listener	query

130 Sent	by	multicast	router	to	poll	a	network	segment	for	group	members

Multicast
listener	report

131 Sent	by	a	host	when	it	joins	a	multicast	group,	or	in	response	to	a	multicast
listener	query	sent	by	a	router

Multicast
listener	done

132 Sent	by	a	host	when	it	leaves	a	multicast	group	and	might	be	the	last	member	of
that	group	on	the	network	segment

Router
solicitation

133 Discover	the	local	router(s)

Router
advertisement

134 Respond	to	Router	Solicitation	messages,	as	well	as	sending	this	packet	after
initialization	and	periodically	afterwards

Neighbor
solicitation

135 Used	first	for	Duplicate	Address	Detection	(using	a	source	address	of	::)	and
then	to	obtain	the	MAC	address	of	the	local	router;	this	function	replaces	ARP

Neighbor
advertisement

136 Response	to	Neighbor	Solicitation	messages

Redirect
message

137 Redirect	a	device	to	the	proper	router	to	send	packets	to	a	specific	network	or
host

An	example	of	a	Neighbor	Solicitation	ICMPv6	packet	is	shown	in	the	following
screenshot:	

	

The	significant	fields	in	this	packet	include:

Next	Header:	This	field	contains	58,	which	indicates	that	the	next	protocol
header	is	to	be	ICMPv6.
IPv6	Source	Address:	The	presence	of	an	unspecified	address	(::)	indicates
this	is	a	Duplicate	Address	Detection	packet.
IPv6	Destination	Address:	This	is	basically	a	multicast	address.
ICMPv6	Type:	This	is	a	Neighbor	Solicitation	message	using	Type	135.
ICMPv6	Code:	This	is	the	subtype	for	Neighbor	Solicitation	messages;	this
will	be	0.
ICMPv6	Target	Address:	This	is	the	address	the	host	wants	to	use.	If
another	node	on	the	network	is	already	using	this	address,	they	will	respond
accordingly.

Multicast	Listener	Discovery

Multicast	Listener	Discovery	(MLD)	is	another	component	of	the	IPv6	suite
used	by	IPv6	routers	to	discover	multicast	listeners	on	a	directly	attached	link.

MLD	is	part	of	the	ICMPv6	protocol	and	it	replaces	IGMP	on	IPv4	networks.

Wireshark	ICMPv6	filters

Capture	filter(s):	icmp6

Display	filter(s):	icmpv6	icmpv6.type==1135	&&	icmpv6.code==0	(Neighbor
Solicitation)

Transport	layer	protocols
The	transport	layer	protocols	include	TCP	and	UDP	used	to	transport	application
protocols.

User	Datagram	Protocol
The	User	Datagram	Protocol	(UDP)	is	considered	an	unreliable	transport.	In
this,	there's	no	guarantee	of	packet	delivery	or	ordering,	but	it	has	a	lower
overhead	and	is	used	by	time-sensitive	applications	such	as	voice	and	video
traffic.

The	following	screenshot	shows	the	fields	contained	in	an	UDP	header:

	

The	UDP	header	is	only	8-bytes	long,	consisting	of:

Source	and	Destination	port	number:	This	is	2	bytes	each.
Length:	This	is	the	length	of	the	UDP	header	plus	the	payload.	This	is	a	2-
byte	field.
Checksum:	This	is	a	2-byte	field	used	to	check	for	errors	in	the	UDP
header	and	data.	If	no	checksum	was	generated	by	the	transmitter,	this	will
be	all	zeroes.

Wireshark	UDP	filters

Capture	filter(s):	udp	udp	port	2222

Display	filter(s):	udp	udp.srcport	==	161	(SNMP	response)	udp.length	>
256

Transmission	Control	Protocol
The	Transmission	Control	Protocol	(TCP)	provides	a	reliable	delivery	of	data
by	detecting	lost,	duplicated,	or	out-of-order	packets,	requesting	retransmission
of	lost	data,	or	rearranging	packets	in	the	right	order	before	delivering	them	to
the	application.	TCP	can	also	accept	a	large	chunk	of	data	from	an	application
and	handle	getting	the	data	transported	to	the	other	end	reliably	using	multiple
packets	and	reassembling	them	at	the	other	end.

The	following	screenshot	highlights	the	significant	fields	of	a	basic	TCP	header:

	

The	TCP	header	contents	and	length	can	vary	depending	on	options	that	may	be
in	use,	but	in	its	simplest	implementation	it	consists	of:

Source	port	and	Destination	port:	These	are	well-known	and	registered
ports	are	used	(on	servers)	to	access	standard	application	services	such	as
HTTP,	FTP,	SMTP,	databases,	and	so	on.	Port	numbers	assigned	to
client/user	sessions	are	usually	in	a	higher	number	range	and	assigned
sequentially.
Sequence	number:	This	is	a	number	that	represents	the	first	octet	in	any
given	segment.	Sequence	numbers	are	initialized	at	the	beginning	of	new
sessions	as	a	random	number,	and	then	incremented	as	data	bytes	are	sent.

Acknowledgment	number:	When	the	ACK	flag	bit	is	set,	this	field
contains	the	next	sequence	number	expected	from	the	sender,	which	in	turn
acknowledges	receipt	of	all	the	bytes	received	up	to	that	point.

Note

The	use	of	sequence	and	acknowledgment	numbers	is	how	TCP	ensures
reliable	delivery	of	data	by	tracking	the	number	and	order	of	received	bytes.

Sequence	and	acknowledgment	numbers	are	large	and	difficult	for	humans
to	follow.	Wireshark	can	convert	and	display	these	as	relative	values	that
start	with	0	at	the	beginning	of	a	session	to	make	it	easier	to	inspect	them
and	relate	the	values	to	the	number	of	bytes	transmitted	and	received.

Flags:	These	bits	are	used	to	control	connection	setups,	terminations,	and
flow	control	mechanisms.
Window	size:	This	field	indicates	the	current	size	of	the	buffer	on	this	host
used	to	store	received	data	until	it	can	be	handed	off	to	the	receiving
application.	This	information	enables	the	sending	host	to	adjust	data	flow
rates	in	case	of	network	or	host	congestion.

TCP	flags

The	following	table	lists	the	flags	that	are	most	commonly	used	in	a	TCP	header:

Flag	field	name Description

URG	(urgent) This	indicates	the	Urgent	Pointer	field	(after	the	TCP	header	checksum)	that	should
be	examined.	This	flag	is	normally	0;	the	Urgent	Pointer	field	is	only	examined	if
this	bit	is	set.

ACK
(acknowledgment)

This	is	the	acknowledgment	packet.

PSH	(push) This	indicates	whether	the	sending	node's	TCP	stack	should	bypass	any	buffering	and
pass	the	data	directly	to	the	network	and	on	to	the	receiving	application.

RST	(reset) This	is	used	to	close	the	connection	explicitly.

SYN This	is	used	to	synchronize	sequence	numbers	and	used	in	a	three-way	TCP	session

(synchronize) initiation	handshake	process.

FIN	(finish) This	is	used	when	the	transaction	is	finished.	This	does	not	mean	that	the	connection
is	to	be	closed	explicitly,	but	is	commonly	seen	at	the	end	of	sessions.

TCP	options

The	TCP	also	supports	a	number	of	additional	options,	several	of	which	are	in
common	use	in	modern	networks	that	you	should	be	aware	of.	The	snippet	of	a
TCP	header	illustrated	in	the	following	screenshot	depicts	several	of	the	most
popular	options:

	

The	TCP	options	highlighted	in	the	preceding	screenshot	include:

Maximum	Segment	Size:	This	option	allows	you	to	specify	of	the	number
of	bytes	that	can	follow	the	TCP	header.	This	option	exists	to	allow
adjustment	to	accommodate	VLAN	tagging	or	Multiprotocol	Label
Switching	(MPLS).
Window	Scale:	This	option	overcomes	the	inability	of	the	Window	Size
field	in	a	standard	TCP	header	to	specify	a	window	size	greater	than	65,535
bytes.	Window	scaling	allows	you	to	specify	a	factor	to	multiply	the
advertised	window	size	to	achieve	a	larger	window	size.	Both	sides	of	a
session	must	be	able	to	support	this	option	for	it	to	apply;	this	is	determined
during	the	session	setup.
TCP	SACK	Permitted	Option:	This	option	indicates	that	this	node
supports	selective	acknowledgments,	which	allows	a	node	to	acknowledge
ongoing	and	incoming	data	packets	while	still	asking	for	a	specific	missing
packet.	The	recovery	process	only	requires	retransmission	of	the	missing
packet(s),	instead	of	the	missing	packet	and	all	the	packets	that	followed.
Both	sides	of	a	session	must	be	able	to	support	this	option	for	it	to	apply,	as
determined	during	session	setup.

Wireshark	TCP	filters

Capture	filter(s):	tcp	tcp	port	80

Display	filter(s):	tcp	tcp.port	==	80	tcp.dstport	==	8080	tcp.stream	==
2

Application	layer	protocols
The	most	common	application	layer	protocols	include	DHCP	used	to	obtain
client	IP	addresses	and	configuration	information,	DNS	for	hostname	resolution,
HTTP,	SMB,	POP/SMTP,	and	FTP	for	the	most	common	network	services	and
SIP,	RTP,	and	RTCP	for	VoIP	and	video	conferencing.

Extensive	coverage	of	all	the	upper	layer	protocols	is	beyond	the	scope	of	this
book.	A	brief	overview	of	DHCP	and	DNS	will	be	provided,	as	these	protocols
universally	support	network	operations	and	HTTP	as	an	example	of	one	of	the
most	common	application	layer	protocols.	The	reader	is	encouraged	to	research
any	or	all	of	these	protocols	further	depending	on	their	scope	of	interest	and	need
to	meet	the	analysis	tasks	being	addressed.

Dynamic	Host	Configuration	Protocol
Dynamic	Host	Configuration	Protocol	(DHCP)	allows	a	client	to	lease	an	IP
address	from	a	pool	managed	by	a	DHCP	server.	The	client	can	receive	other
configuration	options	such	as	the	default	gateway,	subnet	mask,	and	one	or	more
DNS	server	addresses	as	well.	DHCP	is	derived	from	an	older	BOOTP	protocol;
Wireshark	uses	bootp	in	display	filter	syntax.	DHCP	works	by	the	client	sending
a	broadcast	packet	using	UDP	source	port	67	to	UDP	destination	port	68.	A
DHCP	server	will	respond	to	the	requestor's	IP	address	and	using	UDP	source
port	68	to	UDP	destination	port	67.

DHCP	servers	don't	necessarily	have	to	reside	on	the	same	local	network
segment	as	clients.	A	relay	agent	such	as	a	router	can	forward	DHCP	requests
and	respond	to/from	a	different	network	where	a	DHCP	server	resides.

Wireshark	DHCP	filters

Capture	filter(s):	port	67	(DHCP	is	between	ports	67	and	68;	filtering	on	port	67
is	sufficient	to	get	both	sides	of	the	conversations)

Display	filter(s):	bootp	bootp.option.value	==	0	(DHCP	Discover	message)

Dynamic	Host	Configuration	Protocol
Version	6
Dynamic	Host	Configuration	Protocol	Version	6	(DHCPv6)	is	the	IPv6
version	of	DHCP.	Since	IPv6	doesn't	use	broadcasts,	DHCPv6	clients	use	the
multicast	address	for	All_DHCP_Relay_Agents_and_Servers	(ff02::1:2)	to
locate	DHCPv6	servers	or	relay	agents.

Wireshark	DHCPv6	filters

Capture	filter(s):	port	546	(DHCPv6	is	between	ports	546	and	547;	either	will
work)	Display	filter(s):	dhcpv6	dhcpv6.msgtype	==	1(DHCPv6	Solicit
message)

Domain	Name	Service
Domain	Name	Service	(DNS)	is	used	to	convert	host	names,	such	as
www.wireshark.org	to	IP	addresses.	DNS	can	also	be	used	to	identify	the
hostname	associated	with	an	IP	address	(an	inverse	or	pointer	(PTR)	query)	and
several	other	network	information	services.	This	is	a	good	protocol	to	become
familiar	with	as	it	is	used	extensively	to	locate	nodes	both	within	an	enterprise
and	on	the	Internet	using	hostnames.

Wireshark	DNS	filters

Capture	filter(s):	port	53

Display	filter(s):	dns	dns.flags.response	==	0(DNS	query)
dns.flags.response	==	1(DNS	response)	dns.flags.rcode	!=	0(DNS
response	contains	an	error)

http://www.wireshark.org

Hypertext	Transfer	Protocol
Hypertext	Transfer	Protocol	(HTTP)	is	the	application	protocol	used	when
someone	browses	(unsecured)	websites	on	the	Internet,	along	with	the	secure
version	(HTTPS).	HTTP/1.1	is	the	current	version—although	HTTP/2.0	is
starting	to	appear	in	some	environments.	Be	aware	that	some	network	devices
such	as	proxy	servers	and	gateways	may	not	support	HTTP/2.0	yet.

An	example	of	a	HTTP	packet	delivering	a	GET	request	to	a	web	server	is
depicted	in	the	following	screenshot:	

	

The	most	common	features	and	fields	of	the	HTTP	protocol	include	HTTP
Methods,	Host,	and	Request	Modifiers.

In	the	preceding	screenshot,	the	HTTP	header	includes:

Request	Method:	GET

Request	URI:	/Orion	(a	home	page	on	the	web	server)
Request	Version:	HTTP/1.1

HTTP	Methods

Some	of	the	more	common	HTTP	Methods	are	listed	and	described	in	the
following	table:

Method Description

GET This	retrieves	information	defined	by	the	Uniform	Resource	Identifier	(URI)	field

HEAD This	retrieves	meta	data	related	to	the	desired	URI

POST This	sends	data	to	the	HTTP	server/application

OPTIONS This	determines	the	options	associated	with	a	resource

PUT This	sends	data	to	the	HTTP	server/application

DELETE This	deletes	the	resource	defined	by	the	URI

CONNECT This	is	used	to	connect	to	a	proxy	device

Host

The	Host	field	identifies	the	target	host	and	port	number	of	the	resource	being
requested.	In	the	preceding	screenshot,	Host	is	pktiqsvr1	on	port	8080.

Request	Modifiers

HTTP	requests	and	responses	use	Request	Modifiers	to	provide	details	for	the
request.	In	the	preceding	screenshot,	Request	Modifiers	includes:

Connection:	This	indicates	the	preference	for	a	persistent	connection
(keep-alive).
Accept:	This	is	a	list	of	data	formats	(text/html	and	application/xhtml
plus	xml)	accepted.
User-agent:	This	is	a	list	of	browser	and	operating	system	parameters

(Mozilla/5.0	(Windows	NT	6.1;	WOW64)	AppleWebKit)	for	the	requesting
device.
Accept-encoding:	This	is	a	list	of	the	acceptable	HTTP	compression
schemes	(gzip,	deflate,	and	sdch).
Accept-language:	The	acceptable	languages	(en-US	and	en;	q=0.8)	where
q=0.8	is	a	relative	quality	factor	that	specifies	the	language	the	user	would
prefer	on	a	scale	of	0	to	1.
Cookie:	This	is	a	session	ID	cookie
(ASP.NET_SessionId=sidsruxjbm4eaed4d3dgg4zd)	that	was	previously
stored	on	the	user's	browser	in	a	cookie	and	is	being	provided	to	the
website.

The	following	table	lists	some	of	the	more	commonly	used	modifiers:

Request
Modifier Description

Accept Acceptable	content	types

Accept-
charset

Acceptable	character	sets

Accept-
encoding

Acceptable	encodings

Accept-
language

Acceptable	languages

Accept-
ranges

Server	can	accept	range	requests

Authorization Authentication	credentials	for	HTTP	authentication

Cache-
control

Caching	directives

Connection Type	of	connection	preferred	by	the	user	agent

Cookie HTTP	cookie	(a	small	piece	of	data	sent	from	the	website	and	stored	in	a	user's	browser,

and/or	sent	back	to	the	website	the	next	time	the	user	visits	containing	session	information)

Content-
length

Length	of	the	request	body	in	bytes

Content-type Mime	type	of	the	body	(used	with	POST	and	PUT	requests)

Date Date	and	time	the	message	was	sent

Expect Defines	server	behavior	expected	by	the	client

If-match Perform	action	if	client-provided	information	matches

If-modified-
since

Provide	date/time	of	cached	data;	return	304	Not	Modified	if	the	cached	data	is	still
current

If-range Request	for	range	of	missing	information

IF-
unmodified-
since

Only	send	if	unmodified	since	the	provided	date/time

Max-
forwards

Limit	the	number	of	forwards	through	proxies	or	gateways

Proxy-
authorization

Authorization	credential	for	a	proxy	connection

Range Request	only	part	of	an	entity

TE Transfer	encodings	accepted

User-agent A	string	containing	browser	and	operating	system	information

Via The	proxies	traversed

Wireshark	HTTP	filters

Capture	filter(s):	tcp	port	http	tcp	port	https

Display	filter(s):	http	http.request.method	==	"GET"	or
http.request.method	==	"POST"	http.response.code	>	399	(identifies
client	or	server	error	packets)

Additional	information
Covering	all	the	most	common	upper	layer	protocols	or	covering	them	to	any
great	depth	is	obviously	more	than	what	can	be	included	in	a	book	of	this	size.	I
encourage	you	to	spend	some	time	studying	those	protocols	that	are	of	interest	to
you	for	personal	or	job-related	reasons.	The	return	on	your	investment	in	time
will	be	well	worth	the	effort.

Additional	information	for	any	of	the	protocols	discussed	in	this	chapter	as	well
as	all	those	not	covered	can	be	found	online.

Wireshark	wiki

If	you	are	inspecting	a	protocol	within	the	Wireshark's	Packet	Details	pane,	you
can	right-click	on	a	protocol	header	or	field	within	a	header	and	select	the	Wiki
Protocol	Page	from	the	menu	to	go	to	the	specific	page	on	the	Wireshark	wiki
that	contains	information	on	that	protocol.	More	information	can	be	found	at
http://wiki.wireshark.org/ProtocolReference.

You	can	also	get	a	complete	list	of	Wireshark	display	filters	on	specific	protocols
by	selecting	a	protocol	header	or	a	field	within	a	header,	right-clicking,	and
selecting	Filter	Field	Reference.

Protocols	on	Wikipedia

You	can	find	general	information	on	various	protocols	on	Wikipedia.	Start	with
the	Internet	protocol.	Additional	links	to	the	entire	Internet	protocol	suite	are
also	provided	at	http://en.wikipedia.org/wiki/Internet_Protocol.

Requests	for	Comments

The	Requests	for	Comment	(RFC)	documents	contain	detailed	information	for
all	the	Internet	protocols.	These	documents	are	maintained	by	the	Internet
Engineering	Task	Force	(IETF)	and	are	the	final	word	on	how	the	protocols
should	be	implemented	and	function	(http://www.ietf.org/rfc.html).	If	you	want
to	search	for	a	specific	RFC	by	title	or	keyword,	use	the	link	http://www.rfc-
editor.org/search/rfc_search.php.

http://wiki.wireshark.org/ProtocolReference
http://en.wikipedia.org/wiki/Internet_Protocol
http://www.ietf.org/rfc.html
http://www.rfc-editor.org/search/rfc_search.php

Summary
The	topics	covered	in	this	chapter	included	protocol	and	field	coverage	of	the
network	layer	protocols	IPv4,	ARP,	IGMP,	ICMP,	IPv6,	and	ICMPv6;	the
transport	layer	protocols	UDP	and	TCP;	an	overview	of	the	application	layer
protocols	DHCP,	DHCPv6,	and	DNS;	and	a	more	in-depth	look	at	HTTP.

In	the	next	chapter,	we'll	put	all	the	topics	covered	so	far	to	good	use	by	using
Wireshark	to	troubleshoot	the	functionality	and	performance	issues.

Chapter	6.	Troubleshooting	and
Performance	Analysis
In	this	chapter,	we	will	discuss	the	use	of	Wireshark	for	its	primary	purpose—
troubleshooting	network	and	application	connectivity,	functionality,	and
performance	issues.

The	topics	that	will	be	covered	include:

Troubleshooting	methodology
Troubleshooting	connectivity	issues
Troubleshooting	functional	issues
Performance	analysis	methodology
Top	five	reasons	for	poor	application	performance
Detecting	and	prioritizing	delays
Server	processing	time	events
Application	turn's	delay
Network	path	latency
Bandwidth	congestion
Data	transport	issues

These	topics	cover	the	majority	of	problems	you'll	come	across	in	your	analysis
efforts.

Troubleshooting	methodology
There	are	two	fundamental	reasons	why	you	might	be	doing	packet	analysis:

Troubleshooting	a	connectivity	or	functionality	problem	(a	user	can't
connect,	an	application	doesn't	work,	or	doesn't	work	right),	which	we'll
just	call	troubleshooting
Analyzing	a	performance	problem	(the	application	works	but	is	slow),
which	we'll	call	performance	analysis

A	third	gray	area	is	an	application	that	basically	works	but	is	slow	and
occasionally	times	out,	which	could	involve	an	underlying	functional	problem
that	causes	the	performance	issue,	or	just	simply	be	a	really	poor	performance.

Troubleshooting	a	connectivity	or	functional	issue	is	just	a	matter	of	comparing
what	normally	works	with	what	is	going	on,	in	the	case	you're	working	on.

A	performance	problem,	on	the	other	hand,	requires	determining	where	the
majority	of	the	time	for	a	particular	transaction	to	complete	is	being	spent,
measuring	the	delay	and	comparing	that	delay	to	what	is	normal	or	acceptable.
The	source	and	type	of	excessive	delay	usually	points	to	the	next	area	to
investigate	further	or	resolve.

In	any	case,	you	need	to	gather	the	information	that	allows	you	to	determine
whether	this	is	a	connectivity,	functional,	or	performance	issue	and	approach	the
problem	according	to	its	nature.

Gathering	the	right	information
The	most	important	thing	you	can	do	when	approaching	a	problem	is	to
determine	what	the	real	problem	is	so	you	can	work	on	the	right	problem	or	the
right	aspect	of	the	problem.	In	order	to	determine	what	the	real	problem	is,	or	at
least	get	close,	you'll	need	to	ask	questions	and	interpret	the	answers.	These
questions	could	include	the	appropriate	selections	(depending	on	the	complaint)
from	the	following	list:

Define	the	problem:
What	were	you	trying	to	do	(connect	to	a	server,	log	in,	send/receive	e-
mails,	general	application	usage,	upload/download	file,	and	specific
transactions	or	functions)?
Is	nothing	working	or	is	this	just	a	problem	with	a	specific	application
or	multiple	applications?
What	website/server/application	were	you	trying	/	connecting	to?	Do
you	know	the	hostname,	URL,	and/or	IP	address	and	port	used	to
access	the	application?
What	is	the	symptom/nature	of	the	problem?	Has	this	application	or
function/feature	worked	before,	or	is	this	the	first	time	you've	ever
tried	to	use	it?
Did	you	receive	any	error	messages	or	other	indications	of	a	problem?
Is	the	issue	consistent	or	intermittent?	Depends?	On	what?
How	long	has	this	been	happening?
Was	there	some	recent	change	that	did	or	could	have	had	an	impact?
What	has	been	identified	or	suspected	so	far?	What	has	been	done	to
address	this?	Has	it	helped	or	changed	anything?
Are	there	any	other	pertinent	factors,	symptoms,	or	recent	changes	to
the	user	environment	that	should	be	considered?

Determine	the	scope	of	the	issue:
Is	this	problem	occurring	for	a	single	user	or	a	group	of	users?
Is	this	problem	occurring	within	a	specific	office,	region,	or	across	the
whole	company?
Is	this	problem	affecting	different	types	of	users	differently?

Collect	system,	application,	and	path	information.	For	a	more	in-depth
analysis	(beyond	single	user	or	small	group	issues),	the	applicable	questions
from	the	following	list	might	also	need	to	be	gathered	and	analyzed,	as

appropriate	to	the	complaint	(some	of	this	information	may	have	to	be	obtained
from	network	or	application	support	groups):

What	is	the	browser	type	and	version	on	the	client	(for	web	apps)?	Is	this
different	from	clients	that	are	working	properly?
What	is	the	operating	system	type	and	version	of	the	client(s)	and	server?
What	is	the	proper	(vendor)	application	name	and	version?	Are	there	any
known	issues	with	the	application	that	match	these	symptoms	(check	the
vendor's	bug	reports).
What	is	the	database	type	and	server	environment	behind	the	application
server?
Are	there	other	backend-supporting	data	sources	such	as	an	online	data
service	or	Documentum	and	SharePoint	servers	involved?
What	is	the	network	path	between	the	client	and	server?	Are	there	firewalls,
proxy	servers,	load	balancers,	and/or	WAN	accelerators	in	the	path?	Are
they	configured	and	working	properly?
Can	you	confirm	the	expected	network	path	(and	any	WAN	links	involved)
with	a	traceroute	and	verify	the	bandwidth	availability?
Can	you	measure	the	round	trip	time	(RTT)	path	latency	from	the	user	to
the	application	server	with	pings	or	TCP	handshake	completion	times?

Establishing	the	general	nature	of	the
problem
At	this	point,	you	should	be	able	to	identify	the	general	nature	of	the	problem
between	one	of	the	following	three	basic	types:

Determine	whether	this	is	a	connectivity	problem
User(s)	cannot	connect	to	anything
User(s)	cannot	connect	to	a	specific	server/application

Determine	whether	this	is	a	functionality	or	configuration	problem
User(s)	can	connect	(gets	a	login	screen	or	other	response	from	the
application	server)	but	cannot	log	in	(or	get	the	expected	response)
User(s)	can	connect	and	log	in	but	some	or	all	functions	are	failing	(for
example,	cannot	send/receive	e-mails)

Determine	whether	this	is	a	performance	problem
User(s)	can	connect,	log	in,	and	use	the	application	normally;	but	it's
slow
The	application	works	normally	but	sometimes	it	stalls	and/or	times
out

Half-split	troubleshooting	and	other	logic
When	I	was	doing	component-level	repair	of	electronic	equipment	early	in	my
career,	I	learned	to	use	the	"half-split"	troubleshooting	method,	which	worked
very	well	in	almost	every	single	case.	Half-split	troubleshooting	is	the	process	of
cutting	the	problem	domain	(in	my	case,	a	piece	of	radio	gear)	in	half	by
injecting	or	measuring	signals	roughly	midway	through	the	system.	The	idea	is
to	see	which	half	is	working	right	and	which	half	isn't,	then	shifting	focus	to	the
half	that	doesn't	work,	analyzing	it	halfway	through,	and	so	on.	This	process	is
repeated	until	you	narrow	the	problem	down	to	its	source.

In	the	network	and	application	world,	the	same	half-split	troubleshooting
approach	can	be	applied	as	well,	in	a	general	sense.	If	users	are	complaining	that
the	network	is	slow,	try	to	confirm	or	eliminate	the	network:

Are	users	close	to	the	server	experiencing	similar	slowness?	How	about
users	in	other	remote	locations?
If	a	certain	application	is	slow	for	a	remote	user,	are	other	applications	slow
for	that	user	as	well?
If	users	can't	connect	to	a	given	server,	can	they	connect	to	other	servers
nearby	or	at	other	locations?

By	a	process	of	logical	examination	of	what	does	and	doesn't	work,	you	can
eliminate	a	lot	of	guesswork	and	narrow	your	analysis	down	to	just	a	few
plausible	possibilities.

It's	usually	much	easier	to	determine	the	source	of	a	connectivity	or	functionality
problem	if	you	have	an	environment	where	everything	is	working	properly	to
compare	with	a	situation	that	does	not	work.	A	packet	capture	of	a	working
versus	a	non-working	scenario	can	be	compared	to	see	what	is	different	and	if
those	differences	are	significant.

It	is	important	not	to	make	too	many	assumptions	about	a	problem,	even	if	the
issue	you're	working	on	looks	the	same	as	the	one	that	you've	fixed	before.
Always	verify	the	problem	and	the	resolution	that	you	should	be	able	to	apply
and	remove	a	fix	and	see	the	problem	disappear/reappear	reliably.	Otherwise,
you	should	question	yourself	about	whether	you've	found	the	true	source	of	the
issue	or	are	just	affecting	the	symptoms.

Unless	a	reported	problem	is	obviously	a	system-wide	or	specific	server	issue,	it
is	better	to	conduct	at	least	the	initial	analysis	at	or	as	close	to	the	complaining
user's	workstation	as	possible.	This	has	the	advantages	of	offering	the	ability	to
perform	the	following	actions:

View	and	verify	the	actual	problem	that	the	user	is	reporting
Measure	round-trip	times	to	the	target	server(s)
Capture	and	view	the	TCP	handshake	process	upon	session	initiation
Capture	and	investigate	the	login	and	any	other	background	processes	and
traffic
Look	for	indications	of	network	problems	(lost	packets	and
retransmissions)	as	they	are	experienced	by	the	user's	device
Measure	the	apparent	network	throughput	to	the	user's	workstation	during
data	downloads
Eliminate	the	need	to	use	a	capture	filter;	the	amount	of	traffic	to/from	a
single	workstation	should	not	be	excessive

A	capture	at	a	user	workstation,	server,	or	other	device	should	be	conducted	with
the	use	of	an	aggregating	Test	Access	Point	(TAP)	versus	using	a	switch	SPAN
port	(as	discussed	in	Chapter	3,	Capturing	All	the	Right	Packets,	or	as	a	last
resort	by	installing	Wireshark	on	the	user's	workstation	or	server	(if	authorized).

Troubleshooting	connectivity	issues
Single	user	or	small	group	connectivity	issues	can	be	resolved	by	confirming
that	the	networking	functions	required	for	a	user	workstation	to	access	local	and
remote	network	resources	are	functioning	properly.	The	basic	requirements	or
items	to	confirm	include:

Enabling	the	correct	network	interface(s)	(workstation	configuration)
Confirming	layer	1	(physical)	connectivity
Obtaining	an	IP	address,	subnet	mask,	and	default	gateway	for	each
interface	(DHCP)
Obtaining	the	MAC	address	of	the	default	gateway	or	other	local	network
services	(ARP)
Obtaining	the	IP	address	of	a	network	service	(DNS)
Connecting	to	a	network	service	(TCP	handshake	or	UDP	response)

We'll	briefly	discuss	each	of	these	in	order;	while	the	first	two	steps	will	not
involve	using	Wireshark,	they	are	a	necessary	part	in	a	troubleshooting
approach.	If	the	connectivity	issue	is	affecting	a	group	of	users	or	a	whole	office,
the	first	step	is	probably	not	applicable.

Enabling	network	interfaces
While	it	may	seem	obvious	that	network	interfaces	need	to	be	enabled,	the
assumption	that	they	are	automatically	enabled	(especially	for	the	wireless
connectivity)	by	default	upon	device	boot	up	may	be	false.

On	Windows,	you	can	use	the	command-line	utility	ipconfig	to	view	the	status
and	basic	configuration	(IP	address,	subnet	mask,	and	default	gateway)	of
network	interfaces;	on	Linux	or	MAC	devices,	the	equivalent	command	is
ifconfig	or	ip.

Confirming	physical	connectivity
If	a	connectivity	problem	is	isolated	to	a	single	user's	workstation,	the	physical
connections	are	suspected.	There	are	a	few	items	to	check,	and	the
troubleshooting	steps	that	can	be	taken	are	as	follows:

If	there	is	a	problem	with	the	Ethernet	cable	from	the	workstation	to	a	wall
jack,	you	need	to	swap	the	cable	with	a	different	one.
If	there	is	a	problem	with	the	cabling	from	the	user's	wall	jack	to	the	switch
port,	you	need	to	temporarily	plug	the	user's	Ethernet	cable	into	another
(known	good)	wall	jack.
If	there	is	a	problem	with	the	switch,	switch	port,	or	port	configuration,	you
need	to	temporarily	plug	the	user's	port	cable	into	another	(known	good)
port.	Be	aware	that	some	network	security	policies	call	to	disable	switch
ports	until	they	are	needed	or	configuring	the	port	to	be	associated	with	a
single,	specific	MAC	address.	If	so,	a	port	may	not	work	when	you	plug
into	it	although	there	is	nothing	physically	wrong	with	it.

Obtaining	the	workstation	IP	configuration
Unless	the	workstation	was	manually	configured,	it	will	need	to	get	its	IP
address,	subnet	mask,	default	gateway,	and	DNS	server	settings	from	a	DHCP
server.	If	this	does	not	appear	to	be	working	properly	(after	checking	the
configuration	using	ipconfig	(Windows)	or	ifconfig,	(Linux	or	Mac	OS	X)),
you	need	to	perform	a	packet	capture	during	the	workstation	initialization/boot-
up	process	using	a	TAP	or	SPAN	port	and	investigate	the	DHCP	requests	and
responses.

There	are	eight	DHCP	message	types	(not	to	be	confused	with	the	two	Bootstrap
Protocol	types,	Boot	Request	and	Boot	Reply):

Message	type
number Message	type Description

1 DHCP	Discover A	client	broadcast	to	locate	an	available	DHCP	server

2 DHCP	Reply A	server	to	client	response	to	a	DHCP	Discover	to	offer
configuration	parameters

3 DHCP	Request A	client	message	to	a	DHCP	server	to	either	one	of	the
following	conditions:

Request	offered	parameters	from	one	server	and	decline
offers	from	other	DHCP	servers
Confirm	correctness	of	previously	allocated	address	after
a	reboot
Extending	the	lease	on	an	IP	address

4 DHCP	Decline Client	message	to	DHCP	server	indicating	the	offered	address	is
not	acceptable

5 DHCP
Acknowledgment

Server	to	client	with	configuration	parameters	including	a
committed	network	address

6 DHCP	Negative
Acknowledgement

Server	to	client	indicating	client's	address	is	incorrect	or	expired

7 DHCP	Release Client	to	server	releasing	a	network	address	and	canceling	a

lease

8 DHCP	Informational Client	to	server	asking	for	local	configuration	parameters	only

For	a	workstation	that	is	booting	up	and	was	previously	working	on	the	network,
you'll	generally	see	the	DHCP	Request	and	Acknowledgment	packets	verifying
that	the	workstation	can	still	use	a	previously	leased	address.	On	an	entirely	cold
start	up,	the	first	two	DHCP	packets	will	be	DHCP	Discover	and	DHCP	Offer
packets,	followed	by	the	Request	and	ACK	packets.

In	a	DHCPv6	environment,	the	typical	packet	sequence	is	DHCPv6	Solicit,
DHCPv6	Advertise,	DHCPv6	Request,	and	DHCPv6	Reply.

The	fields	to	verify	in	a	DHCP	Response	packet	(or	similar	fields	in	a	DHCPv6
Advertise	packet)	include	the	following	four	fields:

Your	(client)	IP	Address:	This	is	the	offered	IP	address	for	this
workstation
Subnet	Mask:	This	is	the	subnet	mask	to	use	on	this	network
Domain	Name	Server:	This	is	the	DNS	server	IP	address
Router:	This	is	the	IP	address	of	the	default	gateway	to	use

This	is	minimum	data	required	for	any	network	communications;	an	example	of
these	fields	being	provided	in	a	DHCP	Reply	packet	is	illustrated	in	the
following	screenshot:

	

You	can	apply	Wireshark	display	filters	to	isolate	DHCP	packets;	the	filter	is
bootp,	as	this	is	the	legacy	name	for	DHCP:

DHCP	display	filter:	bootp	bootp.option.dhcp	==	5	(DHCP	Message
Type	'ACK')

DHCPv6	display	filter:	dhcpv6	dhcpv6.msgtype	==	2	(DHCPv6
'Advertise')

You	can	save	the	basic	bootp	and	dhcpv6	display	filters	as	a	Filter	Expression
Button	(FEB)	after	entering	the	filter	string	in	the	textbox	on	the	Display	Filter
toolbar,	clicking	on	Save,	and	giving	the	button	a	name	such	as	DHCP	Pkts	and
DHCPv6	Pkts	respectively.	Alternatively,	you	could	combine	both	filters	with	an
or	(||)	in	one	button,	as	shown	in	the	following	screenshot:

	

You	might	want	to	save	another	FEB	that	displays	an	abnormal	DHCP	condition
packets	using	the	following	display	filter	string	and	call	the	DHCP	Errors
button	or	a	similar	as	follows:

bootp.option.dhcp	==	4	||	bootp.option.dhcp	==	6	||	

bootp.option.dhcp	==	7

Similar	abnormal	event	display	filters	for	DHCPv6	could	include:

dhcpv6.msgtype	==	8	||	dhcpv6.msgtype	==	9	||	dhcpv6.msgtype	==	10

You	can	research	more	about	DHCP,	DHCPv6,	and	the	various	DHCPv6
message	types	online	or	from	other	sources	if	you	need	to	analyze	these	in	more
detail.

Obtaining	MAC	addresses
A	workstation	will	utilize	the	ARP	protocol	to	obtain	a	MAC	address	for	known
IP	addresses	of	network	services,	such	as	its	default	gateway	or	the	DNS	server
if	it's	located	on	the	same	network	segment.	The	ARP	protocol	and	how	it
typically	functions	has	already	been	covered	in	Chapter	2,	Networking	for
Packet	Analysts.

You	may	want	to	create	an	ARP	FEB	using	the	arp	display	filter	syntax	to	make
it	quick	and	easy	to	inspect	those	packets.

Obtaining	network	service	IP	addresses
A	client	workstation	sends	queries	to	a	DNS	server	to	obtain	an	IP	address	for	a
given	hostname;	the	DNS	server	responds	with	the	information	or	asks	other
DNS	servers	for	the	information	on	behalf	of	the	client.

The	format	of	the	DNS	query	and	response	packet	fields	as	displayed	in	the
Wireshark	Packet	Details	pane	is	fairly	intuitive.	An	example	of	a	DNS
response	packet	containing	a	resolved	IP	address	for	time.windows.com,	which
actually	provided	the	IP	address	(137.170.185.211)	for	the	alias
time.microsoft.akadns.com	is	shown	in	the	following	screenshot:

	

If	a	client	workstation	cannot	obtain	the	IP	address	of	a	web	service	or
application	server,	a	packet-level	investigation	of	the	request	(which	URL	or
hostname	is	being	requested),	and	what	the	response	is	from	the	DNS	server	(if
any)	should	be	revealing.	A	comparison	of	a	failing	query	with	queries	that	work
properly	for	other	hostnames	or	from	other	workstations	should	reveal	the	root
of	the	problem	(if	DNS	is	the	problem).	Failure	to	obtain	an	IP	address	can	be
caused	by	an	inoperable	DNS	server,	improper	hostname	or	URL,	or	a	problem
with	connectivity	from	the	user	to	other	parts	of	the	network,	which	we'll	check
next.

Basic	network	connectivity
A	few	simple	tests	can	confirm	that	basic	network	connectivity	is	working,	or
reveal	a	routing	issue	or	another	issue	that	needs	to	be	addressed	by	the	network
support	team.

Capturing	and	analyzing	the	ICMP	packets	sent	and	received	during	the
following	tests	can	be	revealing;	although,	the	test	results	themselves	are	often
telling	enough:

Ping	the	user's	default	gateway	using	the	default	gateway	IP	address
obtained	from	using	ipconfig	/all	(Windows)	or	ip	addr	show	(Linux)
to	confirm	that	the	user	workstation	has	basic	connectivity	on	the	local
network.
Ping	the	hostname	or	URL	of	the	target	server.	If	this	fails	(request	timed
out	message),	try	to	ping	other	hosts	or	URLs.	If	necessary,	inspect	the
DNS	and/or	ICMP	responses	in	a	packet	capture	of	these	tests	to	determine
the	nature	of	the	failure.	Otherwise,	take	note	of	the	average	round	trip
times.
If	a	ping	works	to	the	default	gateway	but	pinging	other	targets	fails,	a
traceroute	to	a	target	server	can	reveal	where	in	the	network	path
connectivity	ceases	to	function	or	is	blocked.

Note

The	traceroute	command-line	utility	in	Windows	is	tracert,	whereas	for
traceroutes	on	Linux/Unix	and	Mac	OS	X	machines,	the	command	is
traceroute.	To	do	a	traceroute	in	Windows,	open	a	Command	Prompt
(CMD)	window	and	type	tracert	<hostname	or	IP	Address	of
target>.	In	most	other	environments,	open	a	terminal	window	and	type
traceroute	<hostname	or	IP	address	of	target>.

If	you	can	ping	the	target	server	and	network	connectivity	is	functioning,	you
can	move	on	to	the	next	step	in	the	troubleshooting	process.	If	not,	be	aware	that
some	hosts	may	be	configured	to	not	respond	to	ICMP	ping	requests,	and/or
ICMP	is	blocked	by	a	firewall	between	the	user	and	server	for	security	reasons.
So,	the	inability	to	ping	a	device	is	not	necessarily	a	sign	of	a	network	problem.
Traceroute	results	should	help	determine	how	far	and	to	what	extent	network

connectivity	is	functioning	in	the	path	towards	the	target	server;	testing	to	other
targets	should	be	revealing	as	well.

An	example	of	pinging	a	default	gateway,	then	a	URL,	and	finally	performing	a
traceroute	to	the	target	URL	is	depicted	in	the	following	screenshot:

	

Connecting	to	the	application	services

If	network	connectivity	from	a	user	workstation	to	a	target	server	is	functional
(as	proven	by	the	ability	to	ping	the	host),	a	problem	connecting	to	a	specific
application	hosted	on	that	server	may	be	caused	by	a	number	of	factors:

The	URL	or	port	used	by	the	client	to	access	the	application	is	wrong
The	port	used	to	access	the	application	is	blocked	by	a	firewall
The	application	service	is	not	turned	up	or	is	not	working	properly

The	first	of	these	factors	is	far	more	likely	for	a	single	user	issue.	Any	of	the	last
two	factors	would	prevent	anyone	in	a	group	or	the	whole	organization	from
accessing	the	application.	A	packet-level	analysis	(from	the	client	side)	of	a	user
attempting	to	connect	to	an	application	that	is	blocked	should	result	in	ICMP
messages:	Destination	Host	is	Unreachable	or	Destination	Port	is
Unreachable,	or	there	will	be	no	response	at	all	if	ICMP	messages	are	being
blocked	by	a	firewall.

If	the	server	is	up,	the	application	is	reportedly	operational	but	cannot	be
accessed;	a	client-side	capture	does	not	offer	any	solid	clues,	but	a	packet
capture	of	the	TCP	session	setup	(if	any)	from	or	near	the	server	end	should	be
revealing.

Troubleshooting	functional	issues
If	a	user	is	able	to	connect	and	set	up	a	TCP	session	with	an	application	server,
but	the	application	does	not	function	otherwise,	or	function	correctly,	then,	there
are	a	number	of	areas	that	can	be	investigated.	These	areas	can	be	investigated
using	a	combination	of	packet-level	analysis,	error	reports,	and	configuration
comparisons	with	captures	and	configurations	from	other	users'	machines:

User	credentials:	The	most	common	reason	for	specific-user	issues	with
application	functionality	is	the	lack	of	proper	credentials,	authorization,
rights,	and	so	on.	This	is	the	first	thing	to	check	whether	other	users	are
working	normally.
Application	settings	on	the	user	machine:	Some	applications	require
specific	configuration	files	to	be	placed	on	a	user's	machine	in	a	specific
location.	Applications	may	also	require	certain	version	levels	of
application-specific	utilities,	Java,	.NET	frameworks,	and	so	on.	Usually,	an
application	will	provide	an	error	message	indicating	at	least	the	general
nature	of	a	configuration	problem.
Application	reported	errors:	You	can	look	for	the	error	code	within
response	packets	or	on	the	user	screen	that	may	reveal	the	nature	of
application	errors:

Status	code	greater	than	400	in	HTTP,	FTP,	or	SIP	response	packets
Error	code	in	SMB	response	packets
Other	application-specific	exceptions,	error	codes,	and	messages

Differences	in	web	browsers:	Some	web	applications	are	designed	to	work
with	specific	browsers	(Chrome,	Internet	Explorer,	Firefox,	Opera,	and	so	on)
and	may	not	work	properly	or	at	all	on	other	browsers	and	there	may	not	be	any
error	messages	provided	that	indicate	this	is	the	case.	A	comparison	of	the
browser	type	and	version	with	other	working	users	may	be	revealing.

The	causes	of	network	connectivity	and	application	functionality	issues	can	vary
widely,	so	it	is	impossible	to	draw	a	clear	roadmap	for	every	possibility.	The	best
approach	to	successfully	address	these	problems	is	not	to	make	too	many
assumptions	without	proving	those	assumptions	correct	with	systematic,	logical
troubleshooting	steps,	but	try	to	find	or	create	a	scenario	where	the	system,	or	at
least	part	of	the	system,	works	properly	and	compare	the	appropriate	packet-
level	details	of	the	working	environment	to	the	one	that	doesn't	work.

Performance	analysis	methodology
Analyzing	an	application's	performance	problem	is	basically	a	case	of
identifying	where	the	majority	of	the	time	for	a	particular	task	to	complete	is
being	spent,	and	measuring/comparing	that	time	to	what	is	normal	and/or
acceptable	for	that	type	of	task.

Top	five	reasons	for	poor	application
performance
Generally	speaking,	performance	issues	can	be	attributed	to	one	of	the	following
five	areas,	in	order	of	decreasing	likelihood:

Server	processing	time	delay
Application	turns	delay
Network	path	latency
Bandwidth	congestion
Data	transport	(TCP)	issues

Client	processing	time	is	usually	a	relatively	small	component	of	overall
response	time—except	perhaps	for	some	compute-extensive	desktop
applications,	which	leaves	the	focus	on	the	network	and	server	environments	and
any	performance-affecting	application	design	characteristics.

Preparing	the	tools	and	approach

As	was	done	when	preparing	to	troubleshoot	a	connectivity	or	functionality
problem,	you'll	need	to	gather	the	right	information	about	the	application
environment	and	problem	domain.	You'll	also	want	to	determine	which	tools	you
may	need	to	use	during	the	analysis:	Wireshark,	TAPs	to	facilitate	packet
captures,	and	any	other	analysis	tools.

You	will	also	need	to	determine	where	to	perform	the	first	packet	capture:

A	client-side	capture	is	the	best	place	to	begin	a	performance	analysis
effort.	From	this	vantage	point,	you	can	view	and	verify	what	the	user	is
complaining	about,	view	any	error	messages	presented	to	the	user	or
evident	in	the	packet	capture,	measure	network	round-trip	times,	and
capture	the	performance	characteristics	to	study	within	a	packet	capture
without	the	need	to	use	a	capture	filter	so	you	know	you	won't	miss
anything.
A	server-side	capture	may	be	needed	because	a	client-side	capture	may	not
be	possible	for	a	user	that	is	at	a	long	distance,	or	to	analyze	server-to-
server	transactions	to	backend	databases	or	other	data	sources.
A	packet	capture	at	some	intermediate	point	in	the	network	path	may	be

needed	to	isolate	the	source	of	excessive	packet	loss/errors	and	the
associated	retransmissions.

Remember	that	the	use	of	an	aggregating	TAP	is	preferable	over	using	SPAN
ports,	or	you	can	install	Wireshark	on	the	client	workstation	or	server	as	a	last
resort,	but	get	the	capture	done	any	way	you	have	to.

Performing,	verifying,	and	saving	a	good	packet	capture

After	performing	the	capture	and	saving	the	bulk	capture	file,	confirm	the
following:

1.	 Check	the	file	to	ensure	there	are	no	packets	with	the	ACKed	Unseen
Segment	messages	in	the	Wireshark	Warnings	tab	in	the	Expert	Info
menu,	which	means	Wireshark	saw	a	packet	that	was	acknowledged	but
didn't	see	the	original	packet;	an	indication	that	Wireshark	is	missing
packets	due	to	a	bad	TAP	or	SPAN	port	configuration	or	excessive	traffic
levels.	In	any	case,	if	more	than	just	a	few	of	these	show	up,	you'll	want	to
do	the	capture	again	after	confirming	the	capture	setup.

2.	 Next,	you'll	want	to	review	the	captured	conversations	in	IPv4	in	the
Conversations	window	and	sort	the	Bytes	column.	The	IP	conversation
between	the	user	and	application	server	should	be	at	or	near	the	top	so	you
can	select	this	conversation,	right-click	on	it,	and	select	A	<->	B	in	the
Selected	menu.

3.	 After	reviewing	the	filtered	data	to	ensure	it	contains	what	you	expected,
select	Export	Specified	Packets	from	the	File	menu	and	save	the	filtered
capture	file	with	a	filename	that	reflects	the	fact	that	this	is	a	filtered	subset
of	the	bulk	capture	file.

4.	 Finally,	open	the	filtered	file	you	just	saved	so	you're	working	with	a
smaller,	faster	file	without	any	distracting	packets	from	other	conversations
that	have	nothing	to	do	with	your	analysis.

Initial	error	analysis

At	the	onset	of	your	analysis,	you	should	take	a	look	through	the	Errors,
Warnings,	and	Notes	tabs	of	Wireshark's	Expert	Info	window	(Analyze	|
Expert	Info)	for	significant	errors	such	as	excessive	retransmissions,	Zero
Window	conditions,	or	application	errors.	These	are	very	helpful	to	provide
clues	to	the	source	of	reported	poor	performance.

Although	a	few	lost	packets	and	retransmissions	are	normal	and	of	minimal
consequence	in	most	packet	captures,	an	excessive	number	indicates	that
network	congestion	is	occurring	somewhere	in	the	path	between	user	and	server,
packets	are	being	discarded,	and	that	an	appreciable	amount	of	time	may	be	lost
recovering	from	these	lost	packets.

Seeing	a	high	count	number	of	Duplicate	ACK	packets	in	the	Expert	Info	Notes
window	may	be	alarming,	but	can	be	misleading.	In	the	following	screenshot,
there	was	up	to	69	Duplicate	ACKs	for	one	lost	packet,	and	for	a	second	lost
packet	the	count	went	up	to	89	(not	shown	in	the	following	screenshot):	

	

However,	upon	marking	the	time	when	the	first	Duplicate	ACK	occurred	in
Wireshark	using	the	Set/Unset	Time	Reference	feature	in	the	Edit	menu	and
then	going	to	the	last	Duplicate	ACK	in	this	series	by	clicking	the	packet	number
in	the	Expert	Info	screen	and	inspecting	a	Relative	time	column	in	the	Packet
List	pane,	only	30	milliseconds	had	transpired.	This	is	not	a	significant	amount
of	time,	especially	if	Selective	Acknowledgment	is	enabled	(as	it	was	in	this

example)	and	other	packets	are	being	delivered	and	acknowledged	in	the
meantime.	Over	longer	latency	network	paths,	the	Duplicate	ACK	count	can	go
much	higher;	it's	only	when	the	total	number	of	lost	packets	and	required
retransmissions	gets	excessively	high	that	the	delay	may	become	noticeable	to	a
user.

Another	condition	to	look	for	in	the	Expert	Info	Notes	window	includes	the
TCP	Zero	Window	reports,	which	are	caused	by	a	receive	buffer	on	the	client
or	server	being	too	full	to	accept	any	more	data	until	the	application	has	time	to
retrieve	and	process	the	data	and	make	more	room	in	the	buffer.	This	isn't
necessarily	an	error	condition,	but	it	can	lead	to	substantial	delays	in	transferring
data,	depending	on	how	long	it	takes	the	buffer	to	get	relieved.

You	can	measure	this	time	by	marking	the	TCP	Zero	Window	packet	with	a	time
reference	and	looking	at	the	elapsed	relative	time	until	a	TCP	Window	Update
packet	is	sent,	which	indicates	the	receiver	is	ready	for	more	data.	If	this	occurs
frequently,	or	the	delay	between	Zero	Window	and	Window	Update	packets	is
long,	you	may	need	to	inspect	the	host	that	is	experiencing	the	full	buffer
condition	to	see	whether	there	are	any	background	processes	that	are	adversely
affecting	the	application	that	you're	analyzing.

Note

If	you	haven't	added	them	already,	you	need	to	add	the	Relative	time	and	Delta
time	columns	in	the	Packet	List	pane.	Navigate	to	Edit	|	Preferences	|
Columns	to	add	these.	Adding	time	columns	was	also	explained	in	Chapter	4,
Configuring	Wireshark.

You	will	probably	see	the	connection	reset	(RST)	messages	in	the	Warnings	tab.
These	are	not	indicators	of	an	error	condition	if	they	occur	at	the	end	of	a	client-
server	exchange	or	session;	they	are	normal	indicators	of	sessions	being
terminated.

A	very	handy	Filter	Expression	button	you	may	want	to	add	to	Wireshark	is	a
TCP	Issues	button	using	this	display	filter	string	as	follows:

tcp.analysis.flags	&&	!tcp.analysis.window_update	&&	

!tcp.analysis.keep_alive	&&	!tcp.analysis.keep_alive_ack

This	will	filter	and	display	most	of	the	packets	for	which	you	will	see	the
messages	in	the	Expert	Info	window	and	provide	a	quick	overview	of	any
significant	issues.

Detecting	and	prioritizing	delays

Since	we're	addressing	application	performance,	the	first	step	is	to	identify	any
delays	in	the	packet	flow	so	we	can	focus	on	the	surrounding	packets	to	identify
the	source	and	nature	of	the	delay.

One	of	the	quickest	ways	to	identify	delay	events	is	to	sort	a	TCP	Delta	time
column	(by	clicking	on	the	column	header)	so	that	the	highest	delay	packets	are
arranged	at	the	top	of	the	packet	list.	You	can	then	inspect	the	Info	field	of	these
packets	to	determine	which,	if	any,	reflect	a	valid	performance	affecting	the
event	as	most	of	them	do	not.

In	the	following	screenshot,	a	TCP	Delta	time	column	is	sorted	in	order	of
descending	inter-packet	times:	

	

Let's	have	a	detailed	look	at	all	the	packets:

The	first	two	packets	are	the	TCP	Keep-Alive	packets,	which	do	just	what
they're	called.	They	are	a	way	for	the	client	(or	server)	to	make	sure	a
connection	is	still	alive	(and	not	broken	because	the	other	end	has	gone
away)	after	some	time	has	elapsed	with	no	activity.	You	can	disregard
these;	they	usually	have	nothing	to	do	with	the	user	experience.
The	third	packet	is	a	Reset	packet,	which	is	the	last	packet	in	the

conversation	stream	and	was	sent	to	terminate	the	connection.	Again,	it	has
no	impact	on	the	user	experience	so	you	can	ignore	this.
The	next	series	of	packets	listed	with	a	high	inter-packet	delay	were	GETs
and	a	POST.	These	are	the	start	of	a	new	request	and	have	occurred
because	the	user	clicked	on	a	button	or	some	other	action	on	the
application.	However,	the	time	that	expired	before	these	packets	appear
were	consumed	by	the	user	think	time—a	period	when	the	user	was	reading
the	last	page	and	deciding	what	to	do	next.	These	also	did	not	affect	the
user's	response	time	experience	and	can	be	disregarded.
Finally,	Frame	#	3691,	which	is	a	HTTP/1.1	200	OK,	is	a	response	from
the	server	to	a	previous	request;	this	is	a	legitimate	response	time	of	1.9
seconds	during	which	the	user	was	waiting.	If	this	response	time	had
consumed	more	than	a	few	seconds,	the	user	may	have	grown	frustrated
with	the	wait	and	the	type	of	request	and	reason	for	the	excessive	delay
would	warrant	further	analysis	to	determine	why	it	took	so	long.

The	point	of	this	discussion	is	to	illustrate	that	not	all	delays	you	may	see	in	a
packet	trace	affect	the	end	user	experience;	you	have	to	locate	and	focus	on	just
those	that	do.

You	may	want	to	add	some	extra	columns	to	Wireshark	to	speed	up	the	analysis
process;	you	can	right-click	on	a	column	header	and	select	Hide	Column	or
Displayed	Columns	to	show	or	hide	specific	columns:

TCP	Delta	(tcp.time_delta):	This	is	the	time	from	one	packet	in	a	TCP
conversation	to	the	next	packet	in	the	same	conversation/stream
DNS	Delta	(dns.time):	This	is	the	time	between	DNS	requests	and
responses
HTTP	Delta	(http.time):	This	is	the	time	between	the	HTTP	requests	and
responses
Note

You	should	ensure	that	Calculate	conversation	timestamps	is	enabled	in
the	TCP	option,	which	can	be	found	by	navigating	to	Edit	|	References	|
Protocols,	so	that	the	delta	time	columns	will	work	properly.

While	you're	adding	columns,	the	following	can	also	be	helpful	during	a
performance	analysis:

Stream	#	(tcp.stream):	This	is	the	TCP	conversation	stream	number.	You
can	right-click	on	a	stream	number	in	this	column,	and	select	Selected	from
the	Apply	as	a	filter	menu	to	quickly	build	a	display	filter	to	inspect	a
single	conversation.
Calc	Win	Size	(tcp.window_size):	This	is	the	calculated	TCP	window	size.
This	column	can	be	used	to	quickly	spot	periods	within	a	data	delivery	flow
when	the	buffer	size	is	decreasing	to	the	point	where	a	Zero	Window
condition	occurred	or	almost	occurred.

Server	processing	time	events

One	of	the	most	common	causes	of	poor	response	times	are	excessively	long
server	processing	time	events,	which	can	be	caused	by	processing	times	on	the
application	server	itself	and/or	delays	incurred	from	long	response	times	from	a
high	number	of	requests	to	backend	databases	or	other	data	sources.

Confirming	and	measuring	these	response	times	is	easy	within	Wireshark	using
the	following	approach:

1.	 Having	used	the	sorted	Delta	Time	column	approach	discussed	in	the
previous	section	to	identify	a	legitimate	response	time	event,	click	on	the
suspect	packet	and	then	click	on	the	Delta	Time	column	header	until	it	is
no	longer	in	the	sort	mode.	This	should	result	in	the	selected	packet	being
highlighted	in	the	middle	of	the	Packet	List	pane	and	the	displayed	packets
are	back	in	their	original	order.

2.	 Inspect	the	previous	several	packets	to	find	the	request	that	resulted	in	the
long	response	time.	The	pattern	that	you'll	see	time	and	again	is:
1.	 The	user	sends	a	request	to	the	server.
2.	 The	server	fairly	quickly	acknowledges	the	request	(with	a	[ACK]

packet).
3.	 After	some	time,	the	server	starts	sending	data	packets	to	service	the

request;	the	first	of	these	packets	is	the	packet	you	saw	and	selected	in
the	sorted	Delta	Time	view.

The	time	that	expires	between	the	first	user	request	packet	and	the	third	packet
when	the	server	actually	starts	sending	data	is	the	First	Byte	response	time.	This
is	the	area	where	you'll	see	longer	response	times	caused	by	server	processing
time.	This	effect	can	be	seen	between	users	and	servers,	as	well	as	between

application	servers	and	database	servers	or	other	data	sources.

In	the	following	screenshot,	you	can	see	a	GET	request	from	the	client	followed
by	an	ACK	packet	from	the	server	198	milliseconds	later	(0.198651	seconds	in
the	Delta	Time	Displ	column);	1.9	seconds	after	that	the	server	sends	the	first
data	packet	(HTTP/1.1	200	OK	in	the	Info	field)	followed	by	the	start	of	a
series	of	additional	packets	to	deliver	all	of	the	requested	data.	In	this
illustration,	a	Time	Reference	has	been	set	on	the	request	packet.	Looking	at	the
Rel	Time	column,	it	can	be	seen	that	2.107481	seconds	transpired	between	the
original	request	packet	and	the	first	byte	packet:	

	

It	should	be	noted	that	how	the	First	Byte	data	packet	is	summarized	in	the	Info
field	depends	upon	the	state	of	the	Allow	subdissector	to	reassemble	TCP
streams	setting	in	the	TCP	menu,	which	can	be	found	by	navigating	to	Edit	|
Preferences	|	Protocols,	as	follows:

If	this	option	is	disabled,	the	First	Byte	packet	will	display	a	summary	of
the	contents	of	the	first	data	packet	in	the	Info	field,	such	as	HTTP/1.1	200
OK	shown	in	the	preceding	screenshot,	followed	by	a	series	of	data
delivery	packets.	The	end	of	this	delivery	process	has	no	remarkable
signature;	the	packet	flow	just	stops	until	the	next	request	is	received.
If	the	Allow	subdissector	to	reassemble	TCP	streams	option	is	enabled,
the	First	Byte	packet	will	be	summarized	as	simply	a	TCP	segment	of	a
reassembled	PDU	or	similar	notation.	The	HTTP/1.1	200	OK	summary
will	be	displayed	in	the	Info	field	of	the	last	data	packet	in	this	delivery
process,	signifying	that	the	requested	data	has	been	delivered.	An	example
of	having	this	option	enabled	is	illustrated	in	the	following	screenshot.	This
is	the	same	request/response	stream	as	shown	in	the	preceding	screenshot.	It
can	be	seen	in	the	Rel	Time	column	that	the	total	elapsed	time	from	the
original	request	to	the	last	data	delivery	packet	was	2.1097	seconds:	

	
Note

The	Reassemble	SMB	Transaction	payload	setting	in	the	SMB	protocol
preferences	will	affect	how	SMB	and	SMB2	responses	are	summarized	in	the
Info	field	in	like	fashion	to	the	related	setting	in	the	TCP	protocol	preferences.

In	either	case,	the	total	response	time	as	experienced	by	the	user	will	be	the	time
that	transpires	from	the	client	request	packet	to	the	end	of	the	data	delivery
packet	plus	the	(usually)	small	amount	of	time	required	for	the	client	application
to	process	the	received	data	and	display	the	results	on	the	user's	screen.

In	summary,	measuring	the	time	from	the	first	request	to	the	First	Byte	packets	is
the	server	response	time.	The	time	from	the	first	request	packet	to	the	final	data
delivery	packet	is	a	good	representation	of	the	user	response	time	experience.

Application	turn's	delay

The	next,	most	likely	source	of	poor	response	times—especially	for	remote	users
accessing	applications	over	longer	distances—is	a	relatively	high	number	of
what	is	known	as	application	turns.	An	app	turn	is	an	instance	where	a	client
application	makes	a	request	and	nothing	else	can	or	does	happen	until	the
response	is	received,	after	which	another	request/response	cycle	can	occur,	and
so	on.

Every	client/server	application	is	subject	to	the	application	turn	effects	and	every
request/response	cycle	incurs	one.	An	application	that	imposes	a	high	number	of
app	turns	to	complete	a	task—due	to	poor	application	design,	usually—can
subject	an	end	user	to	poor	response	times	over	higher	latency	network	paths	as
the	time	spent	waiting	for	these	multiple	requests	and	responses	to	traverse	back
and	forth	across	the	network	adds	up,	which	it	can	do	quickly.

For	example,	if	an	application	requires	100	application	turns	to	complete	a	task
and	the	round	trip	time	(RTT)	between	the	user	and	the	application	is	50
milliseconds	(a	typical	cross-country	value),	the	app	turns	delay	will	be	5
seconds:

100	App	Turns	X	50	ms	RTT	network	latency	=	5	seconds	

This	app	turns'	effect	is	additional	wait	(response)	time	on	top	of	any	server
processing	and	network	transport	delays	that	is	5	seconds	of	totally	wasted	time.
The	resultant	longer	time	inevitably	gets	blamed	on	the	network;	the	network
support	teams	assert	that	the	network	is	working	just	fine	and	the	application
team	points	out	that	the	application	works	fine	until	the	network	gets	involved.
And	on	it	goes,	so	it	is	important	to	know	about	the	app	turns	effects,	what
causes	them,	and	how	to	measure	and	account	for	them.

Web	applications	can	incur	a	relatively	high	app	turn	count	due	to	the	need	to
download	one	or	more	CSS	files,	JavaScript	files,	and	multiple	images	to
populate	a	page.	Web	designers	can	use	techniques	to	reduce	the	app	turn	and
download	times,	and	modern	browsers	allow	numerous	connections	to	be	used	at
the	same	time	so	that	multiple	requests	can	be	serviced	simultaneously,	but	the
effects	can	still	be	significant	over	longer	network	paths.	Many	older,	legacy
applications	and	Microsoft's	Server	Message	Block	(SMB)	protocols	are	also
known	to	impose	a	high	app	turn	count.

The	presence	and	effects	of	application	turns	are	not	intuitively	apparent	in	a
packet	capture	unless	you	know	they	exist	and	how	to	identify	and	count	them.
You	can	do	this	in	Wireshark	for	a	client-side	capture	using	a	display	filter:

ip.scr	==	10.1.1.125	&&	tcp.analysis.ack_rtt	>	.008	&&	

tcp.flags.ack	==	1

You	will	need	to	replace	the	ip.src	IP	address	with	that	of	your	server,	and
adjust	the	tcp.analysis.ack_rtt	value	to	the	RTT	of	the	network	path	between
the	user	and	server.	Upon	applying	the	filter,	you	will	see	a	display	of	packets
that	represent	an	application	turn,	and	you	can	see	the	total	app	turns	count	in	the
Displayed	field	in	the	center	section	of	the	Wireshark's	Status	Bar	option	at	the
bottom	of	the	user	interface.

If	you	measure	the	total	time	required	to	complete	a	task	(first	request	packet	to
last	data	delivery	packet)	and	divide	that	time	into	the	time	incurred	for
application	turns	(number	of	app	turns	X	network	RTT),	you	can	derive	an
approximate	app	turn	time	percentage:

5	seconds	app	turns	delay	/	7.5	seconds	total	response	time	=	66%	

of	RT	

Any	percentage	over	25	percent	warrants	further	investigation	into	what	can	be
done	to	reduce	either	the	RTT	latency	(server	placement)	or	the	number	app
turns	(application	design).

Network	path	latency

The	next	leading	cause	of	high	response	times	is	network	path	latency,	which
compounds	the	effects	of	application	turns	as	discussed	in	the	preceding	section,
as	well	as	affecting	data	transport	throughput	and	how	long	it	takes	to	recover
from	packet	loss	and	the	subsequent	retransmissions.

You	can	measure	the	network	path	latency	between	a	client	and	server	using	the
ICMP	ping	packets,	but	you	can	also	determine	this	delay	from	a	packet	capture
by	measuring	the	time	that	transpires	from	a	client	SYN	packet	to	the	server's
SYN,	ACK	response	during	a	TCP	three-way	handshake	process,	as	illustrated
in	the	following	figure	of	a	client-side	capture:	

	

In	a	server-side	capture,	the	time	from	the	SYN,	ACK	to	the	client's	ACK	(third
packet	in	the	three-way	handshake),	also	reflects	the	RTT.	In	practice,	from	any
capture	point,	the	time	from	the	first	SYN	packet	to	the	third	ACK	packet	is	a
good	representation	of	the	RTT	as	well	assuming	the	client	and	server	response
times	during	the	handshake	process	are	small.	Be	aware	that	the	server	response
time	to	a	SYN	packet,	while	usually	short,	can	be	longer	than	normal	during
periods	of	high	loading	and	can	affect	this	measurement.

High	network	path	latency	isn't	an	error	condition	by	itself,	but	can	obviously
have	adverse	effects	on	the	application's	operation	over	the	network	as

previously	discussed.

Bandwidth	congestion

Bandwidth	congestion	affects	the	application's	performance	by	extending	the
amount	of	time	required	to	transmit	a	given	amount	of	data	over	a	network	path;
for	users	accessing	an	application	server	over	a	busy	WAN	link,	these	effects	can
become	significant.	A	network	support	team	should	be	able	to	generate
bandwidth	usage	and	availability	reports	for	the	in-path	WAN	links	to	check	for
this	possibility,	but	you	can	also	look	for	evidence	of	bandwidth	congestion	by
using	a	properly	configured	Wireshark	IO	Graph	to	view	network	throughput
during	larger	data	transfers.

The	following	screenshot	illustrates	a	data	transfer	that	is	affected	by	limited
bandwidth;	the	flatlining	at	the	2.5	Mbps	mark	(the	total	bandwidth	availability
in	this	example),	because	no	more	bandwidth	is	available	to	support	a	faster
transfer	is	clearly	visible:	

	

You	can	determine	the	peak	data	transfer	rate	in	bits-per-second	(bps)	from	an
IO	Graph	by	configuring	the	graph	as	follows:

X	Axis	Tick	interval:	1	sec
Y	Axis	Unit:	Bits/tick
Graph	2	Filter:	ip.dst	==	<IP	address	of	server>
Graph	4	Filter:	ip.src	==	<IP	address	of	server>

These	settings	result	in	an	accurate	bits-per-second	display	of	network
throughput	in	client-to-server	(red	color)	and	server-to-client	(blue	color)
directions.	The	Pixels	per	tick	option	in	the	X	Axis	panel,	the	Scale	option	in
the	Y	Axis	panel,	and	other	settings	can	be	modified	as	desired	for	the	best
display	without	affecting	the	accuracy	of	the	measurement.

Be	aware	that	most	modern	applications	can	generate	short-term	peak	bandwidth
demands	(over	an	unrestricted	link)	of	multiple	Mbps.	The	WAN	links	along	a
network	path	should	have	enough	spare	capacity	to	accommodate	these	short
term	demands	or	response	time	will	suffer	accordingly.	This	is	an	important
performance	consideration.

Data	transport

There	are	a	number	of	TCP	data	transport	effects	that	can	affect	application
performance;	these	can	be	analyzed	in	Wireshark.

TCP	StreamGraph

Wireshark	provides	TCP	StreamGraphs	to	analyze	several	key	data	transport
metrics,	including:

Round-trip	time:	This	graphs	the	RTT	from	a	data	packet	to	the
corresponding	ACK	packet.
Throughput:	These	are	plots	throughput	in	bytes	per	second.
Time/sequence	(Stephen's-style):	This	visualizes	the	TCP-based	packet
sequence	numbers	(and	the	number	of	bytes	transferred)	over	time.	An	ideal
graph	flows	from	bottom-left	to	upper-right	in	a	smooth	fashion.
Time/sequence	(tcptrace):	This	is	similar	to	the	Stephen's	graph,	but
provides	more	information.	The	data	packets	are	represented	with	an	I-bar

display,	where	the	taller	the	I-bar,	the	more	data	is	being	sent.	A	gray	bar	is
also	displayed	that	represents	the	receive	window	size.	When	the	gray	bar
moves	closer	to	the	I-bars,	the	receive	window	size	decreases.
Window	Scaling:	This	plots	the	receive	window	size.

Note

The	TCP	StreamGraphs	are	unidirectional.	You	want	to	select	a	packet	for
the	direction	that	is	transporting	data	to	get	the	proper	view.

These	analysis	graphs	can	be	utilized	by	selecting	one	of	the	packets	in	a	TCP
stream	in	the	Packet	List	pane	and	selecting	TCP	StreamGraph	from	the
Statistics	menu	and	then	one	of	the	options	such	as	the	Time-Sequence	Graph
(tcptrace).

The	selected	graph	and	Control	Window	will	appear	from	the	Graph	type	tab
of	the	Control	Window	that	you	can	select	one	of	the	other	types	of	analysis

graphs,	as	shown	in	the	following	screenshot:	

	

The	Time/Sequence	Graph	(tcptrace)	shown	in	the	following	screenshot	plots
sequence	numbers	as	they	increase	during	a	data	transfer,	along	with	the	gray
receive	window	size	line:	

	

You	can	click	and	drag	the	mouse	over	a	section	of	the	graph	to	zoom	into	a
particular	section,	or	press	the	+	key	to	zoom	in	and	the	-	key	to	zoom	out.
Clicking	on	a	point	in	any	of	the	graphs	will	take	you	to	the	corresponding
packet	in	the	Wireshark's	Packet	List	pane.

IO	Graph

You	can	also	analyze	a	the	effects	of	TCP	issues	on	network	throughput	by
applying	TCP	analysis	display	filter	strings	to	Wireshark's	IO	Graph,	such	as:

tcp.analysis.flags	&&	!tcp.analysis.window_update

In	the	following	screenshot	of	a	slow	SMB	data	transfer,	it	can	be	seen	that	the
multiple	TCP	issues	(in	this	case,	packet	loss,	Duplicate	ACKs,	and

retransmissions)	in	the	red	line	correspond	to	a	decrease	in	throughput	(the	black
line):	

	

Clicking	on	a	point	in	the	IO	Graph	takes	you	to	the	corresponding	packet	in	the
Wireshark's	Packet	List	pane	so	you	can	investigate	the	issue.

IO	Graph	–	Wireshark	2.0

Wireshark	2.0,	also	known	as	Wireshark	Qt,	is	a	major	change	in	Wireshark's
version	history	due	to	a	transition	from	the	GTK+	user	interface	library	to	Qt	to
provide	better	ongoing	UI	coverage	for	the	supported	platforms.	Most	of	the
Wireshark	features	and	user	interface	controls	will	remain	basically	the	same,
but	there	are	changes	to	the	IO	Graph.

These	are	shown	in	the	following	screenshot,	which	shows	the	same	TCP	issues
that	were	seen	in	the	preceding	screenshot:	

	

The	new	IO	Graph	window	features	the	ability	to	add	as	many	lines	as	desired
(using	the	+	key)	and	to	zoom	in	on	a	graph	line,	as	well	as	the	ability	to	save
the	graph	as	an	image	or	PDF	document.

Summary
The	topics	covered	in	this	chapter	included	troubleshooting	methodology,	how	to
use	Wireshark	to	troubleshoot	connectivity	and	functionality	issues,	performance
analysis	methodology,	and	the	top	five	causes	of	poor	application	performance
and	how	to	use	Wireshark	to	analyze	those	causes.

In	the	next	chapter,	we	will	review	some	of	the	common	types	and	sources	of
malicious	traffic	and	introduce	how	a	security	professional	can	use	Wireshark	to
detect	these	threats.

Chapter	7.	Packet	Analysis	for
Security	Tasks
With	the	increasing	threat	of	hackers,	identity	thieves,	and	corporate	data	theft,
you	need	to	be	able	to	analyze	the	security	of	your	network	at	the	packet	level.

The	topics	that	will	be	covered	in	this	chapter	include:

Security	analysis	methodology
Scans	and	sweeps
OS	fingerprinting
Malformed	packets
Phone	home	traffic
Password	cracking	traffic
Unusual	traffic

Security	analysis	methodology
Security	analysis	at	the	packet	level	is	based	on	detecting	and	analyzing	suspect
traffic,	that	is,	the	traffic	that	does	not	match	normal	patterns	because	of	the
presence	of	unusual	protocol	types	or	ports,	or	unusual	requests,	responses,	or
packet	frequency.	Suspicious	traffic	may	include	reconnaissance	(discovery)
sweeps,	phone	home	behavior,	denial	of	service	attacks,	botnet	commands,	or
other	types	of	behavior	from	direct	attacks	or	virus-	or	botnet-based	agents.

Wireshark	captures	strategic	points	in	the	network	to	investigate	suspicious
packets	from	specific	hosts	or	on	network	segments	and	egress	points	can	also
complement	any	Intrusion	Detection	System	(IDS)	systems	that	may	be	in
place	to	alert	the	IT	staff	about	the	suspicious	traffic.

The	importance	of	baselining
The	ability	to	identify	abnormal	traffic	patterns	that	bear	investigation	versus
traffic	caused	by	poorly	behaving	applications,	misconfigurations,	or	faulty
devices	can	be	made	much	easier	if	you	have	a	baseline	of	what	is	normal.	A
baseline	is	a	snapshot	capture	of	typical	conversations	with	your	primary
applications	and	servers	and	the	background	traffic	on	the	network	segments	that
they	reside	on.	In	a	potential	security	breach	situation,	you	can	compare	the
normal	protocols,	traffic	patterns,	and	user	sessions	from	a	baseline	with	a
current	capture,	filter	out	the	normal	traffic,	and	then	inspect	the	differences.

To	allow	the	comparison	of	baselines	in	your	security	analysis,	you	need	to
periodically	capture	and	store	packet	trace	files	that	cover	a	sufficient	period	of
time	to	provide	a	good	sample	of	typical	user	and	background	traffic	patterns
while	keeping	the	file	sizes	manageable	for	use	within	Wireshark,	for	example,
100	MB	to	1	GB	per	file.	You	can	configure	the	Ring	Buffer	option	within
Wireshark's	Capture	Options	window	to	save	a	series	of	reasonably	sized	files
for	longer	captures	or	busier	network	segments.

Although	your	baselining	needs	and	practices	will	depend	on	your	environment,
some	of	the	traffic	aspects	that	you	should	inspect	include:

Broadcast	and	multicast	types	and	rates:
What	devices	and	applications	are	using	broadcasts	and	multicasts?
What	are	the	typical	broadcast	and	multicast	packet	rates?

Applications	and	protocols:
What	applications	are	running	over	the	network?
What	protocols	and	ports	are	they	using?
Application	launch	sequences	and	typical	tasks
Are	application	sessions	encrypted?
Are	all	users	forced	to	use	encryption?	Any	exceptions?
What	are	the	login/logout	sequences	and	dependencies?

Routing	protocol(s)	and	routing	updates
ICMP	traffic
Boot-up	sequences
Name	resolution	sessions
Wireless	connectivity	includes	normal	management,	control,	and	data	frame

contents
VoIP	and	video	communications
Idle	time	traffic	is	the	host	communicating	with	other	hosts	when	there	are
no	users	logged	in
What	backup	processes	are	running	at	night	and	for	how	long?
Are	there	any	suspect	protocols	or	broadcasts/scans	taking	place?

As	you	inspect	your	baseline	captures,	it	is	helpful	to	view	a	summary	of	the
protocols	being	used	by	selecting	Protocol	Hierarchy	from	the	Wireshark's
Statistics	menu.	In	the	following	screenshot,	for	example,	you	can	see	that	there
is	some	Internet	Relay	Chat	(IRC)	traffic,	as	well	as	the	Trivial	File	Transfer
Protocol	(TFTP)	traffic,	neither	of	which	might	be	normal	on	your	network	and
could	be	an	indication	of	rogue	communications	with	outside	entities:

	

Analyzing	baselines	of	normal	traffic	levels	and	patterns	is	also	an	excellent	way
of	getting	familiar	with	your	network	environment	and	its	typical	packet	flows
and	protocols,	which	better	prepares	you	to	spot	abnormal	traffic.

Security	assessment	tools
There	are	several	popular	tools	that	are	used	by	security	professionals	to	perform
security	assessment	and	vulnerability	testing.	As	these	tools	can	generate	the
same	types	of	scans,	fingerprinting,	and	other	exploitive	activities,	as	might	be
used	by	hackers	and	malicious	agents,	they	can	be	useful	to	a	packet	analyst	to
analyze	the	packets	that	they	generate	with	Wireshark	to	build	familiarity	with
how	different	types	of	activities	appear	in	a	packet	trace	and	also	to	build	display
filters	to	detect	them.

One	of	the	most	popular	tools	is	Network	Mapper	(Nmap),	a	free	and	open
source	utility	for	network	discovery	and	security	auditing.	Nmap	runs	on	all
major	computer	operating	systems	and	offers	a	command-line	and	GUI	version
(Zenmap).

Note

You	can	find	more	information	about	Nmap	at	http://nmap.org	and	information
on	other	top	security	tools	can	be	found	at	http://sectools.org.

http://nmap.org
http://sectools.org

Identifying	unacceptable	or
suspicious	traffic
Wireshark	can	be	used	to	identify	unusual	patterns	or	packet	contents	in	the
network	traffic	including	network	scans,	malformed	packets,	and	unusual
protocols,	applications,	and	or	conversations	that	should	not	be	running	on	your
network.	The	following	is	a	general	list	of	traffic	types	that	may	not	be
acceptable	and/or	warrant	investigation	to	validate	their	legitimacy	in	your
environment:

MAC	or	IP	address	scans:	These	attempt	to	identify	active	hosts	on	the
network
TCP	or	UDP	port	scans:	These	attempt	to	identify	active	applications	and
services

IP	address	and	port	scans	can	be	generated	from	network	management
applications	to	build	or	maintain	their	list	of	devices	and	applications	to
monitor/manage,	but	that's	usually	the	only	legitimate	source	of	these	types	of
traffic.

Clear	text	passwords:	These	are	passwords	that	you	can	see	in	the
Wireshark's	Packet	Details	or	Packet	Bytes	fields.	These	are	typical	for
File	Transfer	Protocol	(FTP)	logins,	but	not	typical	or	acceptable
elsewhere.
Clear	text	data:	This	is	the	data	in	packet	payloads	that	can	be	read.	This	is
typical	for	HTTP	requests	and	responses	and	commonly	seen	in	application
server	to	database	requests	and	responses,	but	these	database	exchanges
should	be	between	hosts	on	isolated,	nonpublic	network	segments	and
otherwise	physically	secure	environments.
Password	cracking	attempts:	These	are	repeated,	systematic	attempts	to
discover	a	working	password,	usually	from	a	single	device.
Maliciously	formed	packets:	These	are	packets	with	intentionally	invalid
or	improperly	formatted	data	in	protocol	fields	that	are	intended	to	exploit
vulnerabilities	in	applications.
Phone	home	traffic:	This	is	the	traffic	from	a	rogue	agent	that	may	be
resident	on	a	server	or	workstation	that	periodically	checks	in	with	a	remote
(usually	off-network)	host.

Flooding	or	Denial	of	Service	(DOS)	attacks:	This	is	the	traffic	that	is
intentionally	sent	at	a	very	high	packet-per-second	rate	to	one	or	more	hosts
in	an	attempt	to	flood	the	host(s)	or	network	with	so	much	traffic	that	no
one	else	can	access	their	services.
Subversive	activities:	These	include	a	number	of	techniques	to	prepare	for
and	facilitate	the	man-in-the-middle	attacks	where	a	device	is	tricked	into
sending	packets	to	a	malicious	host	for	the	purpose	of	intercepting	data.

This	is	only	a	sampling	of	types	of	malicious	traffic	that	you	might	see	on	your
network;	network	security	is	an	ever	evolving	exchange	of	increasingly
sophisticated	attacks	and	subsequent	countermeasures.

As	you	develop	your	security	analysis	skills,	you	might	want	to	build	a	special
security	profile	in	Wireshark	that	includes	packet	coloring	rules	based	on	display
filters	to	help	identify	suspicious	or	malformed	packets,	as	well	as	a	set	of	Filter
Expression	Buttons	that	isolate	and	display	various	types	of	questionable	traffic
you	might	be	looking	for.

Some	examples	of	display	filters	to	isolate	and	inspect	suspicious	packets
include:

Filter	description Display	filter	string

Detect	ICMP	pings	and	possible	ping	sweep icmp.type	==	8	||	icmp.type	==	0

ICMP	destination	unreachable	filter	(included
redirects)

(icmp.type	>=	3	&&	icmp.type	<=	5)	||	icmp.type

==	11	||	(icmpv6.type	>=	1	&&	icmpv6.type	<=	4)

Unusual	ICMP	echo	requests (icmp.type	==	8)	&&	!(icmp.code	==	0x00)

TCP	handshakes	useful	for	detecting	TCP	scans
as	well	as	inspecting	normal	session
setups/tear-downs/resets

(tcp.flags&02	&&	tcp.seq==0)	||	(tcp.flags&12	&&

tcp.seq==0)	||	(tcp.flags.ack	&&	tcp.seq==1	&&

!tcp.nxtseq	>	0	&&	!tcp.ack	>1)	||	tcp.flags.fin

==	1	||	tcp.flags.reset	==1

Detect	Xmas	scan	(URG,	FIN,	and	PUSH	flags
set)

tcp.flags	==	0x029

Other	suspicious	TCP	settings:	TCP	SYN/ACK ((tcp.flags	==	0x02)	&&	(tcp.window_size	<

1025))	||	tcp.flags	==	0x2b	||	tcp.flags	==	0x00

w/	Win	size	greater	than	1025,	SYN,	FIN,	PSH,
URG	bits	set,	no	TCP	flags	set,	TCP	max
segment	size	set	to	less	than	1460

||	tcp.options.mss_val	<	1460

Internet	Relay	Chat	(IRC)	traffic	(is	this
normal	in	your	network?)

tcp.port	==	194	||	(tcp.port	>=	6660	&&	tcp.port

<=	6669)	||	tcp.port	==	7000

High	number	of	DNS	answers	(could	be	a	list
of	command	and	control	servers)

dns.count.answers	>	5

Scans	and	sweeps
Malicious	programs	and	rogue	processes	might	investigate	a	network
environment	for	available	ports	and	hosts	using	various	scanning	processes
before	launching	an	exploit.	Identifying	the	presence	of	these	reconnaissance
processes	may	allow	thwarting	the	attack	before	it	is	launched,	as	well	as
tracking	down	and/or	blocking	the	source	of	the	malicious	activity—especially	if
that	source	is	inside	the	company	as	some	of	them	are.

ARP	scans
ARP	scans,	also	called	as	ARP	sweeps,	are	used	to	discover	active	localhosts	on
a	network	segment.	An	ARP	sweep	can	be	difficult	to	detect	unless	you	apply	a
display	filter	and	observe	a	steady,	incremental	sweep	from	the	same	device,	as
seen	in	the	following	screenshot:	

	

As	ARP	packets	cannot	pass	through	a	router,	the	source	device	conducting	the
ARP	sweep	must	be	on	the	same	network	segment	that	the	ARP	packets	are	seen
on.

ICMP	ping	sweeps
ICMP	ping	sweeps	are	used	to	discover	active	hosts	on	local	or	remote	network
segments	(since	ICMP	uses	IP	and	is	routable)	using	ICMP	Type	8	Echo
Requests	and	Type	0	Echo	Replies	for	a	range	of	IP	addresses.	You	can	easily
detect	ping	sweeps	by	using	a	display	filter	icmp.type	==	8	||	icmp.type	==
0.

TCP	port	scans
TCP	port	scans	allow	a	malicious	agent	to	discover	which	TCP	ports	are	open	on
a	target	host.	Network	ports	are	the	entry	points	to	a	server	or	workstation;	a
service	that	listens	on	a	given	port	is	able	to	service	requests	from	a	client.
Malicious	agents	can	sometimes	exploit	vulnerabilities	in	server	code	to	gain
access	to	sensitive	data	or	execute	malicious	code	on	the	machine,	which	is	why
testing	all	active	ports	is	necessary	for	a	complete	coverage	of	any	security
validation.

Some	of	the	most	common	ports	used	for	TCP-based	services	include:

80	HTTP
443	HTTPS
8080	HTTP	proxy
8000	HTTP	alternate
21	FTP
22	SSH
23	Telnet
3389	Microsoft	Remote	Desktop
5900	VNC
25	SMTP
110	POP3
143	IMAP
3306	MySQL
1433	Microsoft	SQL	Server
1720	H.323
5060	SIP

A	TCP	port	scan	device	will	send	a	TCP	SYN	packet	to	a	port	on	a	target	host,
which	will	respond	with	either	SYN,	or	ACK	if	the	port	is	open,	or	RST	if	the
port	is	closed.	Similar	to	an	ARP	scan,	a	TCP	scan	can	be	detected	by	a	series	of
SYN	packets	from	a	single	IP	address	to	a	target	IP	address	over	a	range	of	port
numbers.	A	display	filter	can	make	detecting	these	types	of	scans	easier:

ip.dest	==	<IP	Address	of	target	host>	&&	tcp.flags.syn

UDP	port	scans
UDP	port	scans	are	like	TCP	scans,	but	they	are	run	against	typical	UDP-based
services,	the	most	common	of	which	include:

53	DNS
161/162	SNMP
67/68	DHCP
5060	SIP
135	Microsoft	Endpoint	Mapper
137/139	NetBIOS	Name	Service

The	preceding	topics	cover	just	a	sampling	of	the	most	common	scans	used	by
malicious	agents.	Security	analysts	should	research	this	topic	further	to	identify
all	the	types	of	scans	that	may	be	used	to	exploit	their	particular	environment's
vulnerabilities.

OS	fingerprinting
OS	fingerprinting	is	a	technique	wherein	a	remote	machine	sends	various	types
of	commands	to	a	target	device	and	analyzes	the	responses	to	attempt	to	identify
the	target	devices'	operating	system	and	version.	Knowing	which	operating
system	a	device	is	running	makes	it	possible	to	use	exploits	specific	to	that
operating	system.

Nmap	detects	operating	systems	based	on	a	series	of	port	scans,	ICMP	pings,
and	numerous	other	tests,	and	then	runs	a	set	of	follow-up	tests	based	on	the
results	to	further	define	the	OS	version	running.

In	the	following	screenshot,	you	can	see	the	test	results	verbiage	from	the	GUI
version	of	Nmap	(Zenmap)	as	it	completes	an	OS	detection	scan,	as	well	as	its
best	estimate	of	the	operating	system	and	version:	

	

A	Wireshark	capture	of	the	OS	detection	activity	described	earlier	included	as	an
example	of	one	of	the	OS	fingerprinting	scripts	that	are	run,	a	bogus	HTTP
request	to	the	target	device	(172.20.0.1)	for
/nice%20ports%2C/Tri%6Eity.txt%2ebak	to	see	exactly	what	kind	of	error
response	was	generated,	which	is	used	to	help	pinpoint	the	OS	version:	

	

The	exact	format	of	the	HTML	response	from	the	preceding	request	could	be
used	to	identify	the	OS	and/or	web	server	version,	as	seen	in	the	following
Wireshark	packet	details	screenshot:

	

Analyzing	packet	captures	of	these	kinds	of	OS	fingerprinting	requests	and
responses	will	make	it	much	easier	to	spot	similar	activities	from	malicious
entities.

Malformed	packets
Maliciously	malformed	packets	take	advantage	of	vulnerabilities	in	operating
systems	and	applications	by	intentionally	altering	the	content	of	data	fields	in
network	protocols.	These	vulnerabilities	may	include	causing	a	system	crash	(a
form	of	denial	of	service)	or	forcing	the	system	to	execute	the	arbitrary	code.

An	example	of	malformed	packet	vulnerability	is	Cisco	Security	Advisory	cisco-
sa-20140611-ipv6,	wherein	vulnerability	in	parsing	malformed	IPv6	packets	in	a
certain	series	of	routers	could	cause	a	reload	(reboot)	of	a	certain	card	that
carries	network	traffic,	which	could	intermittently	cause	service	outages.

Another	example	of	this	kind	of	vulnerability	is	in	some	unpatched	Windows	or
Linux	systems	that	will	crash	if	they	receive	a	series	of	fragmented	packets
where	the	fragments	overlap	each	other.

The	types	and	possibilities	of	malformed	packets	are	endless,	but	vulnerabilities
are	usually	announced	as	they	are	discovered	and	some	may	provide	packet
details.	You	can	build	display	filters	and/or	build	coloring	rules	in	Wireshark	to
detect	these	packets.	It	also	helps	to	study	and	understand	what	range	of	values
the	different	protocol	fields	normally	and	legally	contain,	and	what	TCP	and
other	protocol	sequences	normally	look	like	so	you	can	spot	suspicious	contents
in	packet	flows.

Phone	home	traffic
Phone	home	traffic	originates	from	a	rogue	application	on	a	device	that
periodically	connects	to	a	remote	(usually	off-network)	host	to	receive	updates
or	commands	or	deliver	data	collected	from	the	infected	host.	The	majority	of
phone	home	traffic	will	be	the	operating	system	and	virus	protection	updates,
Dropbox	or	other	external	services,	and	similar	authorized	and	appropriate
services,	so	it	will	take	some	effort	to	identify	malicious	traffic	out	of	this	mix.

It	is	important	to	understand	the	risk	that	phone	home	traffic	can	represent:	many
botnet	Distributed	Denial	of	Service	(DDoS)	attacks	are	supported	by	a
"zombie	army"	of	hijacked	computers	running	software	that	may	lie	undetected
for	some	period	of	time	except	for	periodic	communications	with	their
Command	and	Control	(C&C)	servers	awaiting	instructions	to	attack	a	target.
In	a	similar	fashion,	keylogging	traffic	will	send	periodic	reports	of	video
screenshots	and	keystroke	data	to	the	collecting	host.

One	way	to	identify	potentially	malicious	phone	home	traffic	is	to	capture	and
inspect	the	DNS	queries	as	these	sessions	start	up,	looking	at	two	distinct	areas:

The	hostname(s)	of	legitimate	services	are	often	reasonably	recognizable.
DNS	queries	for	illegitimate	applications	contacting	C&C	servers	will	often
return	a	long	list	of	aliases	with	IP	addresses	that	are	not	all	in	the	same
general	range	(that	is,	from	all	over	the	world).	A	display	filter	that	helps
identify	DNS	responses	with	long	response	lists	is	dns.count.answers	>
5.

It	also	helps	to	have	a	baseline	that	includes	the	idle	period	traffic	and	a	sample
of	known	updates/services	dialogs	to	compare	a	questionable	capture	to.

Password-cracking	traffic
Password-cracking	traffic	can	be	detected	by	observing	numerous	error
messages	from	a	target	host	directed	to	a	client	that	repeatedly	and
unsuccessfully	attempts	to	log	in.	There	are	two	general	types	of	password
cracking	attempts:

Dictionary	attacks	work	from	a	list	of	common	words,	names,	and	numbers
Brute	force	attacks	use	a	sequence	of	characters,	numbers,	and	key	values

Both	of	these	types	are	often	thwarted	by	login	security	measures	that	lock	out
an	account	after	a	short	number	of	failed	login	attempts.

Unusual	traffic
While	it	is	difficult	to	anticipate	what	methods	a	hacker	may	use	in	an	attempt	to
infiltrate	a	network	or	host,	there	are	a	few	things	that	should	probably	never
happen	on	a	normal,	healthy	network.	Due	to	their	usefulness	in	testing	and
conveying	error	conditions,	ICMP	packets	are	a	likely	target	for	malicious
redirection.	Since	TCP	is	the	predominant	transport	protocol	in	use	for	most
applications,	you	should	look	out	for	abnormalities	in	TCP	headers	or	payloads
that	could	be	a	sign	of	malicious	intent.

Some	examples	of	abnormalities	to	look	out	for	are	discussed	in	the	following
table:

Suspicious
content Description

TCP	bad
flags

An	illegal	or	unlikely	combination	of	TCP	flags.	The	SYN,	SYN/ACK,	ACK,	PSH,	FIN,	and
RST	flags	are	normal	when	they're	used	in	the	appropriate	places;	anything	otherwise
warrants	investigation.

SYN
packet
contains
data

The	initial	TCP	SYN	packet	should	never	contain	payload	data;	it	is	used	to	establish	a
session	only.	Note,	however,	that	the	third	ACK	packet	in	the	TCP	can	contain	data.

Suspicious
datagram
payload
contents

References	to	the	operating	system	or	other	non-application	directories,	strange	executables,
or	other	payload	data	that	doesn't	seem	to	fit	the	purpose	of	the	application	being	used	to	send
the	data.

Suspicious
ping
payload
text

The	text	used	to	fill	in	the	payload	of	an	ICMP	Echo	Request	packet	is	usually	a	benign
sequential	series	of	letters	and	numbers	or	similar	meaningless	text.	If	this	text	appears	to
carry	commands	or	meaningful	data,	it	warrants	investigation.

Clear	text
passwords
in	FTP	or
Telnet
sessions

Seeing	FTP	used	to	transport	sensitive	business	data,	or	Telnet	to	administer	switches	and
routers,	isn't	malicious	intent	by	a	hacker.	It's	negligent	practice	by	employees	as	both
protocols,	by	design,	transmit	clear	text	login	IDs	and	passwords	over	the	network,	making	it
easy	for	even	an	unsophisticated	hacker	to	capture	them.	There	are	Secure	FTP	(sftp)	and
Secure	Shell	(SSH)	(Telnet	alternative)	solutions	for	all	platforms	available	on	the	Web.

Summary
The	topics	covered	in	this	chapter	on	security	analysis	included	detecting	scans
and	sweeps	to	identify	targets	for	planned	attacks,	operating	system
fingerprinting,	detecting	malformed	packets,	and	packets	that	are	suspiciously
fragmented	or	sent	out	of	order,	phone	home	traffic	from	malicious	agents,
identifying	password	cracking	attempts,	and	identifying	other	abnormal	packets
and	payloads.

In	the	next	chapter,	we'll	review	several	key	command-line	utilities	provided	in	a
Wireshark	installation,	as	well	as	a	few	additional	packet	analysis	tools	that	can
complement	your	toolset.

Chapter	8.	Command-line	and	Other
Utilities
Wireshark	includes	a	number	of	command-line	utilities	to	manipulate	packet
trace	files	and	offer	GUI-free	packet	captures,	and	there	are	a	few	other	tools	that
can	help	round	out	your	analysis	toolset.

The	topics	that	will	be	covered	in	this	chapter	include:

Capturing	traffic	with	Dumpcap	and	Tshark
Editing	trace	files	with	Editcap
Merging	trace	files	with	Mergecap
Other	helpful	tools

Wireshark	command-line	utilities
When	you	install	Wireshark,	a	range	of	command-line	tools	also	gets	installed,
including:

capinfos.exe:	This	prints	information	about	trace	files
dumpcap.exe:	This	captures	packets	and	saves	to	a	libpcap	format	file
editcap.exe:	This	splits	a	trace	file,	alters	timestamps,	and	removes
duplicate	packets
mergecap.exe:	This	merges	two	or	more	packet	files	into	one	file
rawshark.exe:	This	reads	a	stream	of	packets	and	prints	field	descriptions
text2pcap.exe:	This	reads	an	ASCII	hex	dump	and	writes	a	libpcap	file
tshark.exe:	This	captures	network	packets	or	displays	data	from	a	saved
trace	file

The	Wireshark.exe	file	launches	the	GUI	version	you're	familiar	with,	but	you
can	also	launch	Wireshark	from	the	command	line	with	a	number	of	parameters;
type	Wireshark	–h	for	a	list	of	options	and/or	create	shortcuts	to	launch
Wireshark	with	any	of	those	options.

Note

It	is	very	helpful	to	add	the	Wireshark	program	directory	to	your	system's	PATH
statement	so	that	you	can	execute	any	of	the	command-line	utilities	from	any
working	directory.

Capturing	traffic	with	Dumpcap
The	dumpcap.exe	file	is	the	executable	that	Wireshark	actually	runs	under	the
covers	to	capture	packets	and	save	them	to	a	trace	file	in	libpcap	format.	You	can
run	Dumpcap	on	the	command	line	to	circumvent	using	the	Wireshark	GUI	and
use	fewer	resources.	A	list	of	command-line	options	is	available	by	typing
dumpcap.exe	-h.

Some	of	the	most	useful	options	are	as	follows:

-D:	This	prints	a	list	of	available	interfaces	and	exits
-i	<interface>:	This	specifies	a	name	or	index	number	of	an	interface	to
capture	on
-f	<capture	filter>:	This	applies	a	capture	filter	in	the	Berkeley	Packet
Filter	(BPF)	syntax
-b	filesize:	This	is	the	file	size
-w	<outfile>:	This	is	the	name	of	the	file	where	the	files	will	be	saved

An	example	of	viewing	a	list	of	interfaces	and	then	running	Dumpcap	to	capture
a	specific	interface	with	an	IP	address	capture	filter	(note	the	use	of	quotes
around	the	filter	syntax)	configured	to	use	a	three-file	ring	buffer	with	file	sizes
of	100	MB	and	an	output	filename	derived	from	capture.pcap	is	illustrated	in
the	following	screenshot:

	

You	can	get	more	information	on	Dumpcap	options	at
https://www.wireshark.org/docs/man-pages/dumpcap.html.

https://www.wireshark.org/docs/man-pages/dumpcap.html

Capturing	traffic	with	Tshark
Tshark	can	be	used	to	capture	network	packets	and/or	display	data	from	the
capture	or	a	previously	saved	packet	trace	file;	packets	can	be	displayed	on	the
screen	or	saved	to	a	new	trace	file.

The	same	syntax	used	to	perform	a	basic	capture	using	Dumpcap	will	work	with
Tshark	as	well,	so	we	won't	repeat	that	here.	However,	Tshark	offers	a	very	wide
range	of	additional	features,	with	a	corresponding	large	number	of	command-
line	options	that	can,	as	in	all	Wireshark	utilities,	be	viewed	by	typing	tshark	–
h	in	the	command	prompt.

A	number	of	Tshark	options	are	to	view	statistics;	an	example	of	the	command
syntax	and	statistical	results	from	a	capture	(after	pressing	Ctrl	+	C	to	end	the
capture)	is	illustrated	in	the	following	screenshot:	

	

You	will	find	an	extensive	number	of	details	and	examples	on	using	statistics
and	other	Tshark	options	at	https://www.wireshark.org/docs/man-
pages/tshark.html.

https://www.wireshark.org/docs/man-pages/tshark.html

Editing	trace	files	with	Editcap
You	can	use	Editcap	to	split	a	trace	file	that	is	too	large	to	work	with	in
Wireshark	into	multiple	smaller	files,	extract	a	subset	of	a	trace	file	based	on	a
start	and	stop	time,	alter	timestamps,	remove	duplicate	packets,	and	a	number	of
other	useful	functions.

Type	editcap	–h	in	the	command	prompt	for	a	list	of	options.	The	syntax	to
extract	a	single	packet	or	a	range	of	packets	by	packet	numbers	is	as	follows:

editcap		–r		<infile>		<outfile>		<packet#>	[-	<packet#>]

You	must	specify	<infile>	and	<outfile>.	The	–r	specifies	to	keep,	not	delete,
the	specified	packet	or	packet	range,	for	example:

editcap		–r		MergedTraces.pcapng			packetrange.pcapng			1-5000

You	can	split	a	source	trace	file	into	multiple	sequential	files,	each	containing	the
number	of	packets	specified	by	the	–c	option:

editcap		–c	5000		MergedTraces.pcapng			SplitTrace.pcapng

You	can	eliminate	duplicate	packets	in	a	file	within	a	five-packet	proximity:

editcap		–d		hasdupes.pcapng		nodupes.pcapng

If	you	have	two	trace	files	that	have	a	significant	span	of	time	between	them,	and
you	want	to	merge	them	into	one	file	but	closer	together,	you	can	investigate	all
of	the	packets	within	one	IO	Graph	or	a	similar	analysis	function;	you	can	first
use	the	–t	option	on	one	of	the	files	to	adjust	the	timestamps	in	that	file	by	a
constant	amount	(in	seconds).	For	example,	to	subtract	5	hours	from	a	trace	file's
timestamps,	use	the	following	command:

editcap		-t		-18000		packetrange.pcapng			adj_packetrange.pcapng

Comparing	the	two	traces	in	Wireshark	reveals	the	following	details:

Packet	#500	before	adjustment:	2014-09-04	15:27:38.696897
Packet	#500	after	adjustment:	2014-09-04	10:27:38.696897

You	can	get	more	information	on	and	examples	of	Editcap	options	at
https://www.wireshark.org/docs/man-pages/editcap.html.

https://www.wireshark.org/docs/man-pages/editcap.html

Merging	trace	files	with	Mergecap
You	can	use	Mergecap	to	merge	two	or	more	trace	files	into	one	file.	The	basic
syntax	is	as	follows:

mergecap	–w	<outfile.pcapng>		infile1.pcapng			infile2.pcapng		…

For	example:

mergecap	–w	merged.pacap			source1.pcapng			source2.pcapng				

source3.pcapng

One	useful	option	you	sometimes	may	want	to	use	in	Mergecap	(and	several	of
the	other	command-line	utilities)	is	–s	<snaplen>.	This	will	truncate	the	packets
at	the	specified	length	past	the	start	of	each	frame,	resulting	in	a	smaller	file;	a
typical	value	for	<snaplen>	is	128	bytes:

mergecap	–w	merged_trimmed.pcapng		-s	128		source1.pcapng		

source2.pcapng

Mergecap	batch	file
If	the	capture	files	you	want	to	merge	have	a	variety	of	naming	formats,	you	can
create	a	MergeTraces.bat	file	containing	the	following	Windows	batch
commands:

@echo	off

cls

echo	MergeTraces.bat

echo.

echo	Merges	multiple	packet	trace	files	with	a	.pcapng	extension	

into	one	.pcapng	file

echo.

echo	Usage:	Copy	MergeTraces.bat	into	the	directory	with	the	.pkt	

files	and	execute

echo	The	utility	will	generate	a	'MergedTraces.pcap'	file	

echo	and	a	'MergedFileList.txt'	file	which	lists	the	.pcapng	files	

processed.

echo.

echo.

echo	IMPORTANT!!	You	must	type	'CMD	/V:ON'	from	this	window	which	

enables	

echo	'Delayed	environment	variable	expansion'	in	order	to	properly	

execute

echo	this	batch	utility.

echo.

echo	You	must	also	add	the	path	to	Wireshark's	mergecap.exe	to	your	

path	statement.

echo.

echo	If	you've	not	done	this,	Type	Ctrl-C	to	exit;	Otherwise

pause

echo.

echo	Deleting	old	MergedFileList.txt...

if	exist	"MergedFileList.txt"	del	MergedFileList.txt

for	%%f	in	(*.pcap-ng)	do	echo	"%%f"	>>	MergedFileList.txt

echo	Deleting	old	MergedTraces.pcapng...

if	exist	"MergedTraces.pcapng"	del	MergedTraces.pcapng

echo	Preparing	to	merge:

echo.

type	MergedFileList.txt

echo.

echo	Merging..........

set	FILELIST=

for	%%f	in	(*.pcap-ng)	do	set	FILELIST=!FILELIST!	%%f

::	DEBUG

::	echo	%FILELIST%

mergecap	-w	MergedTraces.pcapng	%FILELIST%

echo.

if	exist	MergedTraces.pcapng	@echo	Done!

if	NOT	exist	MergedTraces.pcapng	@echo	Error!!	--	Check	your	

settings.

echo.

Copy	the	batch	file	into	a	directory	containing	just	the	packet	trace	files	you
want	to	merge	and	execute	it.	The	batch	file	will	merge	all	the	.pcapng	files	into
one	file	called	MergedTraces.pcapng.	This	is	much	easier	than	trying	to	specify
a	long	list	of	unique	source	files	in	a	command	line,	especially	if	the	filenames
contain	date-time	stamps.	If	you	need	to	work	with	the	.pcap	files,	change	all
instances	of	.pcapng	to	.pcap	in	the	batch	commands;	you	can	also	alter	the
output	filename	as	desired.

Note

You	can	also	merge	trace	files	by	clicking-and-dragging	the	files	into	the
Wireshark	desktop.	The	files	will	be	merged	in	chronological	order	based	on
their	timestamps	after	selecting	Merge	from	the	Wireshark	File	menu.	This
works	reasonably	well	as	long	as	the	total	file	size	doesn't	exceed	1GB.

You	can	get	more	info	and	examples	of	Mergecap	options	at
https://www.wireshark.org/docs/man-pages/mergecap.html.

https://www.wireshark.org/docs/man-pages/mergecap.html

Other	helpful	tools
Wireshark	is	an	extremely	versatile	and	useful	tool.	However,	there	are	some
things	it	doesn't	do	easily	or	at	all,	so	we'll	discuss	a	few	other	tools	you	may
want	to	include	in	your	analysis	toolset.

HttpWatch
HttpWatch	is	a	packet-based	performance	analysis	utility	that	integrates	with
Internet	Explorer	and	Firefox	browsers	to	view	a	graphical	depiction	and
statistical	values	from	HTTP	interactions	between	the	browser	and	websites.
This	kind	of	utility	makes	it	easy	to	discover	and	measure	from	the	user's
perspective	when	significant	delays	are	occurring	and	the	source	of	those	delays.

The	following	screenshot	shows	the	HttpWatch	visual	and	numerical	analysis	by
loading	the	www.wireshark.org	home	page:

	

You	can	get	more	information	about	HttpWatch	from
http://www.httpwatch.com/.	Also,	a	similar	performance	analysis	utility	is
Fiddler,	which	can	be	found	at	http://www.telerik.com/fiddler.

http://www.wireshark.org
http://www.httpwatch.com/
http://www.telerik.com/fiddler

SteelCentral	Packet	Analyzer	Personal
Edition
SteelCentral	Packet	Analyzer	(previously	known	as	Cascade	Pilot)	is	available	in
Standard	and	Personal	Edition	versions.	Unlike	Wireshark,	this	utility	is	able	to
open	and	analyze	multigigabyte	trace	files;	you	can	quickly	isolate	a
conversation	of	interest,	right-click	on	it,	and	save	that	conversation	in	a	separate
packet	trace	file	or	launch	Wireshark	directly	and	pass	that	conversation	to	it
from	the	same	menu.

In	addition,	the	utility	offers	a	variety	of	network	analysis	screens	called	Views
that	provide	graphical	displays	and	reports	on	a	wide	range	of	performance
perspectives.	The	following	screenshot	illustrates	a	set	of	MAC	Overview
Views:

	

You	can	get	more	information	on	the	SteelCentral	Packet	Analyzer	products	at
http://www.riverbed.com/products/performance-management-control/network-
performance-management/packet-analysis.html.

http://www.riverbed.com/products/performance-management-control/network-performance-management/packet-analysis.html

AirPcap	adapters
If	you	are	using	Wireshark	to	analyze	wireless	networks,	you	will	need	a
wireless	adapter	that	provides	the	ability	to	see	all	of	the	available	channels	and
provides	a	Radiotap	Header,	which	offers	additional	information	for	each	frame
such	as	radio	channel	and	signal/noise	strengths.

The	prevalent	wireless	adaptor	for	use	with	Wireshark	or	SteelCentral	Packet
Analyzer	on	Windows	platforms	is	the	Riverbed	AirPcap	adapter,	which	is
available	from	the	Riverbed	website.	The	AirPcap	adapter	plugs	into	a	USB	port
and	includes	drivers	to	integrate	with	Wireshark	and	provide	the	Radiotap
Header	information.	There	are	several	product	models	that	offer	increasing
coverage	of	the	various	WLAN	bands;	AirPcap	Nx	offers	the	widest	coverage.
The	following	image	depicts	two	of	the	available	adapters:

	

You	can	get	more	information	on	the	Riverbed	AirPcap	adapters	at
http://www.riverbed.com/products/performance-management-control/network-
performance-management/wireless-packet-capture.html.

http://www.riverbed.com/products/performance-management-control/network-performance-management/wireless-packet-capture.html

Summary
The	topics	covered	in	this	chapter	included	several	of	Wireshark's	command-line
utilities	to	capture	packets	and	edit	and	merge	packet	trace	files,	as	well	as
several	useful	tools	to	compliment	your	analysis	toolset.

This	is	the	final	chapter	of	this	book	on	Wireshark.	I	hope	you	enjoyed	reading
it,	and	mostly,	I	hope	you	use	it	as	a	foundation	to	become	a	Wireshark	expert!

Part	2.	Module	2
Network	Analysis	Using	Wireshark	Cookbook

Over	80	recipes	to	analyze	and	troubleshoot	network	problems	using
Wireshark

Chapter	1.	Introducing	Wireshark
In	this	chapter	you	will	learn:

Locating	Wireshark
Starting	the	capture	of	data
Configuring	the	start	window
Using	time	values	and	summaries
Configuring	coloring	rules	and	navigation	techniques
Saving,	printing,	and	exporting	data
Configuring	the	user	interface	in	the	Preferences	menu
Configuring	protocols	preferences

Introduction
In	this	chapter,	we	will	cover	the	basic	tasks	related	to	Wireshark.	In	the	Preface
of	this	book,	we	discussed	network	troubleshooting	and	the	various	tools	that
can	help	us	in	the	process.	After	reaching	the	conclusion	that	we	need	to	use	the
Wireshark	protocol	analyzer,	it's	time	to	locate	it	for	testing	in	the	network,	to
configure	it	with	basic	configurations,	and	to	adapt	it	to	be	user	friendly.

While	setting	Wireshark	for	basic	data	capture	is	considered	to	be	very	simple
and	intuitive,	there	are	many	options	that	we	can	use	in	special	cases;	for
example,	when	we	capture	data	continuously	over	a	connection	and	we	want	to
split	the	capture	file	into	small	files,	when	we	want	to	see	names	of	the	devices
participating	in	the	connection	and	not	only	IP	addresses,	and	so	on.	In	this
chapter	we	will	learn	how	to	configure	Wireshark	for	these	special	cases.

Another	important	issue	is	where	to	locate	Wireshark	to	capture	data.	Will	it	be
before	a	firewall	or	after	it?	On	which	side	of	the	router	should	we	connect	it?
On	the	LAN	side	or	on	the	WAN	side?	What	should	we	expect	to	receive	in	each
one	of	them?	All	these	issues	and	more	will	be	covered	in	the	Locating
Wireshark	recipe	in	this	chapter,	along	with	recommendations	on	how	to	do	it.

Another	important	issue	that	will	be	covered	in	this	chapter	is	how	to	configure
time	values,	that	is,	how	you	would	like	Wireshark	to	present	the	arrival	time	of
captured	packets.	This	is	significantly	important	when	we	capture	data	of	time-
sensitive	applications,	when	it	is	important	to	see	the	timing	of	packets	inside	a
TCP	connection	or	a	UDP	flow.

The	next	recipe	will	be	on	file	manipulations,	that	is,	how	to	save	the	captured
data,	whether	we	want	to	save	the	whole	of	it	or	part	of	it,	save	only	filtered	data,
export	that	data	into	various	formats,	merge	files	(for	example,	when	you	want	to
merge	captured	files	on	two	different	router	interfaces),	and	so	on.

One	more	issue	that	will	be	discussed	in	this	chapter	is	how	to	configure
coloring	rules.	That	is,	how	to	configure	Wireshark	to	present	different	packets
and	protocols	in	different	colors.	While	Wireshark	by	default	has	its	coloring
scheme,	we	might	want	to	configure	it	for	special	cases,	for	example,	to	give	a
special	color	to	a	specific	protocol	that	we	monitor	or	to	a	specific	error	or	event

that	we	expect.	The	Configuring	coloring	rules	and	navigation	techniques	recipe
discusses	these	issues.

The	last	two	recipes	of	the	chapter	will	cover	the	configuration	of	the	Wireshark
preferences.	These	recipes	discuss	how	to	configure	the	user	interface,	that	is,	to
configure	the	Wireshark	windows,	the	columns	and	what	to	see	in	each	one	of
them,	text	formats,	and	so	on,	along	with	specific	protocol	configurations;	for
example,	which	TCP	ports	should	be	resolved	by	default	as	a	proxy	service,
whether	or	not	to	validate	a	protocol	checksum,	whether	or	not	to	calculate	TCP
timestamps,	how	to	decode	fields	in	the	protocol	header,	and	so	on.

Locating	Wireshark
After	understanding	the	problem	and	deciding	to	use	Wireshark,	the	first	step
would	be	to	decide	where	to	locate	it.	For	this	purpose,	we	need	to	have	a	precise
network	diagram	(at	least	the	part	of	the	network	that	is	relevant	to	our	test).

The	principle	is	to	locate	the	device	that	you	want	to	monitor,	connect	your
laptop	to	the	same	switch	that	it	is	connected	to,	and	configure	a	port	mirror	or
monitor	to	the	monitored	device.	This	operation	enables	you	to	see	all	traffic
coming	in	and	out	of	the	monitored	device.

You	can	monitor	a	LAN	port,	WAN	port,	server	or	router	port,	or	any	other
device	connected	to	the	network.

	

In	the	preceding	diagram,	the	Wireshark	software	(installed	on	the	PC	on	the
left)	and	the	port	mirror,	also	called	port	monitor	(configured	on	the	switch	in	the
direction	as	in	the	diagram),	will	monitor	all	the	traffic	coming	in	and	out	of
server	S2.	Of	course,	we	can	also	install	Wireshark	directly	on	the	server	itself,
and	by	doing	so,	we	will	be	able	to	watch	the	traffic	directly	on	the	server.

Some	LAN	switch	vendors	also	enable	other	features	such	as:

Monitoring	a	whole	VLAN:	We	can	monitor	a	server's	VLAN,	Telephony
VLAN,	and	so	on.	In	this	case	you	will	see	all	the	traffic	on	a	specific
VLAN.
Monitoring	several	ports	to	a	single	analyzer:	We	can	monitor	traffic	on
servers	S1	and	S2	together.
Filtering:	Filtering	means	choosing	and	accordingly	configuring	whether	to
monitor	incoming	traffic,	outgoing	traffic,	or	both.

Getting	ready
To	start	working	with	Wireshark,	go	to	the	the	Wireshark	website,	and	download
the	latest	version	of	the	tool.

An	updated	version	of	Wireshark	can	be	found	on	the	website	at
http://www.wireshark.org/,	under	the	Download	heading.	Download	the	latest
Wireshark	stable	release	that	is	available	at
http://www.wireshark.org/download.html.

Each	Wireshark	Windows	package	comes	with	the	latest	stable	release	of
WinPcap,	which	is	required	for	live	packet	capture.	The	WinPcap	driver	is	a
Windows	version	of	the	UNIX	Libpcap	library	for	traffic	capture.

http://www.wireshark.org/
http://www.wireshark.org/download.html

How	to	do	it...
Let's	take	a	look	at	the	typical	network	architecture	and	network	devices,	how
they	work,	how	to	configure	them	when	required,	and	where	to	locate
Wireshark.

	

Let's	have	a	look	at	the	simple	and	common	network	architecture	in	the
preceding	diagram.

Monitoring	a	server

This	will	be	one	of	the	most	common	requirements	that	we	will	have.	It	can	be
done	by	either	configuring	the	port	monitor	to	the	server	(numbered	as	1	in	the
preceding	diagram),	or	installing	Wireshark	on	the	server	itself.

Monitoring	a	router

In	order	to	monitor	a	router,	we	can	monitor	a	LAN	port	(numbered	as	2	and	6	in
the	preceding	diagram),	or	a	WAN	port	(numbered	as	5	in	the	preceding
diagram).	To	monitor	a	LAN	port	is	easy—simply	configure	the	port	monitor	to
the	port	you	wish	to	monitor.	In	order	to	monitor	a	WAN	port,	you	can	connect	a
switch	between	the	router	port	and	the	Service	Provider	(SP)	network,	and
configure	the	port	monitor	on	this	switch,	as	in	the	following	illustration.

	

Connecting	a	switch	between	the	router	and	the	service	provider	is	an	operation
that	breaks	the	connection;	however,	when	you	prepare	for	it,	it	should	take	less
than	a	minute.

When	monitoring	a	router,	don't	forget—not	all	packets	coming	in	to	a	router
will	be	forwarded.	Some	packets	can	be	lost,	dropped	on	the	router	buffers,	or
routed	back	on	the	same	port	that	they	came	in	from.

Two	additional	devices	that	you	can	use	are	TAPs	and	Hubs.

TAPs:	Instead	of	connecting	a	switch	on	the	link	you	wish	to	monitor,	you
can	connect	a	device	called	Test	Access	Point	(TAP),	which	is	a	simple
three-port	device	that,	in	this	case,	will	play	the	same	role	as	that	of	the
switch.	The	advantage	of	a	TAP	over	a	switch	is	its	simplicity	and	price.
TAPs	also	forward	errors	that	can	be	monitored	on	Wireshark,	unlike	a

LAN	switch	that	drops	them.	Switches,	on	the	other	hand,	are	much	more
expensive,	take	a	few	minutes	to	configure,	but	provide	you	with	additional
monitoring	capabilities,	for	example,	Simple	Network	Management
Protocol	(SNMP).	When	you	troubleshoot	a	network,	it	is	better	to	have	an
available	managed	LAN	switch,	even	a	simple	one.
Hubs:	You	can	simply	connect	a	hub	in	parallel	to	the	link	you	want	to
monitor,	and	since	a	hub	is	a	half-duplex	device,	every	packet	sent	between
the	router	and	the	SP	device	will	be	watched	on	your	Wireshark.	The
biggest	con	of	this	method	is	that	the	hub	itself	slows	the	traffic,	and	it
therefore	influences	the	test.	In	many	cases	you	also	want	to	monitor	1
Gbps	ports,	and	since	there	is	no	hub	available	for	this,	you	will	have	to
reduce	the	speed	to	100	Mbps,	which	again	will	influence	the	traffic.
Therefore,	hubs	are	not	commonly	used.

Monitoring	a	firewall

When	monitoring	a	firewall,	it	differs	depending	on	whether	you	monitor	the
internal	port	(numbered	3	in	the	diagram)	or	the	external	port	(numbered	4	in	the
diagram).	On	the	internal	port	you	will	see	all	the	internal	addresses	and	all
traffic	initiated	by	the	users	working	in	the	internal	network,	while	on	the
external	port	you	will	see	the	external	addresses	that	we	go	out	with	(translated
by	NAT	from	the	internal	addresses);	you	will	not	see	requests	from	the	internal
network	that	were	blocked	by	the	firewall.	If	someone	is	attacking	the	firewall
from	the	Internet,	you	will	see	it	(hopefully)	only	on	the	external	port.

How	it	works...
To	understand	how	the	port	monitor	works,	it	is	first	important	to	understand	the
way	that	a	LAN	switch	works.	A	LAN	switch	forwards	packets	in	the	following
way:

1.	 The	LAN	switch	continuously	learns	about	the	MAC	addresses	of	the
devices	connected	to	it.

2.	 Now,	if	a	packet	is	sent	to	a	destination	MAC,	it	will	be	forwarded	only	to
the	physical	port	that	the	switch	knows	this	MAC	address	is	coming	from.

3.	 If	a	broadcast	is	sent,	it	will	be	forwarded	to	all	the	ports	of	the	switch.
4.	 If	a	multicast	is	sent	and	Cisco	Group	Management	Protocol	(CGMP)	or

Internet	Group	Management	Protocol	(IGMP)	is	disabled,	it	will	be
forwarded	to	all	the	ports	of	the	switch	(CGMP	and	IGMP	are	protocols	that
enable	multicast	packets	to	be	forwarded	only	to	devices	on	a	specific
multicast	group).

5.	 If	a	packet	is	sent	to	a	MAC	address	that	the	switch	does	not	know	about
(which	is	a	very	rare	case),	it	will	be	forwarded	to	all	the	ports	of	the
switch.

Therefore,	when	you	configure	a	port	monitor	to	a	specific	port,	you	will	see	all
the	traffic	coming	in	and	out	of	it.	If	you	connect	your	laptop	to	the	network,
without	configuring	anything,	you	will	see	only	the	traffic	coming	in	and	out	of
your	laptop,	along	with	broadcasts	and	multicasts	from	the	network.

There's	more...
When	capturing	data,	there	are	some	tricky	scenarios	that	you	should	be	aware
of.

One	such	scenario	is	monitoring	a	VLAN.	When	monitoring	a	VLAN,	you
should	be	aware	of	several	important	issues.	The	first	issue	is	that	even	when
you	monitor	a	VLAN,	the	packet	must	physically	be	transferred	through	the
switch	you	are	connected	to,	in	order	to	see	it.	If,	for	example,	you	monitor
VLAN-10	that	is	configured	across	the	network,	and	you	are	connected	to	your
floor	switch,	you	will	not	see	the	traffic	that	goes	from	other	switches	to	the
servers	on	the	central	switch.

This	is	because	when	building	a	network,	the	users	are	usually	connected	to	floor
switches	in	single	or	multiple	locations	in	the	floor,	that	are	connected	to	the
building	central	switch	(or	two	redundant	switches).	For	monitoring	all	traffic	on
a	VLAN,	you	have	to	connect	to	a	switch	on	which	all	traffic	of	the	VLAN	goes
through,	and	this	is	usually	the	central	switch.

	

In	the	preceding	diagram,	if	you	connect	Wireshark	to	Switch	SW2,	and
configure	a	monitor	to	VLAN30,	you	will	see	all	the	packets	coming	in	and	out
of	P2,	P4,	and	P5,	inside	or	outside	the	switch.	You	will	not	see	packets
transferred	between	devices	on	SW3	and	SW1,	or	packets	between	SW1	and
SW3.

Another	issue	when	monitoring	a	VLAN	is	that	you	might	see	duplicate	packets.
This	is	because	when	you	monitor	a	VLAN,	and	packets	are	going	in	and	out	of
the	VLAN,	you	will	see	the	same	packet	when	it	is	comes	in,	and	then	when	it
goes	out	of	the	VLAN.

You	can	see	the	reason	in	the	following	illustration.	When,	for	example,	S4
sends	a	packet	to	S2,	and	you	configure	the	port	mirror	to	VLAN30,	you	will	see
the	packet	once	when	sent	from	S4	passing	through	the	switch	and	entering	the
VLAN30,	and	then	when	leaving	VLAN30	and	coming	to	S2.

	

See	also
For	information	on	how	to	configure	the	port	mirror,	refer	to	the	vendor's
instructions.	It	can	be	called	port	monitor,	port	mirror,	or	SPAN	(Switched
Port	Analyzer	from	Cisco).

There	are	also	advanced	features	such	as	remote	monitoring	(monitoring	a	port
that	is	not	directly	connected	to	your	switch),	advanced	filtering	(such	as
filtering	specific	MAC	addresses),	and	so	on.	There	are	also	advanced	switches
that	have	capture	and	analysis	capabilities	on	the	switch	itself.	It	is	also	possible
to	monitor	virtual	ports	(for	example,	LAG	or	Ether	channel	groups).	For	all
cases,	refer	to	the	vendor's	specifications.

Starting	the	capture	of	data
In	this	recipe,	we	will	learn	how	to	start	capturing	data,	and	what	we	will	get	in
various	capture	scenarios,	after	we	have	located	Wireshark	in	the	network.

Getting	ready
After	you	install	Wireshark	on	your	computer,	the	only	thing	to	do	will	be	to
start	the	analyzer	from	the	desktop,	program	files,	or	the	quick	start	bar.

When	you	do	so,	the	following	window	will	be	opened	(Version	1.10.2):

How	to	do	it...
You	can	start	the	capture	from	the	upper	bar	Capture	menu,	or	from	the	quick-
launch	bar	with	the	capture	symbol,	or	from	the	center-left	capture	window	on
the	Wireshark	main	screen.	There	are	options	that	you	can	choose	from.

How	to	choose	the	interface	to	start	the	capture

If	you	simply	click	on	the	green	icon,	third	to	the	right,	in	Wireshark	and	start
the	capture,	Wireshark	will	start	the	capture	on	the	default	interface	as
configured	in	the	software	(explained	later	in	the	chapter	in	the	recipe
Configuring	the	user	interface	in	the	Preferences	menu).	In	order	to	choose	the
interface	you	want	to	capture	on,	click	on	the	List	the	available	capture
interfaces	symbol,	and	the	Wireshark	Capture	Interfaces	window	will	open.

	

The	best	way	to	see	which	interface	is	active	is	simply	to	look	at	the	right	of	the
window	of	the	interface	on	which	you	see	the	traffic	running.	There	you	will	see
the	number	of	total	Packets	seen	by	Wireshark,	and	the	number	of	Packets/sec
in	each	interface.

	

In	Wireshark	Version	1.10.2	and	above,	you	can	choose	one	or	more	interfaces
for	the	capture.	This	can	be	helpful	in	many	cases;	for	example,	when	you	have
multiple	physical	NICs,	you	can	monitor	the	port	on	two	different	servers,	two
ports	of	a	router,	or	other	multiple	ports	at	the	same	time.	A	typical	configuration
is	seen	in	the	following	screenshot:	

	
How	to	configure	the	interface	you	capture	data	from

To	configure	the	interface	you	capture	data	from,	choose	Options	from	the
Capture	menu.	The	following	window	will	appear:	

	

In	the	preceding	window	you	can	configure	the	following	parameters:

1.	 On	the	upper	side	of	the	window,	choose	the	interface	you	want	to	capture
the	data	from.

2.	 On	the	left	side	of	the	window,	you	have	the	checkbox	Use	promiscuous
mode	on	all	interfaces.	When	checked,	Wireshark	will	capture	all	the
packets	that	the	computer	receives.	Unchecking	it	will	capture	only	packets
intended	for	the	computer.

3.	 In	some	cases,	when	this	checkbox	is	checked,	Wireshark	will	not	capture
data	in	the	wireless	interface;	so	if	you	start	capturing	data	on	the	wireless

interface	and	see	nothing,	uncheck	it.
4.	 On	the	mid-left	area	of	the	window,	you	have	the	Capture	Files	field.	You

can	write	a	file	name	here,	and	Wireshark	will	save	the	captured	file	under
this	name,	with	extensions	0001,	0002,	and	so	on	under	the	path	you
specify.	This	feature	is	extremely	important	when	capturing	a	large	amount
of	data;	for	example,	when	capturing	data	over	a	heavily-loaded	interface,
or	over	a	long	period	of	time.	You	can	tell	the	software	to	open	a	new	file
after	a	specific	interval	of	time,	file	size,	or	number	of	packets.

5.	 On	the	bottom	left	of	the	window,	you	have	the	area	marked	as	Stop
Capture	Automatically	in	the	preceding	screenshot.	In	this	area,	you	can
tell	the	software	to	stop	capturing	data	after	a	specific	interval	of	time,	file
size,	or	number	of	packets.

6.	 On	the	mid-right	area	of	the	window,	you	can	change	the	Display	option
and	select	the	checkboxes	Update	list	of	packets	in	real	time,
Automatically	scroll	during	live	capture,	and	Hide	capture	info	dialog,
which	close	the	annoying	capture	window	(a	pop	up	that	appears	the
moment	you	start	capture).	In	most	of	the	cases	you	don't	have	to	change
anything	here.

7.	 On	the	bottom	right	of	the	window,	you	configure	the	resolving	options	for
MAC	addresses,	IP	DNS	names,	and	TCP/UDP	port	numbers.	The	last
checkbox,	Use	external	network	name	resolver,	uses	the	system's
configured	name	resolver	(in	most	of	the	cases,	DNS),	to	resolve	network
names.

How	it	works...
Here	the	answer	is	very	simple.	When	Wireshark	is	connected	to	a	wired	or
wireless	network,	there	is	a	software	driver	that	is	located	between	the	physical
or	wireless	interface	and	the	capture	engine.	In	Windows	we	have	the	WinPcap
driver,	in	Unix	platforms	the	Libpcap	driver,	and	for	wireless	interfaces	we	have
the	AirPcap	driver.

There's	more...
In	cases	where	the	capture	time	is	important,	and	you	wish	to	capture	data	on
one	interface	or	more,	and	be	time-synchronized	with	the	server	you	are
monitoring,	you	can	use	Network	Time	Protocol	(NTP)	to	synchronize	your
Wireshark	and	the	monitored	servers	with	a	central	time	source.

This	is	important	in	cases	when	you	want	to	go	through	the	Wireshark	capture
file	in	parallel	to	a	server	logfile,	and	look	for	events	that	are	shown	on	both.	For
example,	if	you	see	retransmissions	in	the	capture	file	at	the	same	time	as	a
server	or	application	error	on	the	monitored	server,	you	will	know	that	the
retransmissions	are	because	of	server	errors	and	not	because	of	the	network.

The	Wireshark	software	takes	its	time	from	the	OS	clock	(Windows,	Linux,	and
so	on)	For	configuring	the	OS	to	work	with	a	time	server,	go	to	the	relevant
manuals	of	the	operating	system	that	you	work	with.

In	Microsoft	Windows7,	configure	it	as	follows:

1.	 Go	the	Control	Panel.
2.	 Choose	Clock,	Language,	and	Region.
3.	 Under	Date	and	Time,	Choose	Set	the	time	and	date	and	change	to	the

Internet	time	tab.
4.	 Click	on	the	Change	Settings	button.
5.	 Change	the	server	name	or	the	IP	address.

Note

In	Microsoft	Windows7	and	later	versions,	there	is	a	default	setting	for	the	time
server.	As	long	as	all	devices	are	tuned	to	it,	you	can	use	it	as	any	other	time
server.

NTP	is	a	network	protocol	used	for	time	synchronization.	When	you	configure
your	network	devices	(routers,	switches,	FWs,	and	so	on)	and	servers	to	the
same	time	source,	they	will	be	time	synchronized	to	this	source.	The	accuracy	of
the	synchronization	depends	on	the	accuracy	of	the	time	server	that	is	measured
in	levels	or	stratums.	The	higher	the	level,	the	more	accurate	it	will	be.	Level	1	is
the	highest.	Usually	you	will	have	levels	2	to	4.

NTP	was	first	standardized	in	RFC	1059	(NTPv1),	and	then	in	RFC	1119
(NTPv2);	the	common	versions	in	the	last	years	are	NTPv3	(RFC1305)	and
NTPv4	(RFC	5905).

You	can	get	a	list	of	NTP	servers	on	various	web	sites,	among	them
http://support.ntp.org/bin/view/Servers/StratumOneTimeServers	and

http://wpollock.com/AUnix2/NTPstratum1PublicServers.htm.

http://support.ntp.org/bin/view/Servers/StratumOneTimeServers
http://wpollock.com/AUnix2/NTPstratum1PublicServers.htm

See	also
You	can	get	more	information	about	Pcap	drivers	at:

For	WinPcap	visit:	http://www.winpcap.org
For	Libpcap	visit:	http://www.tcpdump.org

http://www.winpcap.org
http://www.tcpdump.org

Configuring	the	start	window
In	this	recipe	we	will	see	some	basic	configurations	for	the	start	window.	We
will	talk	about	configuring	the	main	window,	file	formats,	and	viewing	options.

Getting	ready
Start	Wireshark,	and	you	will	get	the	start	window.	There	are	several	parameters
you	can	change	here	in	order	to	adapt	the	capture	window	to	meet	your
requirements:

Toolbars	configuration
Main	window	configuration
Time	format	configuration
Name	resolution
Colorize	packet	list
Auto	scroll	in	live	capture
Zoom
Columns	configuration
Coloring	rules

First,	let's	have	a	look	at	the	toolbars	that	are	used	by	the	software:

	

For	operations	with	the	other	toolbars	as	follows,	which	are	covered	in	the
coming	subsections	in	this	recipe:

Main	Toolbar

Display	Filter	Toolbar
Status	Bar

Main	Toolbar

In	the	main	toolbar	you	have	the	icons	shown	in	the	following	screenshot:	

	

The	five	leftmost	symbols	are	for	capture	operations,	then	you	have	symbols	for
file	operations,	zoom	and	"go	to	packet"	operations,	colorize	and	auto-scroll,
zoom	and	resize,	filters,	preferences,	and	help.

Display	Filter	Toolbar

In	the	filter	toolbar,	you	have	the	following	fields:	

	
Status	Bar

In	the	status	bar	on	the	lower	side	of	the	Wireshark	window,	you	can	see	the	data
shown	in	the	following	screenshot:	

	

In	the	preceding	screenshot	you	can	see	the	following:

Errors	in	the	expert	system
The	option	to	add	a	comment	to	the	file
The	name	of	the	captured	file	(during	capture,	it	will	show	you	a	temporary
name	assigned	by	the	software)
Total	number	of	captured	packets,	displayed	packets	(those	which	are
actually	displayed	on	the	screen),	and	marked	packets	(those	that	you	have
marked).

How	to	do	it...
In	this	part	we	will	go	step	by	step	and	configure	the	main	menu.

Configuring	toolbars

Usually	for	regular	packet	capture,	you	don't	have	to	change	anything.	This	is
different	when	you	want	to	capture	wireless	data	over	the	network	(not	only
from	your	laptop);	you	will	have	to	enable	the	wireless	toolbar,	and	this	will	be
done	by	clicking	on	it	under	the	view	menu,	as	shown	in	the	following
screenshot:

	
Configuring	the	main	window

To	configure	the	main	menu	for	capturing,	you	can	configure	Wireshark	to	show
the	following	windows:

	

In	most	of	the	cases	you	will	not	need	to	change	anything	here.	In	some	cases,
you	can	cancel	the	packet	bytes	when	you	don't	need	to	see	them,	and	you	will
get	more	"space"	for	the	packet	list	and	details.

Name	Resolution

Name	Resolution	is	the	translation	of	layer	2	(MAC	addresses),	layer	3	(IP
addresses),	and	layer	4	(Port	numbers)	into	meaningful	information.

	

In	the	preceding	screenshot,	we	see	the	MAC	address	60:d8:19:c7:8e:73	(from
Hon	Hai	Precision	Ind.,	used	by	Lenovo),	the	website	(that	is,	Packtpub.com),
and	the	HTTP	port	number	(that	is	80).

Colorizing	the	packet	list

Usually	you	start	a	capture	in	order	to	establish	a	baseline	profile	of	what	normal
traffic	looks	like	on	your	network.	During	the	capture,	you	look	at	the	captured
data	and	you	might	find	a	TCP	connection,	IP	or	Ethernet	connectivity	that	are
suspects,	and	you	want	to	see	them	in	another	color.

To	do	so,	right-click	on	the	packet	that	belongs	to	the	conversation	you	want	to
color,	choose	Ethernet,	IP,	or	TCP/UDP	(the	appearance	of	TCP	or	UDP	will
depend	on	the	packet),	and	choose	the	color	for	the	conversation.

In	the	example	you	see	that	we	want	to	color	a	Transport	Layer	Security
(TLS)	conversation.

http://Packtpub.com

	

For	canceling	the	coloring	rule:

1.	 Go	to	the	View	menu.
2.	 In	the	lower	part	of	the	menu,	choose	Reset	Coloring	1-10	or	simply	click

on	Ctrl	+	Space	bar.

Auto	scrolling	in	live	capture

To	configure	Wireshark	to	auto-scroll	the	packets	as	it	captures	them,	do	the
following:

1.	 Go	to	the	View	menu.
2.	 Mark	the	Auto	Scroll	in	Live	Capture	item.
3.	 Zoom

For	zooming	in	and	out:

1.	 Go	to	the	View	menu.
2.	 Click	on	Zoom	In	or	press	Ctrl	+	+	to	zoom	in.

3.	 Click	on	Zoom	Out	or	press	Ctrl	+	-	to	zoom	out.

Using	time	values	and	summaries
Time	format	configuration	is	about	how	the	time	column	(second	from	the	left
on	default	configuration)	will	be	presented.	In	some	scenarios,	there	is	a
significant	importance	given	to	this;	for	example,	in	TCP	connections	that	you
want	to	see	time	intervals	between	packets,	when	you	capture	data	from	several
sources	and	you	want	to	see	the	exact	time	of	every	packet,	and	so	on.

Getting	ready
To	configure	the	time	format,	go	to	the	View	menu,	and	under	Time	Display
Format	you	will	get	the	following	window:

How	to	do	it...
You	can	chose	from	the	following	options:

Date	and	Time	of	Day	(the	first	two	options):	This	will	be	good	to
configure	when	you	troubleshoot	a	network	with	time-dependent	events,	for
example,	when	you	know	about	an	event	that	happens	at	specific	times,	and
you	want	to	look	at	what	happens	on	the	network	at	the	same	time.
Seconds	Since	Epoch:	Time	in	seconds	since	January	1,	1970.	Epoch	is	an
arbitrary	date	chosen	as	a	reference	time	for	a	system,	and	January	1,	1970
was	chosen	for	Unix	and	Unix-like	systems.
Seconds	Since	Beginning	of	Capture:	The	default	configuration.
Seconds	Since	Previous	Captured	Packet:	This	is	also	a	common	feature
that	enables	you	to	see	time	differences	between	packets.	This	can	be	useful
when	monitoring	time-sensitive	traffic	(when	time	differences	between
packets	is	important),	such	as	TCP	connections,	live	video	streaming,	VoIP
calls,	and	so	on.
Seconds	Since	Previous	Displayed	Packet:	This	is	a	useful	feature	that
can	be	used	when	you	configure	a	display	filter,	and	only	a	selected	part	of
the	captured	data	is	presented	(for	example,	a	TCP	stream).	In	this	case,	you
will	see	the	time	difference	between	packets	that	can	be	important	in	some
applications.
UTC	Date	and	Time	of	Day:	Provides	us	with	relative	UTC	time.

The	lower	part	of	the	submenu	provides	the	format	of	the	time	display.	Change	it
only	if	a	more	accurate	measurement	is	required.

You	can	also	use	Ctrl	+	Alt	+	any	numbered	digit	key	on	the	keyboard	for	the
various	options.

How	it	works...
This	is	quite	simple.	Wireshark	works	on	the	system	clock	and	presents	the	time
as	it	is	in	the	system.	By	default	you	see	the	time	since	the	beginning	of	capture.

Configuring	coloring	rules	and
navigation	techniques
Coloring	rules	define	how	Wireshark	will	color	protocols	and	events	in	the
captured	data.	Working	with	the	coloring	rules	will	help	you	a	lot	with	network
troubleshooting,	since	you	are	able	to	see	different	protocols	in	different	colors,
and	you	can	also	configure	different	colors	for	different	events.

Coloring	rules	enable	you	to	configure	new	coloring	rules	according	to	various
filters.	It	will	help	you	to	configure	different	coloring	schemes	for	different
scenarios	and	save	them	in	different	profiles.	In	this	way	you	can	configure
coloring	rules	for	resolving	TCP	issues,	rules	for	resolving	Sip	and	Telephony
problems,	and	so	on.

Tip

You	can	configure	Wireshark	Profiles	in	order	to	save	Wireshark	configuration;
for	example,	predefined	colors,	filters,	and	so	on.	To	do	so,	navigate	to
Configuration	Profiles	from	the	Edit	menu.

Getting	ready
To	start	with	the	coloring	rules,	proceed	as	follows:

1.	 Go	to	the	View	menu.
2.	 On	the	lower	part	of	the	menu,	choose	Coloring	Rules.	You	will	get	the

following	window:

How	to	do	it...
We	will	now	move	on	to	the	coloring	rules:	Click	on	the	New	button,	and	you
will	get	the	following	window:	

	

In	order	to	configure	a	new	coloring	rule,	follow	these	steps:

1.	 In	the	Name	field,	fill	in	the	name	of	the	rule.	For	example,	fill	in	NTP	for
the	Network	Time	Protocol.

2.	 In	the	String	field,	fill	in	the	filter	string,	that	is,	what	you	want	the	rule	to
show	(we	will	talk	about	display	filters	in	Chapter	3,	Using	Display
Filters).	You	can	click	on	the	expression	button	and	get	a	list	of
preconfigured	filters.

3.	 Click	on	the	Foreground	Color	button	and	choose	the	foreground	color	for
the	rule.	This	will	be	the	foreground	color	of	the	packet	in	the	packet	list.

4.	 Click	on	the	Background	Color	button	and	choose	the	background	color
for	the	rule.	This	will	be	the	background	color	of	the	packet	in	the	packet

list.
5.	 Click	on	the	Edit	button	if	you	want	to	edit	an	existing	rule.	You	can	also

either	click	on	the	Import	button	to	import	an	existing	coloring	scheme,	or
click	on	the	Export	rule	for	exporting	the	current	scheme.

Tip

There	is	an	importance	to	the	order	of	the	coloring	rules.	Make	sure	the	order
that	the	coloring	rules	are	in	is	the	order	of	implementation.	For	example,
application	layer	protocols	should	come	before	TCP	or	UDP,	so	that	Wireshark
colors	them	in	their	color	and	not	the	regular	TCP	or	UDP	color.

How	it	works...
Like	many	operations	in	Wireshark,	you	can	configure	various	operations	on	the
data	that	is	filtered.	The	coloring	rules	mechanism	simply	applies	a	coloring	rule
to	a	predefined	filter.

See	also
You	can	find	various	types	of	coloring	schemes	at
http://wiki.wireshark.org/ColoringRules,	along	with	many	other	examples,	in	a
simple	Internet	search.

http://wiki.wireshark.org/ColoringRules

Saving,	printing,	and	exporting	data
In	this	recipe	we	will	talk	about	file	operations	such	as	save,	export,	print,	and
others.

Getting	ready
Start	Wireshark	or	open	a	saved	file.

How	to	do	it...
We	can	save	a	whole	file,	and	export	specific	data	in	various	formats	and	file
types.	In	the	following	paragraphs	we	will	see	how	to	do	it.

To	save	a	whole	file	with	captured	data,	perform	the	following	steps:

1.	 In	the	File	menu,	click	on	Save	(or	press	Ctrl	+	S)	for	saving	the	file	with
its	own	name.

2.	 In	the	File	menu,	click	on	Save	as	(or	press	Shift	+	Ctrl	+	S)	for	saving	the
file	with	a	new	name.

For	saving	a	part	of	a	file,	for	example,	only	the	displayed	data:

1.	 Navigate	to	Export	Specified	Packets	under	the	File	menu.	You	will	get
the	following	window:	

	
At	the	bottom-left	side	of	the	window,	you	will	see	that	you	can	choose	which

part	of	the	data	you	want	to	save.
For	saving	all	the	captured	data,	select	All	packets	and	Captured.
For	saving	only	the	displayed	data,	choose	All	packets	and	Displayed.
For	saving	only	selected	packets	from	the	file	(a	selected	packet	is	simply	a

packet	that	you	clicked	on),	choose	Selected	packet.
For	saving	marked	packets	(that	is,	packets	that	were	marked	by	right-clicking

on	it	in	the	packet	list	window,	and	choosing	the	Marked	packet	toggle	from	the
menu),	choose	Marked	packet.
For	saving	packets	between	two	marked	packets	select	the	First	to	last

marked	option.
For	saving	a	range	of	packets,	select	Range	and	specify	the	range	of	packets

you	want	to	save.

In	the	packet	list	window,	you	can	manually	choose	to	ignore	a	packet.	In	the
Export	window	you	can	choose	to	ignore	these	packets	and	not	save	them.

In	all	the	options	mentioned,	you	can	choose	the	packets	from	the	entire	captured
file,	or	from	the	packets	displayed	on	the	screen	(packets	displayed	on	the	packet
list	after	a	displayed	filter	has	been	applied).

Saving	data	in	various	formats

You	can	save	the	data	captured	by	Wireshark	in	various	formats,	for	further
analysis	with	other	tools.

You	can	save	the	file	in	the	following	formats:

Plain	text	(*.txt):	export	packet	data	into	a	plain	text	ASCII	file.
PostScript	(*.ps):	export	packet	data	into	PostScript	format.
Comma	Separated	Values:	Packet	Summary	(*.csv):	export	packet
summary	into	CSV	file	format,	to	use	it	with	spreadsheet	programs	(such	as
Microsoft	Excel).
C	Arrays	to	Packet	Bytes	(*.c):	export	packet	bytes	into	C-Arrays	so	that
it	can	be	imported	by	C	programs.
PSML	or	XML	Packet	Summary	(*.psml):	export	packet	data	into
PSML,	an	XML-based	format	including	only	the	packet	summary.	Further
details	about	this	format	can	be	found	at	http://www.nbee.org/doku.php?
id=netpdl:psml_specification.
PDML	-	XML	Packet	Details	(*.pdml):	export	packet	data	into	PDM,	an
XML-based	format	including	the	packet	details.	Further	details	about	this
format	can	be	found	at	http://www.nbee.org/doku.php?
id=netpdl:pdml_specification.

To	save	the	file,	select	Export	Packet	Dissections	from	the	File	menu,	and	you
will	get	the	following	window:	

http://www.nbee.org/doku.php?id=netpdl:psml_specification
http://www.nbee.org/doku.php?id=netpdl:pdml_specification

	

In	the	preceding	screenshot,	in	the	marked	box	on	the	left-hand	side,	you	choose
the	packets	you	want	to	save.	The	process	is	the	same	as	in	the	previous	recipe.
In	the	marked	box	on	the	right-hand	side,	you	choose	the	format	of	the	file	to	be
saved.

How	to	print	data

In	order	to	print	data,	click	on	the	Print	button	from	the	File	menu,	and	you	will
get	the	following	window:	

	

In	the	Wireshark	Print	window,	you	have	the	following	choices:

In	the	upper	window,	you	choose	the	file	format	to	be	printed
In	the	lower-left	window,	you	choose	the	packet	to	print	(like	in	the	Export
window)
In	the	lower-right	window,	you	choose	the	format	of	the	printed	data,	and
the	data	panes	to	print	from	the	Wireshark	window:

The	Packet	Summary	pane
The	Packet	Details	pane
The	Packet	Byte	pane

How	it	works...
The	data	can	be	printed	in	a	text	format,	postscript	(for	postscript-aware
printers),	or	to	a	file.	After	configuring	this	window	and	clicking	on	print,	the
regular	printing	window	will	appear	and	you	can	choose	the	printer.

Configuring	the	user	interface	in	the
Preferences	menu
There	are	a	large	number	of	parameters	you	can	change	in	the	Preferences
window,	including	what	data	is	presented,	where	files	are	saved	by	default,	what
is	the	default	interface	that	Wireshark	captures	data	from,	and	many	more.

What	we	will	refer	to	in	this	chapter	are	the	common	parameters	that	when
changed	will	help	us	with	various	capture	scenarios.

Getting	ready
For	configuring	User	Interface,	we	will	choose	the	Preferences	option	from	the
Edit	menu.	You	will	get	the	following	window:

We	will	look	at	the	configuration	of	the	following	parameters:

Columns
Capture
Name	Resolution

How	to	do	it...
In	this	section	we	will	see	how	to	change	parameters	that	will	help	in	working
with	Wireshark.

Changing	and	adding	columns

The	default	columns	that	we	see	in	the	packet	pane	are	the	number,	time,	source
and	destination	addresses,	protocol,	length,	and	information	columns,	as	shown
in	the	following	screenshot:	

	

To	add	a	new	column	to	the	packet	pane:

1.	 You	can	choose	one	of	the	predefined	parameters	to	be	added	as	a	new
column	from	the	Field	type.	Among	these	parameters	are	time	delta,	IP
DSCP	value,	port	numbers,	and	others.

2.	 A	very	important	feature	comes	up	when	you	fill	in	Custom	in	the	field

type.	In	this	case,	you	can	fill	in	any	filter	string	for	Field	name.	You	can,
for	example,	add	the	following:
1.	 Add	the	string	tcp.window_size	to	view	the	TCP	window	size	(that

influences	performance).
2.	 Add	the	string	ip.ttl	to	view	the	IP	TTL	(Time-To-Live)	parameter

of	every	packet.
3.	 Add	rtp.marker	to	view	every	instance	of	a	marker	set	in	an	RTP

packet.
4.	 As	we	will	see	in	the	later	chapters,	this	feature	will	assist	us	a	lot	for

fast	resolutions	of	network	problems.

Changing	the	capture	configuration

There	are	some	parameters	that	can	be	configured	before	capturing	data.	In	the
Preferences	window	choose	the	Capture	menu,	and	the	following	window	will
come	up:	

	

For	changing	the	default	interface	that	the	capture	will	start	from,	just	click	on
the	Edit	button,	and	mark	the	interface	you	would	like	to	be	the	default.	Of
course	you	can	change	it	every	time	you	start	a	new	capture,	this	is	only	the
default.

Configuring	the	name	resolution

Wireshark	supports	Name	Resolution	in	three	layers:

Layer	2:	by	resolving	the	first	part	of	the	MAC	addresses	to	the	vendor
name.	For	example,	14:da:e9	will	be	presented	as	AsusTeckC	(ASUSTeK
Computer	Inc.).
Layer	3:	by	resolving	IP	addresses	to	the	DNS	names.	For	example,
157.166.226.46	will	be	resolved	to	www.edition.cnn.com.
Layer	4:	by	resolving	TCP/UDP	port	numbers	to	port	names.	For	example,
port	80	will	be	resolved	as	HTTP,	and	port	53	as	DNS.

	
Tip

In	TCP	and	UDP,	there	is	a	meaning	only	to	the	destination	port	that	the	client
initially	opens	the	session	to.	The	source	port	that	the	connection	is	opened	from
is	a	random	number	(higher	than	1024),	and	therefore	there	is	no	meaning	to	its
translation	to	a	port	name.

The	Wireshark	default	is	to	resolve	layer-2	MAC	addresses	and	layer-4
TCP/UDP	port	numbers.	Resolving	IP	addresses	can	slow	down	Wireshark	due
to	a	large	amount	of	DNS	queries	that	it	uses;	therefore,	use	it	carefully.

http://www.edition.cnn.com

How	it	works...
Very	simple.	This	is	the	configuration	menu	for	the	Wireshark.	Here	you	can
configure	parameters	as	described	in	this	recipe,	along	with	some	other
parameters.	You	can	refer	to	Wireshark	manuals	at	www.wireshark.org	for
further	information.

http://www.wireshark.org

Configuring	protocol	preferences
Configuring	protocol	preferences	provides	us	with	capabilities	to	change	the	way
that	Wireshark	captures	and	presents	common	protocols.	In	this	recipe	we	will
learn	how	to	configure	the	most	common	protocols.

Getting	ready
1.	 Go	to	Preferences	under	the	Edit	menu,	and	you	will	see	the	following

window:	

	
Click	on	the	+	sign	on	the	left	side	of	the	protocols,	and	a	protocol	list	will	be

opened.	Under	the	protocol	list	you	will	find	the	common	and	lesser-common
protocols.	In	this	part	we	will	talk	about	the	common	configurations,	and	we'll
get	into	protocol	details	in	the	protocols	chapters	that	is,	Chapter	7,	Ethernet,
LAN	Switching,	and	Wireless	LAN,	to	Chapter	14,	Understanding	Network
Security.

How	to	do	it...
In	this	recipe,	we	will	talk	about	the	following	basic	protocols	(basic	means	that
they	are	used	everywhere,	not	that	they	are	simple):

IPv4	and	IPv6
TCP	and	UDP

Configuring	of	IPv4	and	IPv6	Preferences

When	you	choose	to	configure	the	IPv4	or	IPv6	parameters,	you	will	get	the
following	window:	

	

The	parameters	that	you	may	change	are:

Decode	IPv4	ToS	field	as	DiffServ	Field:	the	original	IP	protocol	came	out
with	a	field	called	Type	Of	Service	(ToS),	for	enabling	the	IP	quality	of
service	through	the	network.	In	the	early	90s	the	Differentiated	Services
(DiffServ)	standard	changed	the	way	that	an	IP	device	looked	on	this	field.
Unchecking	this	checkbox	will	show	this	field	as	in	the	original	IP	standard.
Enable	GeoIP	lookups:	GeoIP	is	a	database	that	enables	Wireshark	to
present	IP	addresses	as	geographical	locations.	Enabling	this	feature	in	IPv4
and	IPv6	will	enable	this	presentation.	This	feature	involves	name
resolutions	and	can	therefore	slow	down	packet	capture	in	real	time.

Configuring	TCP	and	UDP

In	UDP,	there	is	not	much	to	change.	A	very	simple	protocol,	with	a	very	simple

configuration.	In	TCP	on	the	other	hand,	there	are	some	parameters	that	can	be
changed.

	

Most	of	the	changes	you	can	do	in	the	TCP	preferences	are	in	the	way	that
Wireshark	dissects	the	captured	data.

Validate	the	TCP	checksum	if	possible:	in	some	NICs,	you	may	see	many
"checksum	errors".	This	is	due	to	the	fact	that	TCP	Checksum	offloading	is
often	being	implemented	on	some	NICs.	The	problem	here	might	be	that
the	NIC	actually	adds	the	checksum	AFTER	Wireshark	captures	the	packet,
so	if	you	see	many	TCP	checksum	errors,	the	first	thing	to	do	will	be	to
disable	this	checkbox	and	verify	that	this	is	not	the	problem.
Analyze	TCP	Sequence	numbers:	this	checkbox	must	be	checked	for
Wireshark	to	provide	TCP	analysis,	which	is	one	of	its	main	and	most
important	features.
Relative	Sequence	Numbers:	when	TCP	opens	a	connection,	it	starts	from
a	random	sequence	number.	When	this	checkbox	is	checked,	the	Wireshark
will	normalize	it	to	"0",	so	what	you	will	see	are	not	the	real	numbers,	but
numbers	starting	from	"0"	and	increasing.	In	most	of	the	cases	the	relative
numbers	are	much	easier	to	handle.
Calculate	conversations	timestamps:	When	checking	this	checkbox,	the
TCP	dissector	will	show	you	the	time	since	the	beginning	of	the	connection

in	every	packet.	This	can	be	helpful	in	cases	of	very	fast	connection	when
times	are	critical.

How	it	works...
Using	the	Protocols	feature	from	the	Preferences	menu	adds	more	analysis
capabilities	to	the	Wireshark	software.	Just	be	careful	here	to	not	add	too	many
capabilities	that	will	slow	down	the	packet	capture	and	analysis.

There's	more...
You	can	get	more	information	on	GeoIP	at
http://wiki.wireshark.org/HowToUseGeoIP.

http://wiki.wireshark.org/HowToUseGeoIP

Chapter	2.	Using	Capture	Filters
In	this	chapter,	we	will	cover	the	following	topics:

Configuring	capture	filters
Configuring	Ethernet	filters
Configuring	hosts	and	networks	filters
Configuring	TCP/UDP	and	port	filters
Configuring	compound	filters
Configuring	byte-offset	and	payload	matching	filters

Introduction
In	the	first	chapter	we	talked	about	how	to	install	Wireshark,	how	to	configure	it
for	basic	operations,	and	where	to	locate	it	in	the	network.	In	this	chapter	and	the
next	one	we	will	talk	about	capture	filters	(Chapter	2,	Using	Capture	Filters)	and
display	filters	(Chapter	3,	Using	Display	Filters).

It	is	important	to	distinguish	between	these	two	types	of	filters:

Capture	filters	are	configured	before	we	start	to	capture	data,	so	only	data
that	is	approved	with	the	filters	will	be	captured.	All	other	data	will	be	lost.
These	filters	are	described	in	this	chapter.
Display	filters	are	filters	that	filter	data	after	it	has	been	captured.	In	this
case,	all	data	is	captured,	and	you	configure	what	data	you	wish	to	display.
These	filters	are	described	in	Chapter	3,	Using	Display	Filters.

Tip

Capture	filters	are	based	on	the	tcpdump	syntax	presented	in	the
libpcap/WinPcap	library,	while	the	display	filters	syntax	was	presented	some
years	later.	Therefore,	keep	in	mind	that	the	display	and	capture	filters	have
different	syntaxes!

In	some	cases,	you	need	to	configure	Wireshark	to	capture	only	a	part	of	the	data
that	it	sees	over	the	interface,	for	example,	cases	such	as:

When	there	is	a	large	amount	of	data	running	over	the	monitored	link,	and
you	want	to	capture	only	the	data	you	care	about
When	you	want	to	capture	data	only	going	in	and	out	of	a	specific	server	on
a	VLAN	that	you	monitor
When	you	want	to	capture	data	only	of	a	specific	application	or	applications
(for	example,	you	suspect	that	there	is	a	DNS	problem	in	the	network,	and
you	want	to	analyze	only	DNS	queries	and	responses	that	go	to	and	from
the	Internet)

There	are	many	other	cases	in	which	you	want	to	capture	only	specific	data	and
not	all	that	runs	on	your	network.	When	using	the	capture	filters,	only	predefined
data	will	be	captured,	and	all	other	packets	will	be	ignored,	so	you	will	get	only
the	desired	data.

Tip

Be	careful	when	using	capture	filters.	In	many	cases	in	networking,	there	are
dependencies	between	different	applications	and	servers	that	you	are	not	always
aware	of;	so,	when	you	use	Wireshark	with	capture	filters	for	troubleshooting	a
network,	make	sure	that	you	don't	filter	out	some	of	the	connections	that	will
cause	some	problems	to	disappear.	A	common	and	simple	example	of	this	is	to
filter	only	traffic	on	TCP	port	80	for	monitoring	suspected	slow	HTTP
responses,	while	the	problem	could	be	due	to	a	slow	or	non-responsive	DNS
server	that	you	will	not	see.

In	this	chapter	we	will	describe	how	to	configure	simple,	structured,	byte	offset,
and	payload	matching	capture	filters.

Configuring	capture	filters
We	recommend	that	before	configuring	a	capture	filter,	you	will	carefully	design
what	you	want	to	capture,	and	prepare	your	filter	for	this.	Don't	forget—what
doesn't	pass	the	filter,	will	be	lost.

There	are	some	Wireshark	predefined	filters	that	you	can	use,	or	you	can
configure	it	yourself	as	described	in	the	next	recipe.

Getting	ready
For	configuring	capture	filters,	open	Wireshark,	and	follow	the	steps	in	the
recipe.

How	to	do	it...
For	configuring	capture	filters	before	starting	with	the	capture,	go	through	the
following	steps:

1.	 For	configuring	a	capture	filter,	click	on	the	Show	the	capture	options…
button,	second	from	the	left,	as	shown	in	the	following	screenshot:	

The	Wireshark:	Capture	Options	window	will	open	as	you	see	in	the
following	screenshot:	

Double-click	on	the	interface	on	which	you	want	to	configure	the	capture	filter
(you	can	verify	which	interface	is	the	active	one,	as	described	in	Chapter	1,
Introducing	Wireshark).
The	Edit	Interface	Settings	window	will	open	up,	as	in	the	following

screenshot:	

Now,	we	can	configure	the	capture	filters	by	simply	writing	the	filter	string	in
the	Wireshark:	Capture	Filter	window,	or	click	on	the	Capture	Filter:	button;
the	following	window	will	open:	

How	it	works...
The	Wireshark:	Capture	Filter	window	enables	you	to	configure	filters
according	to	Berkeley	Packet	Filter	(BPF).	After	writing	a	filter	string,	you	can
click	on	the	Compile	BPF	button,	and	the	BPF	compiler	will	check	your	syntax,
and	if	it's	wrong	you	will	get	an	error	message.

In	addition	to	this,	when	you	type	a	filter	string	in	the	capture	filter	text	box,	and
the	filter	string	is	correct,	it	will	become	green,	and	if	not,	it	will	become	red.

The	BPF	filter	only	checks	if	the	syntax	is	right.	It	does	not	check	if	the
condition	is	correct.	For	example,	if	you	type	the	string	host	without	any
parameter,	you	will	get	an	error	and	the	string	will	become	red,	but	if	you	type
host	192.168.1.1000,	it	will	pass	and	the	window	will	become	green.

Tip

BPF	is	a	syntax	coming	from	the	paper	The	BSD	Packet	Filter:	A	New
Architecture	for	User-level	Packet	Capture	by	Steven	McCanne	and	Van
Jacobson	from	the	Lawrence	Berkeley	Laboratory	at	Berkeley	University	from
December	1992.	The	document	can	be	seen	at:
http://www.tcpdump.org/papers/bpf-usenix93.pdf.

Capture	filters	are	made	out	of	a	string	containing	a	filtering	expression.	This
expression	selects	the	packets	which	will	be	captured	and	which	packets	will	be
ignored.	Filter	expressions	consist	of	one	or	more	primitives.	Primitives	usually
consist	of	an	identifier	(name	or	number)	followed	by	one	or	more	qualifiers.
There	are	three	different	kinds	of	qualifiers:

Type:	These	qualifiers	say	what	kind	of	thing	the	identifier	name	or	number
refers	to.	Possible	types	are	host	for	host	name	or	address,	net	for	network,
port	for	TCP/UDP	port,	and	so	on.
Dir	(direction):	These	qualifiers	specify	a	particular	transfer	direction	to
and/or	from	ID.	For	example	src	indicates	source,	dst	indicates
destination,	and	so	on.
Proto	(protocol):	These	are	the	qualifiers	that	restrict	the	match	to	a
particular	protocol.	For	example,	ether	for	Ethernet,	ip	for	Internet
Protocol,	arp	for	Address	Resolution	Protocol,	and	so	on.

http://www.tcpdump.org/papers/bpf-usenix93.pdf

Identifiers	are	the	actual	condition	that	we	test.	Identifier	can	be	the	address
10.0.0.1,	port	number	53,	or	network	address	192.168.1	(this	is	an	identifier	for
network	192.168.1.0/24).

For	example,	in	the	filter	tcp	dst	port	135,	we	have:

dst	is	the	dir	qualifier
port	is	the	type	qualifier
tcp	is	the	Proto	qualifier

There's	more...
You	can	configure	different	capture	filters	on	different	interfaces:	

	

This	can	be	used	when	you	capture	traffic	on	two	interfaces	of	a	device,	and
want	to	check	for	different	packets	on	the	two	sides.

The	capture	filters	are	stored	in	a	file	named	cfilters	under	the	Wireshark
directory.	In	this	file	you	will	find	the	predefined	filters,	along	with	the	filters
you	have	configured,	and	you	will	be	able	to	copy	the	file	to	other	computers.
The	location	of	this	directory	will	change	depending	on	how	Wireshark	is
installed	and	on	what	platform.

See	also
1.	 The	Wireshark	Capture	Filters	are	based	on	the	tcpdump	program.	You	can

find	the	reference	at	http://www.tcpdump.org/tcpdump_man.html.
2.	 You	can	also	find	helpful	information	on	the	Wireshark	manual	pages	at

http://wiki.wireshark.org/CaptureFilters.

http://www.tcpdump.org/tcpdump_man.html
http://wiki.wireshark.org/CaptureFilters

Configuring	Ethernet	filters
When	talking	about	Ethernet	filters,	we	refer	to	Layer-2	filters	that	are	MAC
address-based	filters.	In	this	recipe	we	will	refer	to	these	filters	and	what	we	can
do	with	them.

Getting	ready
The	basic	Layer	2	filters	are:

ether	host	<Ethernet	host>:	To	get	the	Ethernet	address
ether	dst	<Ethernet	host>:	To	get	the	Ethernet	destination	address
ether	src	<Ethernet	host>:	To	get	the	Ethernet	source	address
ether	broadcast:	To	capture	all	Ethernet	broadcast	packets
ether	multicast:	To	capture	all	Ethernet	multicast	packets
ether	proto	<protocol>:	To	filter	only	the	protocol	type	indicated	in	the
protocol	identifier
vlan	<vlan_id>:	To	pass	only	packets	from	a	specific	VLAN	that	is
indicated	in	the	identifier	field

For	negating	a	filter	rule,	simply	type	the	word	not	or	!	in	front	of	the	primitive.
For	example:

Not	ether	host	<Ethernet	host>	or	!	Ether	host	<Ethernet	host>	will
capture	packets	that	are	not	from/to	the	Ethernet	address	specified	in	the
identifier	field.

How	to	do	it...
Let's	look	at	the	following	diagram,	in	which	we	have	a	server,	PCs,	and	a	router,
connected	to	a	LAN	switch.	Wireshark	is	running	on	the	laptop	connected	to	the
LAN	switch,	with	port	mirror	to	the	entire	switch	(to	VLAN1).

The	/24	notation	in	the	drawing	refers	to	a	subnet	mask	of	24	bits,	that	is,
11111111.11111111.11111111.00000000	in	binary	or	255.255.255.0	in	decimal.

	

Follow	the	instructions	in	the	Configuring	capture	filters	recipe,	and	configure
filters	as	follows:

1.	 To	capture	packets	only	from/to	a	specific	MAC	address,	for	example	of
PC3	in	the	preceding	image,	configure	ether	host	00:24:d6:ab:98:b6.

2.	 To	capture	packets	going	to	a	destination	MAC	address,	for	example	of	PC3
in	the	preceding	image,	configure	ether	dst	00:24:d6:ab:98:b6.

3.	 To	capture	packets	coming	from	a	source	MAC	address,	for	example	of

PC3	in	the	preceding	image,	configure	ether	src	00:24:d6:ab:98:b6.
4.	 To	capture	broadcast	packets,	configure	ether	broadcast	or	ether	dst

ff:ff:ff:ff:ff:ff.
5.	 To	capture	multicast	packets,	configure	ether	multicast.
6.	 To	capture	a	specific	Ether	Type	(number	in	Hexadecimal	value),	configure

ether	proto	0800.

How	it	works…
The	way	capture	filters	work	with	source	host	and	destination	host	is	simple—
the	capture	engine	simply	compares	the	condition	with	the	actual	MAC
addresses,	and	passes	only	what	is	relevant.

A	broadcast	address	is	an	address	in	which	the	destination	address	is	all	1's,	that
is,	ff:ff:ff:ff:ff:ff:ff,	therefore	when	you	configure	a	broadcast	filter,	only
these	addresses	will	pass	the	filter.	Broadcast	addresses	can	be:

L3	IPv4	broadcast	that	is	converted	to	L2	broadcast;	for	example,	IP	packet
to	10.0.0.255	(class	C	subnet,	as	in	the	previous	illustration),	which	will	be
converted	to	L2	broadcast	in	the	destination	MAC	field.
A	network-related	broadcast;	for	example,	IPv4	ARP	(Address	Resolution
Protocol)	that	sends	a	broadcast	as	a	part	of	network	operation.

Tip

Network-related	broadcasts	are	broadcasts	that	are	sent	for	the	regular	operation
of	the	network.	Among	these	are	ARPs,	routing	updates,	discovery	protocols,
and	so	on.

In	a	multicast	filter,	there	are	IPv4	and	IPv6	multicasts:

In	IPv4,	a	multicast	MAC	address	is	transmitted	when	the	MAC	address
starts	with	the	string	01:00:5e.	Every	packet	with	a	MAC	address	that
starts	with	this	string	will	be	considered	a	multicast.
In	IPv6,	a	multicast	address	is	transmitted	when	the	MAC	address	starts
with	the	string	33:33.	Every	packet	with	a	MAC	address	that	starts	with	this
string	will	be	considered	a	multicast.

Ethernet	protocol	refers	to	the	ETHER-TYPE	field	in	the	Ethernet	packet	that
indicates	what	will	be	the	upper	Layer	protocol.	Common	values	here	are	0800
for	IPv4,	86dd	for	IPv6,	and	0806	for	ARP.

There's	more...
To	configure	filter	for	a	specific	VLAN,	use	vlan	<vlan	number>
To	configure	filter	on	several	VLANs,	use	vlan	<vlan	number>	and	vlan
<vlan	number>	and	vlan	<vlan	number>…

See	also
There	are	around	a	hundred	ETHER-TYPE	codes,	most	of	them	not	in	use.	You
can	refer	to	http://www.mit.edu/~map/Ethernet/Ethernet.txt	for	additional	codes,
or	simply	browse	the	Internet	for	Ethernet	code.

http://www.mit.edu/~map/Ethernet/Ethernet.txt

Configuring	host	and	network	filters
When	talking	about	host	and	network	filters,	we	refer	to	Layer	3	filters	that	are
IP	address-based	filters.	In	this	recipe	we	will	refer	to	these	filters	and	what	we
can	do	with	them.

Getting	ready
The	basic	Layer	3	filters	are:

ip	or	ip6:	To	capture	IP	or	IPv6	packets.
host	<host>:	To	get	host	name	or	address.
dst	host	<host>:	To	get	destination	host	name	or	address.
src	host	<host>:	To	get	source	host	name	or	address.

Tip

Host	can	be	an	IP	address	or	a	host	name	related	with	this	number.	You	can
type,	for	example,	a	filter	host	www.packtpub.com	that	will	show	you	all
packets	to/from	the	IP	address	related	to	the	Packt	website.

gateway	<Host	name	or	address>:	It	captures	traffic	to	or	from	the
hardware	address	but	not	to	the	IP	address	of	the	host.	This	filter	captures
traffic	going	through	the	specified	router.	This	filter	requires	a	host	name
that	is	used	and	can	be	found	by	the	local	system's	name	resolution	process
(for	example,	DNS).
net	<net>:	All	packets	to	or	from	the	specified	IPv4/IPv6	network.
dst	net	<net>:	All	packets	to	the	specified	IPv4/IPv6	destination	network.
src	net	<net>:	All	packets	to	the	specified	IPv4/IPv6	destination	network.
net	<net>	mask	<netmask>:	All	packets	to/from	the	specific	network	and
mask.	This	syntax	is	not	valid	for	the	IPv6	network.
dst	net	<net>	mask	<netmask>:	All	packets	to/from	the	specific	network
and	mask.	This	syntax	is	not	valid	for	the	IPv6	network.
src	net	<net>	mask	<netmask>:	All	packets	to/from	the	specific	network
and	mask.	This	syntax	is	not	valid	for	the	IPv6	network.
net	<net>/<len>:	All	packets	to/from	the	<net>	network	with	<len>
length	in	bits.
dst	net	<net>/<len>:	All	packets	to/from	the	<net>	network	with	<len>
length	in	bits.
dst	net	<net>/<len>:	All	packets	to/from	the	<net>	network	with	<len>
length	in	bits.
broadcast:	All	broadcast	packets.
multicast:	All	multicast	packets.
ip	proto	<protocol	code>:	It	captures	packets	while	the	IP	protocol	field

http://www.packtpub.com

equals	to	the	<protocol>	identifier.	There	can	be	various	protocols,	such	as,
TCP	(Code	6),	UDP	(Code	17),	ICMP	(Code	1),	and	so	on.
ip6	proto	<protocol>:	It	captures	IPv6	packets	with	protocol	as	indicated
in	the	type	field.	Note	that	this	primitive	does	not	follow	the	IPv6	extension
headers	chain.

Tip

In	IPv6	header,	there	is	a	field	in	the	header	that	can	point	to	an	optional
extension	header,	which	points	to	the	next	extension	header,	and	so	on.	In
the	current	version,	Wireshark	capture	filter	does	not	follow	this	structure.

icmp[icmptype]==<identifier>:	It	captures	ICMP	packets,	while	the
identifier	is	ICMP	codes,	such	as	icmp-echo	and	icmp-request.

How	to	do	it...
Follow	the	instructions	mentioned	in	the	Configure	capture	filters	recipe,	and
configure	filters	as	follows:

1.	 For	capturing	packets	to/from	host	10.10.10.1,	configure	host
10.10.10.1.

2.	 For	capturing	packets	to/from	host	at	www.cnn.com,	configure	host
www.cnn.com.

3.	 For	capturing	packets	to	host	10.10.10.1,	configure	dst	host
10.10.10.1.

4.	 For	capturing	packets	from	host	10.10.10.1,	configure	src	host
10.10.10.1.

5.	 For	capturing	packets	to/from	network	192.168.1.0/24,	configure	net
192.168.1	or	net	192.168.1.0	mask	255.255.255.0	or	net
192.168.1.0/24.

6.	 For	capturing	all	data	without	broadcasts	or	without	multicasts,	configure
not	broadcast	or	not	multicast.

7.	 For	capturing	packets	to/from	the	IPv6	network	2001::/16,	configure	net
2001::/16.

8.	 For	capturing	packets	to	IPv6	host	2001::1,	configure	host	2001::1.
9.	 For	capturing	only	ICMP	packets,	configure	ip	proto	1.
10.	 For	filtering	only	ICMP	Echo's	pings,	you	can	use	ICMP	messages	or

message	codes.	configure	icmp[icmptype]==icmp-echo	or
icmp[icmptype]==8.

http://www.cnn.com

How	it	works…
For	host	filtering,	when	you	type	a	host	name,	Wireshark	will	translate	the	name
to	an	IP	address,	and	capture	packets	that	refer	to	this	address.	For	example,	if
you	configure	a	filter	host	www.cnn.com,	it	will	be	translated	by	a	name
resolution	service	(mostly	DNS)	to	an	IP	address,	and	will	show	you	all	packets
going	to	and	from	this	address.	Note	that	in	this	case,	if	CNN	website	will
forward	you	to	other	websites	on	other	addresses,	only	packets	to	the	first
address	will	be	captured.

http://www.cnn.com

There's	more...
Some	more	useful	filters:

ip	multicast:	IP	multicast	packets
ip	broadcast:	IP	broadcast	packets
ip[2:2]	==	<number>:	IP	packet	size
ip[8]	==	<number>:	TTL	(Time	To	Live)	value
ip[9]	==	<number>:	Protocol	value
(ip[12:4]	=	ip[16:4]):	IP	source	equal	to	IP	destination	address
ip[2:2]==<number>:	Total	length	or	IP	packet
ip[9]	==	<number>:	Protocol	identifier

These	filters	are	further	explained	in	the	Configuring	byte	offset	and	payload
matching	filters	recipe	at	the	end	of	this	chapter.	The	principle,	as	illustrated	in
the	following	diagram,	is	that	the	first	number	in	the	brackets	defines	how	many
bytes	are	from	the	beginning	of	the	protocol	header,	and	the	second	number
indicates	how	many	bytes	to	watch.

	

See	also
For	more	filters,	refer	to	the	tcpdump	manual	pages	at
http://www.tcpdump.org/tcpdump_man.html.

http://www.tcpdump.org/tcpdump_man.html

Configuring	TCP/UDP	and	port
filters
In	this	recipe	we	will	present	Layer	4	TCP/UDP	port	filters	and	how	we	can	use
them	with	capture	filters.

Getting	ready
The	basic	Layer	4	filters	are:

port	<port>:	When	the	packet	is	a	Layer	4	protocol,	such	as	TCP	or	UDP,
this	filter	will	capture	packets	to/from	the	port	indicated	in	the	identifier
field
dst	port	<port>:	When	the	packet	is	a	Layer	4	protocol,	such	as	TCP	or
UDP,	this	filter	will	capture	packets	to	the	destination	port	indicated	in	the
identifier	field
src	port	<port>:	When	the	packet	is	a	Layer	4	protocol,	such	as	TCP	or
UDP,	this	filter	will	capture	packets	to	the	source	port	indicated	in	the
identifier	field

The	port-range	matching	filters	are:

tcp	portrange	<p1>-<p2>	or	udp	portrange	<p1>-<p2>:	TCP	or	UDP
packets	in	the	port	range	of	p1	to	p2
tcp	src	portrange	<p1>-<p2>	or	udp	src	portrange	<p1>-<p2>:	TCP
or	UDP	packets	in	the	source	port	range	of	p1	to	p2
tcp	dst	portrange	<p1>-<p2>	or	udp	src	portrange	<p1>-<p2>:	TCP
or	UDP	packets	in	the	destination	port	range	of	p1	to	p2

How	to	do	it...
Follow	the	instructions	in	the	Configuring	capture	filters	recipe,	and	configure
filters	as	follows:

1.	 To	capture	packets	to	port	80	(HTTP),	configure	dst	port	80	or	dst	port
http.

2.	 To	capture	packets	to	or	from	port	5060	(SIP),	configure	port	5060.
3.	 To	capture	packets	to	or	from	port	5060	(SIP),	configure	port	5060.
4.	 To	capture	the	start	(SYN	flag)	and	end	(FIN	flag)	packets	of	all	TCP

connections,	configure	tcp[tcpflags]	&	(tcp-syn|tcp-fin)	!=	0.

Tip

In	tcp[tcpflags]	&	(tcp-syn|tcp-fin)	!=	0,	it	is	important	to	note	that
this	is	a	bitwise	and	operation,	not	a	logical	and	operation.	For	example,
010	or	101	equals	111,	and	not	000.

5.	 To	capture	all	TCP	packets	with	RST	(Reset)	flag	set	to	1,	configure
tcp[tcpflags]	&	(tcp-rst)	!=	0.

6.	 Length	filters	are	configured	in	the	following	way:
less	<length>:	It	captures	only	packets	with	length	less	than	or	equal
to	length	identifier.	This	is	equivalent	to	len	<=	<length>.
greater	<length>:	It	captures	only	packets	with	length	greater	than
or	equal	to	length	identifier.	This	is	equivalent	to	<len	>=	length>.

For	example,
tcp	portrange	2000-2500

udp	portrange	5000-6000

Port	range	filters	can	be	used	for	protocols	that	work	in	a	range	of	ports	rather
than	specific	ones.

How	it	works…
Layer	4	protocols,	mostly	TCP	and	UDP,	are	the	protocols	that	connect	between
end	applications.	The	end	node	on	one	side	(for	example,	a	web	client)	sends	a
message	to	the	other	side	(for	example,	a	web	server),	requesting	to	connect	to	it.
The	codes	of	the	processes	that	send	the	request	and	the	processes	that	receive
the	request	are	called	port	numbers.	Further	discussion	on	this	issue	is	provided
in	Chapter	9,	UDP/TCP	Analysis.

Both	in	TCP	and	UDP,	the	port	numbers	indicate	the	application	codes.	The
difference	between	them	is	that	TCP	is	a	connection-oriented,	reliable	protocol,
while	UDP	is	a	connectionless	unreliable	protocol.	There	is	an	additional	Layer
4	protocol	called	Stream	Control	Transport	Protocol	(SCTP)	that	you	can
refer	to	as	an	advanced	version	of	TCP,	which	also	uses	port	numbers.

TCP	flags	are	sent	in	packets	in	order	to	establish,	maintain,	and	close
connections.	A	signal	is	set	when	a	specific	bit	in	the	packet	is	set	to	1.	The	most
common	flags	that	are	in	use	are:

SYN:	A	signal	sent	in	order	to	open	a	connection
FIN:	A	signal	sent	in	order	to	close	a	connection
ACK:	A	signal	sent	to	acknowledge	received	data
RST:	A	signal	sent	for	immediate	close	of	a	connection
PSH:	A	signal	sent	for	pushing	data	for	processing	by	the	end	process
(application)

Using	capture	filters	you	can	filter	packets	to/from	specific	applications,	along
with	filtering	packets	with	specific	flags	turned	on.

There's	more...
Some	problematic	scenarios	(mostly	attacks…)	are:

tcp[13]	&	0x00	=	0:	No	flags	set	(null	scan)
tcp[13]	&	0x01	=	1:	FIN	set	and	ACK	not	set
tcp[13]	&	0x03	=	3:	SYN	set	and	FIN	set
tcp[13]	&	0x05	=	5:	RST	set	and	FIN	set
tcp[13]	&	0x06	=	6:	SYN	set	and	RST	set
tcp[13]	&	0x08	=	8:	PSH	set	and	ACK	not	set

In	the	following	diagram	you	can	see	how	it	works.	tcp[13]	is	the	number	of
bytes	from	the	beginning	of	the	protocol	header,	when	the	values	0,1,3,5,6,	and	8
refer	to	the	flag	locations.

	

See	also
A	deeper	description	of	UDP	and	TCP	is	provided	in	Chapter	9,	UDP/TCP
Analysis.

Configuring	compound	filters
Structure	filters	are	simply	made	for	writing	filters	out	of	several	conditions.	It
uses	simple	conditions,	such	as	not,	and,	and	or	for	creating	structured
conditions.

Getting	ready
Structured	filters	are	written	in	the	following	format:

[not]	primitive	[and|or	[not]	primitive	...]

The	following	modifiers	are	commonly	used	in	the	Wireshark	capture	filters:

!	or	not
&&	or	and
||	or	or

How	to	do	it...
To	configure	structured	filters,	you	simply	write	the	conditions	according	to
what	we	learned	in	the	previous	recipes,	with	conditions	to	meet	your
requirements.

Some	common	filters	are:

1.	 For	capturing	only	unicast	packets,	configure	not	broadcast	and	not
multicast.

2.	 For	capturing	HTTP	packets	to	www.youtube.com,	configure	host
www.youtube.com	and	port	80.

3.	 A	capture	filter	for	telnet	that	captures	traffic	to	and	from	a	particular	host,
configures	tcp	port	23	and	host	192.180.1.1.

4.	 For	capturing	all	telnet	traffic	not	from	192.168.1.1,	configure	tcp	port
23	and	not	src	host	192.168.1.1.

http://www.youtube.com

How	it	works…
Some	examples	for	structured	filters:

For	capturing	data	to	tcp	port	23	(Telnet)	from	source	port	range	of	5000-6000,
configure	tcp	dst	port	23	and	tcp	src	portrange	5000-6000.

There's	more...
Some	interesting	examples	are	as	follows:

host	www.mywebsite.com	and	not	(port	80	or	port	23)

host	192.168.0.50	and	not	tcp	port	80

host	10.0.0.1	and	not	host	10.0.0.2

See	also
For	more	examples,	you	can	take	a	look	at:

http://www.packetlevel.ch/html/tcpdumpf.html
http://www.packetlevel.ch/html/txt/tcpdump.filters

http://www.packetlevel.ch/html/tcpdumpf.html
http://www.packetlevel.ch/html/txt/tcpdump.filters

Configuring	byte	offset	and	payload
matching	filters
Byte	offset	and	payload	matching	filters	come	to	provide	us	with	a	flexible	tool
for	configuring	self-defined	filters	(filters	for	fields	that	are	not	defined	in	the
Wireshark	dissector	and	filters	for	proprietary	protocols).	By	understanding	the
protocols	that	we	work	with	and	understanding	their	packet	structure,	we	can
configure	filters	that	will	watch	a	specific	string	in	the	captured	packets,	and
filter	packets	according	to	it.	In	this	recipe	we	will	learn	how	to	configure	these
types	of	filters,	and	we	will	also	see	some	common	and	useful	examples	of	the
subject.

Getting	ready
To	configure	byte	offset	and	payload	matching	filters,	start	Wireshark	and	follow
the	instructions	in	the	Configuring	capture	filters	recipe	in	the	beginning	of	this
chapter.

How	to	do	it...
1.	 String	matching	filters	comes	to	check	a	specific	string	in	the	packet	header.

It	comes	in	the	following	format:

proto	[Offset:	bytes]

With	this	filter	we	can	create	filters	for	strings	over	IP,	TCP,	and	UDP.
For	IP	string-matching	filters	you	can	create	the	following	filter:

ip	[Offset:Bytes]

For	matching	application	data,	that	is,	to	look	into	the	application	data	that	is
carried	by	TCP	or	UDP,	the	most	common	uses	of	it	are:	tcp[Offset:Bytes]	Or
udp[Offset:Bytes].

How	it	works…
The	general	structure	of	offset	filter	is:

proto	[Offset	in	bytes	from	the	start	of	the	header	:	Number	of	

bytes	to	check]

Common	examples	for	string	matching	filters	are:

1.	 For	filtering	destination	TCP	ports	between	50	and	100,	configure
(tcp[2:2]	>	50	and	tcp[2:2]	<	100).

Here	we	count	two	bytes	from	the	beginning	of	the	TCP	header,	and	check
the	next	two	bytes	to	be	lower	than	100	and	higher	than	50.

	
2.	 For	checking	TCP	window	size	smaller	then	8192,	configure	tcp[14:2]	<

8192.

Here	we	count	two	bytes	from	the	beginning	of	the	TCP	header,	and	check
the	next	two	bytes	(the	window	size)	to	be	less	than	8192.

	

There's	a	nice	string-matching	capture	filter	generator	in
http://www.wireshark.org/tools/string-cf.html

http://www.wireshark.org/tools/string-cf.html

There's	more...
You	can	also	see	additional	filters	in	the	tcpdump	man	pages:

1.	 To	print	all	IPv4	HTTP	packets	to	and	from	port	80,	(that	is	to	print	only
packets	that	contain	data,	not,	for	example,	SYN,	FIN	or	ACK-only
packets),	configure	the	following	filter:	tcp	port	80	and	(((ip[2:2]	-
((ip[0]&0xf)<<2))	-	((tcp[12]&0xf0)>>2))	!=	0).

2.	 To	print	the	start	and	end	packets	(the	SYN	and	FIN	packets)	of	each	TCP
conversation	that	involves	a	non-local	host,	configure	tcp[tcpflags]	&
(tcp-syn|tcp-fin)	!=	0	and	not	src	and	dst	net	<localnet>.

3.	 To	print	IP	broadcast	or	multicast	packets	that	were	not	sent	via	Ethernet
broadcast	or	multicast,	configure	ether[0]	&	1	=	0	and	ip[16]	>=	224.

4.	 To	print	all	ICMP	packets	that	are	not	echo	requests/replies	(that	is,	not	ping
packets),	configure	icmp[icmptype]	!=	icmp-echo	and	icmp[icmptype]
!=	icmp-echoreply.

See	also
There	is	a	string	calculator	at	http://www.wireshark.org/tools/string-cf.html.

It	doesn't	always	provide	working	results,	but	it	might	be	a	good	place	to
start	from.
Another	interesting	blog	can	be	found	on
http://www.packetlevel.ch/html/txt/byte_offsets.txt.

http://www.wireshark.org/tools/string-cf.html
http://www.packetlevel.ch/html/txt/byte_offsets.txt

Chapter	3.	Using	Display	Filters
In	this	chapter	you	will	learn	the	following:

Configuring	display	filters
Configuring	Ethernet,	ARP,	host,	and	network	filters
Configuring	TCP/UDP	filters
Configuring	specific	protocol	filters
Configuring	substring	operator	filters
Configuring	macros

Introduction
In	this	chapter	we	will	learn	how	to	work	with	display	filters.	Display	filters	are
filters	that	we	apply	after	capturing	data	(filtered	by	capture	filters	or	not),	and
when	we	wish	to	display	only	part	of	the	data.

Display	filters	can	be	implemented	in	order	to	locate	various	types	of	data:

Parameters	such	as	the	IP	address,	TCP	or	UDP	port	numbers,	URLs,	and
server	names
Conditions	such	as	"packet	length	shorter	than..."	and	the	TCP	port	range
Phenomena	such	as	TCP	retransmissions,	duplicate	and	other	types	of
ACKs,	various	protocol	error	codes,	and	flag	existence
Various	applications	parameters	such	as	Short	Message	Service	(SMS)
source	and	destination	numbers	and	Server	Message	Block	(SMB)	server
names

Any	data	that	is	sent	over	the	network	can	be	filtered,	and	when	filtered,	you	can
create	statistics	and	graphs	according	to	it.

As	we	will	describe	in	the	recipes	in	this	chapter,	there	are	various	ways	to
configure	display	filters:	from	predefined	menus,	from	the	packet	pane,	or	by
writing	the	syntax	directly.

Tip

While	using	display	filters,	don't	forget	that	all	the	data	was	already	captured	and
the	display	filters	only	decide	what	to	display.	Therefore,	after	filtering	data,	the
capture	file	still	contains	the	original	data	that	was	captured.	You	may	later	save
the	complete	data	or	only	the	displayed	data.

Configuring	display	filters
In	order	to	configure	display	filters,	you	can	choose	one	of	the	several	options:

Choosing	from	the	filters	menus
Writing	the	syntax	directly	into	the	display	filter	window	(while	working
with	Wireshark;	after	a	while	this	will	become	your	favorite)
Choosing	a	parameter	in	the	packet	pane	and	defining	it	as	a	filter
Using	tshark	or	wireshark	with	command	line	;	this	will	be	discussed	in
Appendix

This	chapter	discusses	the	first	three	options.

Getting	ready
In	general,	a	display	filter	string	takes	the	form	of	a	series	of	primitive
expressions	connected	by	conjunctions	(and,	or,	or	something	else)	and
optionally	preceded	by	not:	[not]	Expression	[and|or]	[not]
Expression...

While	Expression	can	be	any	filter	expression,	such	as	ip.src==192.168.1.1
for	the	source	address,	tcp.flags.syn==1	for	TCP	SYN	flag	presence,	and
tcp.analysis.retransmission	for	TCP	retransmissions,	and|or	are
conjunctions	that	can	be	used	in	any	combinations	of	expression,	including
brackets,	multiple	brackets,	and	any	lengths	of	strings.

There	are	several	conditions	to	these.	They	can	be	one	of	the	following:

C-like
Syntax Shortcut Description Example

== eq Equal ip.addr	==	192.168.1.1	or	ip.addr	eq	192.168.1.1

!= ne Not	equal !ip.addr==192.168.1.1,	ip.addr	!=	192.168.1.1,	or
ip.addr	ne	192.168.1.1

> gt Greater	than frame.len	>	64

< lt Less	than frame.len	<	1500

>= ge Greater	than	or	equal
to

frame.len	>=	64

<= le Less	than	or	equal	to frame.len	<=	1500

is
present

A	parameter	is
present

http.response

contains Contains	a	string http.host	contains	cisco

matches A	string	matches	the http.host	matches	www.cisco.com

condition

You	can	insert	a	space	character	between	parameters	and	operators	or	leave	it
without	spaces.

Wireshark	colorizes	the	display	filter	area	in	yellow	whenever	you	use	the	!=
operator	for	combined	expressions	such	as	eth.addr,	ip.addr,	tcp.port,	and
udp.port,	but	this	will	not	work	due	to	the	following	reason.

When	you	type	a	filter	expression	such	as	ip.addr	!=	192.168.1.100,	you	will
see	The	packet	contains	the	field	ip.addr	with	a	value	different	from
192.168.1.100.	Because	an	IP	datagram	contains	both	a	source	and	a	destination
address,	the	expression	will	evaluate	to	true	whenever	at	least	one	of	the	two
addresses	differs	from	192.168.1.100.	For	this	reason	you	should	write	!
(ip.addr	==	192.168.1.100);	this	will	display	Show	me	all	the	packets	for
which	it	is	not	true	that	a	field	ip.addr	have	the	value	of	1.2.3.4.

There	are	several	operators.	They	can	be	as	follows:

C-like
Syntax Shortcut Description Example

&& and Logical
AND

ip.src==10.0.0.1	and	tcp.flags.syn==1

All	SYN	flags	sent	from	IP	address	10.0.0.1	practically	and	all
connections	opened	(or	tried	to	be	opened)	from	10.0.0.1.

|| or Logical	OR ip.addr==10.0.0.1	or	ip.addr==10.0.02

All	the	packets	going	in	or	out	the	two	IP	addresses.

! not Logical
NOT

not	arp	and	not	icmp

All	the	packets	that	are	neither	ARP	nor	ICMP.

How	to	do	it...
To	configure	display	filters,	you	can	choose	any	one	of	the	methods	mentioned
earlier.

Choosing	from	the	filters	menu

For	choosing	from	the	filters	menu,	navigate	to	the	display	filter	pane	on	the
upper	side	of	the	window	and	click	on	the	Expression...	button	as	you	see	in	the
following	screenshot:	

	

When	you	click	on	the	Expression...	button,	the	following	window	will	open:	

	

There	are	five	important	panes	in	the	filters	menu:

Field	name:	In	this	pane	you	configure	the	filter	parameter.	You	can	go	to
the	protocol	by	typing	its	name,	and	get	to	the	protocol	parameter	by
clicking	on	the	+	sign	to	the	left	of	the	list.

One	example	for	this	would	be:	type	ipv4	to	get	to	the	IPv4	protocol,	click
on	the	+	sign	to	expand	the	protocol	parameters	(or	press	Enter	twice)	and
choose	ip.addr	to	filter	a	specific	IP	address.

Another	example	would	be	to	type	tcp	to	get	to	the	TCP	protocol,	click	on
the	+	sign	to	the	left	of	the	protocol	parameter	and	choose	tcp.port	for	the
source	or	destination	port	number.
Relation:	This	is	the	pane	from	where	you	choose	the	operator.	You	can
choose	==	for	equal,	!=	for	not	equal,	and	so	on.

An	example	for	this	would	be:	type	sip	to	get	to	the	SIP	protocol,	choose

sip.Method,	and	choose	==	from	the	Relation	pane.	Type	invite	in	the
Value	(Protocol)	pane.	This	will	filter	all	the	SIP	INVITE	methods.
Value:	Here	you	enter	the	value	of	the	field	that	you	have	chosen	before.

An	example	for	this	would	be:	type	tcp	to	get	to	the	TCP	protocol,	click	on
the	+	sign	to	go	to	the	protocol	parameter,	choose	tcp.flags.syn	for	the	TCP
SYN	flag,	and	enter	1	in	the	Value	field.
Predefined	values:	When	the	value	of	the	field	you	chose	is	not	Boolean,
there	might	be	a	list	of	options	in	this	field.

An	example	for	this	would	be:	under	TCP,	there	is	an	option	named
tcp.option_kind.	This	option	is	related	to	TCP	options	(for	more	details,
refer	to	Chapter	9,	UDP/TCP	Analysis).	You	will	get	a	list	of	values	that	are
possible.
Range	(offset:	length):	This	field	provides	you	the	length	of	the	string	in
the	offset:length	format.

Writing	the	syntax	directly	into	the	display	filter	window

After	you	get	used	to	the	display	filters	syntax,	you	may	find	it	easier	to	type	the
filter	string	directly	into	the	filter	window:	

	

In	this	case,	when	you	write	a	filter	string	into	the	window,	the	window	will	light
up	in	one	of	the	following	three	colors:

Green:	This	is	when	the	filter	is	correct	and	you	can	apply	it.
Red:	This	indicates	a	wrong	string.	Fix	the	string	before	you	apply	it.
Yellow:	Whenever	you	use	the	!=	operator,	the	display	filter	area	will	turn

yellow.	It	doesn't	mean	your	filter	will	not	work,	it	is	just	a	warning	that	it
may	not	work.

Choosing	a	parameter	in	the	packet	pane	and	defining	it	as	a	filter

This	is	a	very	convenient	option.	You	can	choose	any	field	from	the	packet	detail
pane	in	the	captured	file;	right-click	on	it	and	you	will	get	a	few	options,	as
illustrated	in	the	following	screenshot:	

	

A	couple	of	options	are	as	follows:

Apply	as	Filter:	This	will	set	a	filter	according	to	the	field	you	choose	and
apply	it	to	the	captured	data.
Prepare	a	Filter:	This	will	prepare	a	filter	but	not	apply	it.	It	will	be
applied	when	you	click	on	the	Apply	button	on	the	right-hand	side	of	the
filter	window.

In	both	the	options,	you	can	choose	to	configure	a	filter:

Selected:	This	will	choose	the	selected	field	and	parameter
Not	Selected:	This	will	choose	the	the	field	and	parameter	that	are	not
selected

For	example,	right-clicking	on	the	field	http.request.method	and	choosing
Selected	will	come	with	the	filter	string	http.request.method	==	GET;	while,
choosing	Not	Selected	will	come	with	the	string	!(http.request.method	==
"GET").

You	can	also	choose	the	options	...	and	selected,	...	or	selected,	...	and	not
selected,	or	...	or	not	selected	for	structured	filters.

How	it	works...
The	display	filter	is	a	proprietary	Wireshark	language.	There	are	many	places
where	display	filters	can	be	used	that	will	be	discussed	in	the	later	chapters.
Additional	filters	will	be	introduced	in	the	upcoming	recipes	of	this	chapter.

You	can	always	use	the	autocomplete	feature	to	complete	filter	strings.	For
example,	if	you	type	in	tcp.f,	as	shown	in	the	following	screenshot,	the
autocomplete	feature	lists	possible	display	filter	values	that	can	be	created
beginning	with	tcp.f,	that	is,	TCP	flags	(SYN,	FIN,	RST,	and	so	on).

	

There's	more...
Now	we	will	cover	some	additional	helpful	features.

What	is	the	parameter	we	filter?

Anytime	you	mark	a	specific	field	in	the	packet	details	pane,	you	will	see	the
correlating	filter	string	in	the	status	bar	at	the	bottom-left	corner	of	the
Wireshark	window.

	
Adding	a	parameter	column

You	can	also	right-click	on	a	parameter	in	the	packet	pane	and	choose	Apply	as
Column.	This	will	add	a	column	with	the	specific	parameter.	For	example,	you
can	choose	the	parameter	tcp.window_size_value	and	add	it	as	a	column	to	the
packet	list	pane,	so	you	will	be	able	to	watch	the	TCP	window	size	online.	This
influences	TCP	performance,	as	we	will	learn	in	Chapter	9,	UDP/TCP	Analysis.

Saving	the	displayed	data

To	save	the	displayed	data,	you	can	navigate	to	File	|	Export	Specified
Packets...	and	choose	which	packets	to	save.

	

Configuring	Ethernet,	ARP,	host,	and
network	filters
In	this	recipe	we	will	discuss	how	to	configure	filters	of	layers	2	and	3,	that	is,
Ethernet-	and	IP-based	filters	respectively.	We	will	also	discuss	Address
Resolution	Protocol	(ARP)	filters.

Getting	ready
In	layer	2	we	will	configure	Ethernet-based	filters,	while	in	layer	3	we	will
configure	IP-based	filters.	In	Ethernet	we	have	filters	based	on	the	Ethernet
frame	and	the	MAC	address,	while	in	IP	we	have	filters	based	on	the	IP	packet
and	address.

The	common	frame	delta	filters	are	as	follows:

frame.time_delta:	This	is	used	for	the	time	delta	between	the	current	and
previously	captured	frames;	this	will	be	used	in	statistical	graphs	displayed
in	Chapter	5,	Using	Advanced	Statistics	Tools
frame.time_delta_displayed:	This	is	used	for	the	time	delta	between
current	and	previously	displayed	frames;	this	will	be	used	in	statistical
graphs	displayed	in	Chapter	5,	Using	Advanced	Statistics	Tools

Since	the	time	between	frames	can	influence	TCP	performance	significantly,	we
will	use	the	frame.time_delta	parameters	in	statistical	graphs	for	monitoring
TCP	performance.

The	common	layer	2	(Ethernet)	filters	are	as	follows:

eth.addr	==	<MAC	Address>:	This	is	used	to	display	a	specific	MAC
address
eth.src	==	<MAC	Address>:	This	is	used	to	get	the	source	MAC	address
eth.dst	==	<MAC	Address>:	This	is	used	to	get	the	destination	MAC
address
eth.type	==	<Protocol	Type	(Hexa)>:	This	is	used	to	get	the	Ethernet
protocol	types

The	common	ARP	filters	are	as	follows:

arp.opcode	==	<value>:	This	is	used	for	ARP	requests/responses
arp.src.hw_mac	==	<MAC	Address>:	This	is	used	to	capture	the	ARP
address	of	the	sender

The	common	layer	3	(IP)	filters	are	as	follows:

ip.addr	==	<IP	Address>:	This	is	used	to	get	the	source	or	destination	IP

address
ip.src	==	<IP	Address>:	This	is	used	to	get	the	source	IP	address
ip.dst	==	<IP	Address>:	This	is	used	to	get	the	destination	IP	address
ip.ttl	==	<value>,	ip.ttl	<	value>,	or	ip.ttl	>	<value>:	This	is	used
to	get	IP	TTL	(Time	To	Live)	values
ip.len	=	<value>,	ip.len	>	<value>,	or	ip.len	<	<value>:	This	is	used
to	get	IP	packet	length	values
ip.version	==	<4/6>:	This	is	used	to	get	the	IP	protocol	version	(Version
4	or	Version	6)

How	to	do	it...
Here	we	will	see	some	common	examples	for	layer	2	and	3	filters.

Address	format Syntax Example

Ethernet	(MAC)
address

eth.addr	==

xx:xx:xx:xx:xx:xx

Here,	x	=	0	to	f.

eth.addr	==	00:50:7f:cd:d5:38

eth.addr	==	xx-xx-xx-xx-

xx-xx

Here,	x	=	0	to	f.

eth.addr	==	00-50-7f-cd-d5-38

eth.addr	==

xxxx.xxxx.xxxx

Here	x	=	0	to	f.

eth.addr	==	0050.7fcd.d538

Broadcast	MAC
address

Eth.addr	==

ffff.ffff.ffff

IPv4	host
address

ip.addr	==	x.x.x.x

Here,	x	=	0	to	255.

Ip.addr	==	192.168.1.1

IPv4	network
address

ip.addr	==	x.x.x.x/y

Here	x	=	0	to	255,	y	=	0	to	32.

ip.addr	==	192.168.200.0/24

This	covers	all	the	addresses	in	the	network
192.168.200.0	mask	255.255.255.0.

IPv6	host
address

ipv6.addr	==

x:x:x:x:x:x:x:x

ipv6.addr	==	x::x:x:x:x

Here	in	the	format	of	nnnn,	n
=	0	to	f	(Hex).

ipv6.addr	==	fe80::85ab:dc2e:ab12:e6c7

IPv6	network
address

ipv6.addr	==	x::/y

Here	x	=	0	to	f	(Hex)	and	y	=
0	to	128.

ipv6.addr	==	fe80::/16

This	covers	all	the	addresses	that	start	with	the	16	bits
fe80.

The	table	refers	to	ip.addr	and	ipv6.addr	filter	strings.	The	value	for	any	field
that	has	an	IP	address	value	can	be	written	the	same	way.

Ethernet	filters

These	are	classified	into	two	categories:

To	display	only	packets	sent	from	or	to	specific	MAC	addresses,	use
something	like	these:	eth.src	==	10:0b:a9:33:64:18	and	eth.dst	==
10:0b:a9:33:64:18

To	display	only	broadcasts,	use	Eth.dst	==	ffff.ffff.ffff
ARP	filters

These	are	classified	into	two	categories:

To	display	only	ARP	requests,	use	arp.opcode	==	1
To	display	only	ARP	responses,	use	arp.opcode	==	2

IP	and	ICMP	filters
To	display	only	packets	from	a	specific	IP	address,	use	something	like	this:
ip.src	==	10.1.1.254

To	display	only	packets	that	are	not	from	a	specific	address,	use	something
like	this:	!ip.src	==	64.23.1.1
To	display	only	packets	between	two	hosts,	use	something	like	these:
ip.addr	==	192.168.1.1	and	ip.addr	==	200.1.1.1
To	display	only	packets	that	are	sent	to	multicast	IP	addresses,	use
something	like	this:	ip.dst	==	224.0.0.0/4
To	display	only	packets	coming	from	the	network	192.168.1.0/24	(mask
255.255.255.0),	use	ip.src==192.168.1.0/24
To	display	only	IPv6	packets	to/from	specific	addresses,	use	something	like
the	following:

ipv6.addr	==	::1

ipv6.addr	==	2008:0:130F:0:0:09d0:666A:13ab

ipv6.addr	==	2006:0:130f::9c2:876a:130b

ipv6.addr	==	::

Complex	filters
To	check	for	packets	sent	from	the	network	10.0.0.0/24	to	a	website	that

contains	the	word	packt,	use	ip.src	==	10.0.0.0/24	and	http.host
contains	"packt"

To	check	for	packets	sent	from	the	network	10.0.0.0/24	to	websites	that	end
with	.com,	use	ip.addr	==	10.0.0.0/24	and	http.host	matches
"\.com$"

To	check	for	all	the	broadcasts	from	the	source	IP	address	10.0.0.0,	use
ip.src	==	10.0.0.0/24	and	eth.dst	==	ffff.ffff.ffff
To	check	for	all	the	broadcasts	that	are	not	ARP	requests,	use	not	arp	and
eth.dst	==	ffff.ffff.ffff

To	check	for	all	the	packets	that	are	not	ICMP,	use	!arp	||	!icmp,	and	to
check	for	all	the	packets	that	are	not	ARP,	use	not	arp	or	not	icmp

How	it	works...
Here	are	some	explanations	to	the	filters	we	saw	in	the	How	to	do	it...	section	of
this	recipe.

Ethernet	broadcasts

In	Ethernet,	broadcasts	are	packets	that	are	sent	to	addresses	with	all	1s	in	the
destination	field	and	this	is	why,	to	find	all	broadcasts	in	the	network,	we	insert
the	filter	eth.dst	==	ffff.ffff.ffff.

IPv4	multicasts

IPv4	multicasts	are	packets	that	are	sent	to	an	address	in	the	address	range
224.0.0.0	to	239.255.255.255	that	is	in	binary	of	the	address	range
11100000.00000000.00000000.00000000	to
11101111.11111111.11111111.11111111.

If	you	look	at	the	binary	representation,	a	destination	multicast	address	is	an
address	that	starts	with	three	1s	and	a	0,	and	therefore,	a	filter	to	IPv4	multicast
destinations	will	be	ip.dst	==	224.0.0.0/4.	That	is,	an	address	that	starts	with
four	1s	(224),	and	a	subnet	mask	of	4	bits	(/4)	will	indicate	a	network	address
ranger	from	224	to	239	that	will	filter	multicast	addresses.

IPv6	multicasts

IPv6	multicasts	are	packets	that	are	sent	to	an	address	that	starts	with	ff	(first	two
hex	digits	=	ff),	then	one-digit	flags,	and	scope.	Therefore	when	we	write	the
filter	ipv6.dst	==	ff00::/8,	it	means	to	display	all	the	packets	in	IPv6	that	are
sent	to	an	address	that	starts	with	the	string	ff,	that	is,	IPv6	multicasts.

See	also
For	more	information	on	Ethernet,	refer	to	Chapter	7,	Ethernet,	LAN
Switching,	and	Wireless	LAN

Configuring	TCP/UDP	filters
TCP	and	UDP	are	the	main	protocols	in	layer	4	that	provide	connectivity
between	end	applications.	Whenever	you	start	an	application	from	one	side	to
another,	you	start	the	session	from	a	source	port,	usually	a	random	number	equal
or	higher	than	1,024,	and	connect	to	a	destination	port,	which	is	a	well-known	or
registered	port	that	waits	for	the	session	on	the	other	side.	These	are	the	port
numbers	that	identify	the	application	that	works	over	the	session.

Other	types	of	filters	refer	to	other	fields	in	the	UDP	and	TCP	headers.	In	UDP
we	have	a	very	simple	header	with	very	basic	data,	while	in	TCP	we	have	a	more
complex	header	that	we	can	get	much	more	information	from.

In	this	recipe	we	will	concentrate	on	the	possibilities	while	configuring	TCP	and
UDP	display	filters.

Getting	ready
As	done	earlier,	we	should	plan	precisely	what	we	want	to	display	and	prepare
the	filters	accordingly.

For	TCP	or	UDP	port	numbers	use	the	following	display	filters:

tcp.port	==	<value>	or	udp.port	==	<value>:	This	is	used	for	specific
TCP	or	UDP	ports	(source	or	destination)
tcp.dstport	==	<value>	or	udp.dstport	==	<value>:	This	is	used	for
specific	TCP	or	UDP	destination	ports
tcp.srcport	==	<value>	or	udp.srcport	==	<value>:	This	is	used	for
specific	TCP	or	UDP	destination	ports

In	UDP,	the	header	structure	is	very	simple:	source	and	destination	ports,	packet
length,	and	checksum.	Therefore,	the	only	significant	information	here	is	the
port	number.

TCP	on	the	other	hand	is	more	complex	and	uses	connectivity	and	reliability
mechanisms	that	can	be	monitored	by	Wireshark.	Using	tcp.flags,
tcp.analysis,	and	other	smart	filters	will	help	you	resolve	performance
problems	(retransmissions,	duplicate	ACKs,	zero	windows,	and	so	on),	protocol
operation	issues	such	as	resets,	half-opens,	and	so	on.

Common	display	filters	in	this	category	are	as	follows:

tcp.analysis:	This	is	used	for	TCP	analysis	criteria	such	as
retransmission,	duplicate	ACKs,	or	window	issues.	Examples	for	this	filter
are	as	follows	(you	can	use	the	autocomplete	feature	to	get	the	full	list	of
available	filters):

tcp.analysis.retransmission:	This	is	used	to	display	packets	that
were	retransmitted.
tcp.analysis.duplicate_ack:	This	is	used	to	display	packets	that
were	acknowledged	several	times.
tcp.analysis.zero_window:	This	is	used	to	display	packets	when	a
device	on	the	connection	end	sends	a	zero-window	message	(that	tells
the	sender	to	stop	sending	data	on	this	connection,	until	window	size
increases	again).

Tip

The	tcp.analysis	filters	do	not	analyze	the	TCP	header;	they	provide
a	protocol	analysis	through	the	Wireshark	expert	system.

tcp.flags:	These	are	used	to	find	out	if	a	flag(s)	is	set	or	not.	Examples	of
this	filter	are	as	follows:

tcp.flags.syn	==	1:	This	is	used	to	check	if	the	SYN	flag	is	set.
tcp.flags.reset	==	1:	This	is	used	to	check	if	the	RST	flag	is	set.
tcp.flags.fin	==	1:	This	is	used	to	check	if	the	FIN	flag	is	set.

Tip

For	TCP	flags,	the	tcp.flags	filter	will	be	used	to	find	out	whether	a
specific	flag	is	set	or	not.

tcp.window_size_value	<	<value>:	This	is	used	to	look	for	small	TCP
window	sizes	that	are	in	some	cases	indications	for	slow	devices.

How	to	do	it...
Some	examples	for	filters	in	TCP/UDP	filters:

To	filter	all	the	packets	to	the	HTTP	server,	use	tcp.dstport	==	80
To	filter	all	the	packets	from	the	network	10.0.0.0/24	to	the	HTTP	server,
use	ip.src==10.0.0.0/24	and	tcp.dstport	==	80
For	all	the	retransmissions	in	a	specific	TCP	connection,	use	tcp.stream
eq	16	&&	tcp.analysis.retransmission

To	isolate	a	specific	connection,	place	the	mouse	on	a	packet	in	the	connection
you	want	to	watch,	right-click	on	it,	and	choose	Follow	TCP	Stream.	A	TCP
stream	is	the	data	that	is	transferred	between	the	two	ends	of	the	connection	from
the	connection	establishment	to	the	connection	tear	down.	The	string
tcp.stream	eq	<value>	will	appear	in	the	display	filter	window.	This	is	the
stream	you	can	work	on	now.	In	the	preceding	example,	it	came	out	as	stream
16,	but	it	can	be	any	stream	number	(starting	the	count	from	stream	1	in	the
capture	file).

Retransmissions	are	TCP	packets	that	are	sent	again.	It	can	be	due	to	several
reasons,	as	explained	in	Chapter	9,	UDP/TCP	Analysis.

Tip

While	monitoring	phenomena	such	as	retransmissions,	duplicate	ACKs,	and
others	that	influence	performance,	it	is	important	to	remember	that	these
phenomena	refer	to	a	specific	TCP	connection.

Other	examples	of	the	types	of	TCP	filters	are	as	follows:

To	transfer	all	the	window	problems	in	a	specific	connection:
tcp.stream	eq	0	&&	(tcp.analysis.window_full	||

tcp.analysis.zero_window)

tcp.stream	eq	0	and	(tcp.analysis.window_full	or

tcp.analysis.zero_window)

To	transfer	all	the	packets	from	10.0.0.5	to	the	DNS	server:	ip.src	==
10.0.0.5	&&	udp.port	==	53

To	transfer	all	the	packets	or	protocols	in	TCP	(for	example	HTTP)	that

contains	the	string	cacti	(case	sensitive):	tcp	contains	"cacti"
To	check	all	the	packets	that	are	retransmitted	from	10.0.0.3:	ip.src	==
10.0.0.3	and	tcp.analysis.retransmission

To	transfer	all	the	packets	to	any	HTTP	server:	tcp.dstport	==	80
To	check	all	the	connections	opened	from	a	specific	host	(if	in	a	form	of
scan,	can	be	a	worm!):	ip.src==10.0.0.5	&&	tcp.flags.syn==1	&&
tcp.flags.ack==0

To	check	all	the	cookies	sent	from	and	to	a	client:	ip.src==10.0.0.3	&&
(http.cookie	||	http.set_cookie)

How	it	works...
The	following	are	illustrations	of	the	IP	and	TCP	header	structures	respectively.
UDP	is	quite	simple;	it	has	only	source	and	destination	port	numbers,	length,	and
checksum.	In	the	following	diagram	we	see	the	IP	header	structure:	

	

Some	important	factors	in	the	IP	packet	are	as	follows:

Ver:	The	version	is	either	4	or	6.
Header	length	(HL):	The	header	length	is	20	to	24	bytes,	with	options.
Type	of	Service	(ToS):	This	is	usually	implemented	with	Differentiated
Services	(DiffServ)	and	provides	priority	to	preferred	services.

Tip

IP	standard	(RFC	791	from	September	1981)	has	named	this	field	Type	of

Service	(ToS)	and	defined	its	structure.	The	standards	for	Differentiated
Services	were	published	later	(RFCs	2474,	2475	from	December	1998	and
others)	and	are	used	for	the	implementation	of	the	ToS	byte	in	majority	of
the	applications.

Length:	This	field	indicates	the	total	datagram	length	in	bytes.
16-bit	identifier,	flgs,	and	Fragment	offset:	Every	packet	has	it's	own
packet	ID.	When	fragmented	along	with	the	flags	and	offset,	these	will
enable	the	receiver	to	reassemble	it.
Time	to	live	(TTL):	This	starts	with	64,	128,	or	256	(depending	on	the
operation	system	that	sends	the	packet),	when	every	router	on	the	way
decrements	the	value	by	one.	This	comes	to	prevent	packets	from	traveling
endlessly	through	the	network.	The	router	that	sees	1	in	the	packet
decrements	it	to	0	and	drops	the	packet.
Upper	layer:	This	field	consists	of	upper-layer	protocols	such	as	TCP,	UDP
and	ICMP.
Checksum:	This	field	represents	the	packet	checksum.	The	idea	here	is	that
the	sender	uses	an	error-checking	mechanism	to	calculate	a	value	over	the
packet.	This	value	is	set	in	the	checksum	field	while	the	receiver	of	the
packet	calculates	it	again.	If	the	sent	value	is	not	equal	to	the	received
value,	it	will	be	considered	as	a	checksum	error.
32-bit	source	and	destination	IP	addresses:	As	the	names	suggest,	these
are	source	and	destination	IP	addresses.
Options:	This	field	is	usually	not	in	use	in	IPv4.	In	the	following	diagram
you	see	the	TCP	header:

	

Some	important	factors	in	the	TCP	packet	are	as	follows:

Source	and	destination	ports:	These	are	the	applications	codes	on	either
end.
Sequence	number:	This	field	counts	the	bytes	that	the	sender	sends	to	the
receiver.
Acknowledgement	number:	This	field	indicates	the	ACK's	received	bytes.
We	will	discuss	this	in	detail	in	Chapter	9,	UDP/TCP	Analysis.
HL:	This	is	the	header	length	field	and	it	indicates	whether	we	use	the
Options	field	or	not.
Res:	This	field	is	reserved	for	future	flags.
Flags:	This	field	indicates	flags	to	start	a	connection	(SYN),	close	a
connection	(FIN),	reset	a	connection	(RST),	and	push	data	for	fast
processing	(PSH).	We	will	discuss	this	in	detail	in	Chapter	9,	UDP/TCP
Analysis.
Rcvr	window	size:	This	field	indicates	the	buffer	that	the	receiver	has

allocated	to	the	process.
Checksum:	This	field	indicates	the	packet	checksum.
Options:	Timestamps	and	receiver	window	enhancement	(RFC	1323),	and
MSS	extension.	Maximum	Segment	Size	(MSS)	is	the	maximum	side	of
the	TCP	payload.	It	is	indicated	in	this	field.	Further	discussion	on	this	will
be	done	in	Chapter	9,	UDP/TCP	Analysis.

There's	more...
The	TTL	field	in	IP	is	quite	a	helpful	field.	While	checking	a	TTL	value,	it
explicitly	indicates	how	many	routers	the	packet	has	passed.	Since	operating
system	defaults	are	64,	128,	or	256,	and	the	maximum	number	of	hops	that	a
packet	will	cross	through	the	Internet	are	30	(in	private	networks	it	is	much	less).
For	example,	if	we	see	a	value	of	120,	the	packet	has	passed	8	routers,	and	a
value	of	52	indicates	that	the	packet	has	passed	12	routers.

See	also
For	further	information	on	the	TCP/IP	protocol	stack,	refer	to	Chapter	9,
UDP/TCP	Analysis

Configuring	specific	protocol	filters
In	this	recipe	we	will	have	a	look	at	the	instructions	and	examples	to	configure
display	filters	for	common	protocols	such	as	DNS,	HTTP,	and	FTP.

The	purpose	of	this	recipe	is	to	learn	how	to	configure	filters	that	will	help	us	in
network	troubleshooting.	We	will	learn	about	network	troubleshooting	in	the
upcoming	chapters.

Getting	ready
To	perform	this	recipe,	you	will	need	a	running	Wireshark	software	capture;
there	are	no	other	prerequisites.

How	to	do	it...
In	this	recipe	we	will	see	the	display	filters	for	some	common	protocols.

HTTP	display	filters

The	following	are	some	common	HTTP	display	filters:

To	display	all	the	HTTP	packets	going	to	<"host	name">,	use
http.request.method	==	<"Request	methods">

To	display	packets	with	the	HTTP	GET	method,	use	http.request.method
==	"GET"

To	display	the	URI	requested	by	client,	use	http.request.method	==
<"Full	request	URI">;	for	example,	http.request.uri	==
"/v2/rating/mail.google.com"

To	display	the	URI	requested	by	the	client	that	contains	a	specific	string	(all
requests	to	Google	in	the	preceding	example),	use	http.request.uri
contains	"URI	String";	for	example,	http.request.uri	contains
"mail.google.com"

To	check	all	the	cookie	requests	sent	over	the	network	(note	that	cookies	are
always	sent	from	the	client	to	the	server),	use	http.cookie
To	check	all	the	cookie	set	commands	sent	from	the	server	to	the	client,	use
http.set_cookie

To	check	all	the	cookies	sent	by	Google	servers	to	your	PC,	use
(http.set_cookie)	&&	(http	contains	"google")

To	check	all	the	HTTP	packets	that	contain	a	ZIP	file,	use	http	matches
"\.zip"	&&	http.request.method	==	"GET"

DNS	display	filters

Here,	we	will	look	at	some	common	DNS	display	filters.

To	display	DNS	queries	and	responses,	use:

dns.flags.response	==	0	for	DNS	queries

dns.flags.response	==	1	for	DNS	response

To	display	only	DNS	responses	with	four	answers	or	more,	use
dns.count.answers	>=	4.

FTP	display	filters

Some	common	FTP	display	filters	are	as	follows:

To	fetch	FTP	request	commands,	use	ftp.request.command	==
<"requested	command">	-	ftp.request.command	==	"USER"

To	fetch	FTP	commands	from	port	2,	use	ftp,	and	to	fetch	FTP	data	from
port	20	or	any	other	configured	port,	use	ftp-data

How	it	works...
The	Wireshark	regular	expression	syntax	for	display	filters	uses	the	same	syntax
as	regular	expressions	in	Perl.

Some	common	modifiers	are	as	follows:

^:	This	is	used	to	match	the	beginning	of	the	line
$:	This	is	used	to	match	the	end	of	the	line
|:	This	is	used	for	alternation	purposes
():	This	is	used	for	grouping	purposes
*:	This	is	used	to	match	either	0	or	more	times
+:	This	is	used	to	match	1	or	more	times
?:	This	is	used	to	match	1	or	0	times
{n}:	This	is	used	to	match	exactly	n	times
{n,}:	This	is	used	to	match	at	least	n	times
{n,m}:	This	is	used	to	match	at	least	n	but	not	more	than	m	times

You	can	use	these	modifiers	to	configure	more	complex	filters.	Have	a	look	at
the	following	examples:

To	look	for	HTTP	GET	commands	that	contain	ZIP	files,	use
http.request.method	==	"GET"	&&	http	matches	"\.zip"	&&	!

(http.accept_encoding	==	"gzip,	deflate")

To	look	for	HTTP	GET	commands	that	contain	ZIP	files,	use
http.request.method	==	"GET"	&&	http	matches	"\.zip"	&&	!

(http.accept_encoding	==	"gzip,	deflate")

To	look	for	HTTP	messages	that	contain	websites	that	end	with	.com,	use
http.host	matches	"\.com$"

See	also
The	Perl	regular	expression	syntax	list	can	be	found	at
http://www.pcre.org/,	and	the	manual	pages	can	be	found	at
http://perldoc.perl.org/perlre.html

http://www.pcre.org/
http://perldoc.perl.org/perlre.html

Configuring	substring	operator	filters
Offset	filters	are	filters	in	which	you	actually	say,	"Go	to	field	x	in	the	protocol
header	and	check	if	the	next	y	bytes	equal	to….".

These	filters	can	be	used	in	many	cases	in	which	a	known	string	byte	appears
somewhere	in	the	packet	and	you	want	to	display	packets	that	contain	it.

Getting	ready
To	step	through	this	recipe,	you	will	need	a	running	Wireshark	software	and	a
running	capture;	there	are	no	other	prerequisites.	The	general	representation	for
offset	filters	is:	Protocols[x:y]	==	<value>	Here,	x	refers	to	the	bytes	from	the
beginning	of	the	header	and	y	refers	to	the	number	of	bytes	to	check.

How	to	do	it...
Examples	for	filters	that	use	substring	operators	are	as	follows:

Packets	to	IPv4	multicast	addresses:	eth.dst[0:3]	==	01:00:5e	(RFC
1112,	section	6.4	allocates	the	MAC	address	space	of	01-00-5E-00-00-00	to
01-00-5E-FF-FF-FF	for	multicast	addressing)
Packets	to	IPv6	multicast	addresses:	eth.dst[0:3]	==	33:33:00	(RFC
2464,	section	7	allocates	the	MAC	address	space	that	starts	with	33-33	for
multicast	addressing)

How	it	works...
Wireshark	enables	you	to	look	into	protocols	and	search	for	specific	bytes	in	it.
This	is	specifically	practical	for	well-known	strings	in	protocols,	such	as
Ethernet	in	the	given	example.

Configuring	macros
Display	filter	macros	are	used	to	create	shortcuts	for	complex	display	filters,
which	you	can	configure	once	and	use	later.

Getting	ready
To	configure	display	filter	macros,	navigate	to	Analyze	|	Display	Filter	Macros
|	New.

You	will	get	the	following	window:

How	to	do	it...
1.	 In	order	to	configure	a	macro,	you	give	it	a	name	and	fill	the	textbox	with

the	filter	string.
2.	 In	order	to	activate	the	macro,	you	simply	write

$(macro_name:parameter1;paramater2;parameter3	…).
3.	 Let's	configure	a	simple	filter	name,	test01,	which	takes	the	following

parameters	as	values:
ip.src	==	<value>

tcp.dstport	==	<value>

This	will	be	a	filter	that	looks	for	packets	from	a	specific	source	network	that	go
out	to	the	HTTP	port.

A	macro	that	takes	these	two	parameters	will	be:	ip.src==$1	&&
tcp.dstport==$2.
Now,	in	order	to	get	the	filter	results	for	the	parameters	ip.src	==	10.0.0.4

and	tcp.dstport	==	80,	we	should	write	the	string	${test01:10.0.0.4;80}	in
the	display	window	bar.

How	it	works...
Macros	work	in	a	simple	way;	you	write	a	filter	string	with	the	sign	$	ahead	of
every	positional	parameter.	While	running	the	macros,	it	will	accept	the
parameters	in	order.

Chapter	4.	Using	Basic	Statistics
Tools
In	this	chapter	you	will	learn:

Using	the	Summary	tool	from	the	Statistics	menu
Using	the	Protocol	Hierarchy	tool	from	the	Statistics	menu
Using	the	Conversations	tool	from	the	Statistics	menu
Using	the	Endpoints	tool	from	the	Statistics	menu
Using	the	HTTP	tool	from	the	Statistics	menu
Configuring	Flow	Graph	for	viewing	TCP	flows
Creating	IP-based	statistics

Introduction
One	of	Wireshark's	strengths	is	the	statistical	tools.	While	using	Wireshark,	we
have	various	types	of	tools	starting	from	simple	tools	for	listing	end	nodes	and
conversations	to	the	more	sophisticated	tools	such	as	Flow	and	IO	graphs.

In	the	next	two	chapters	we	will	learn	how	to	use	these	tools.	In	this	chapter	we
will	look	at	the	simple	tools	that	provide	us	with	basic	network	statistics;	that	is,
who	talks	to	whom	over	the	network,	which	are	the	"chatty"	devices,	what
packet	sizes	run	over	the	network,	while	in	the	next	chapter	we'll	get	into	tools
such	as	IO	and	Stream	graphs,	which	provide	us	with	much	more	information
about	the	behavior	of	the	network.

There	are	some	tools	that	we	will	not	talk	about;	those	that	are	quite	obvious	(for
example,	Packet	sizes),	and	those	that	are	less	common	(such	as	ANSP,
BACnet,	and	others).

To	use	the	Statistics	tool,	start	Wireshark	and	choose	Statistics	from	the	main
menu.

Using	the	Summary	tool	from	the
Statistics	menu
In	this	recipe	we	will	learn	how	to	get	general	information	about	the	data	that
runs	over	the	network.

Getting	ready
Start	Wireshark,	click	on	Statistics.

How	to	do	it...
To	use	the	Summary	tool	from	the	Statistics	menu,	follow	the	ensuing	steps:

1.	 From	the	statistics	menu,	choose	Summary.

What	you	will	get	is	the	Summary	window	(displayed	in	the	following	two
screenshots).

2.	 As	shown	in	the	following	screenshot,	in	the	upper	side	of	the	window,	you
will	see:

File:	This	part	of	the	window	provides	file	data,	such	as	file	name	and
path,	length,	and	so	on
Time:	This	part	on	the	window	displays	the	start	time,	end	time,	and
duration	of	capture
Capture:	This	part	of	the	window	shows	on	which	interface	the	file
was	captured	and	also	displays	a	remark	window

In	the	lower	part	of	the	window	is	the	Display	window,	where	you	will	get	a
summary	of	the	capture	file	statistics;	this	includes:

The	number	of	packets	that	were	captured:	their	total	number	and
percentage
The	number	of	packets	displayed	(after	passing	the	Display	Filter)
The	number	of	packets	that	are	marked

How	it	works...
This	menu	simply	collects	all	the	captured	data,	and	when	a	filter	is	defined,	it
presents	the	filtered	data.	When	the	question	is,	"how	do	I	use	Wireshark	simply
to	know	what	is	the	average	packets	or	bytes	per	second?",	this	is	your	answer.

There's	more...
From	the	Summary	window,	you	can	get	the	average	packets/second	and
bits/second	of	the	entire	captured	file	and	also	for	the	displayed	data.

Using	the	Protocol	Hierarchy	tool
from	the	Statistics	menu
In	this	recipe,	we	will	learn	how	to	get	protocol	hierarchy	information	of	the	data
that	runs	over	the	network.

Getting	ready
Start	Wireshark,	click	on	Statistics.

How	to	do	it...
To	use	the	Protocol	Hierarchy	tool	from	the	statistics	menu,	go	through	the
following	steps:

1.	 From	the	statistics	menu,	choose	Protocol	Hierarchy.

2.	 What	you	will	get	here	is	data	about	the	protocol	distribution	in	the
captured	file.	You	will	get	the	protocol	distribution	of	the	captured	data,	as
shown	in	the	following	screenshot:	

You	will	get	the	following	fields	in	the	Protocol	Hierarchy	window:
Protocol:	This	field	specifies	the	protocol	name
%	Packets:	This	field	specifies	the	percentage	of	protocol	packets	from	the
total	captured	packets
Packets:	This	field	specifies	the	number	of	protocol	packets	from	the	total
captured	packets

%	Bytes:	This	field	specifies	the	percentage	of	protocol	bytes	from	the	total
captured	packets
Bytes:	This	field	specifies	the	number	of	protocol	bytes	from	the	total
captured	packets
Mbit/s:	This	field	specifies	the	bandwidth	of	this	protocol	in	relation	to	the
capture	time
End	Packets:	This	field	specifies	the	total	number	of	packets	in	this
protocol	(for	the	highest	protocol	in	the	decode	file)
End	Bytes:	This	field	specifies	the	absolute	number	of	bytes	of	this
protocol	(for	the	highest	protocol	in	the	decode	file)
End	Mbit/s:	This	field	specifies	the	bandwidth	of	this	protocol	relative	to
the	capture	packets	and	time	(for	the	highest	protocol	in	the	decode	file)

Tip

The	End	Packets,	End	Bytes,	and	End	Mbits/s	columns	are	those	in	which	the
protocol	in	this	line	is	the	last	protocol	in	the	packet	(that	is,	when	the	protocol
comes	at	the	end	of	the	packet,	and	there	is	no	higher	layer	information).	These
can	be,	for	example,	TCP	packets	with	no	payload	(for	example,	SYN	packets),
which	do	not	carry	any	upper	layer	information.	That	is	why	you	see	a	0	count
for	Ethernet	and	IPv4	and	UDP	end	packets	because	there	are	no	frames	where
these	protocols	are	the	last	protocol	in	the	frame.

How	it	works...
In	simple	terms,	it	calculates	statistics	over	the	captured	data.	Some	important
things	to	notice	are:

The	percentage	always	refers	to	the	same	layer	protocols.	For	example,	we
see	in	the	previous	example	that	IPv4	has	81.03	percent	of	the	packets,	IPv6
has	8.85	percent	of	the	packets,	and	ARP	has	10.12	percent	of	the	packets;	a
total	of	100	percent	of	the	protocols	over	layer-2.
On	the	other	hand,	we	see	that	TCP	has	75.70	percent	of	the	data,	and
within	TCP,	only	12.74	percent	of	the	packets	are	HTTP,	and	there	is	nearly
nothing	more.	This	is	because	Wireshark	counts	only	the	packets	with	the
HTTP	headers.	It	doesn't	count	for	example,	the	acknowledge	packets	or
data	packets	that	doesn't	have	HTTP	header.

There's	more...
In	order	to	ensure	that	Wireshark	will	also	count	the	data	packets,	for	example,
the	data	packets	of	HTTP	within	the	TCP	packet,	disable	the	Allow	sub-
dissector	option	to	reassemble	the	TCP	streams.	You	can	do	this	from	the
Preferences	menu	or	by	right-clicking	on	the	TCP	in	the	Packet	Details	pane.

Using	the	Conversations	tool	from	the
Statistics	menu
In	this	recipe,	we	will	learn	how	to	get	information	about	conversations	that	runs
over	the	network.

Getting	ready
Start	Wireshark,	click	on	Statistics.

How	to	do	it...
To	use	the	Conversations	feature	from	the	Statistics	menu,	follow	the	ensuing
steps:

1.	 From	the	statistics	menu,	choose	Conversations.

	
2.	 The	following	window	will	come	up:	

	
You	can	choose	between	layer	2	Ethernet	statistics,	layer	3	IP	statistics,	or

layer	4	TCP	or	UDP	statistics.
You	can	use	these	statistics	tools:

On	layer	2	(Ethernet):	To	find	and	isolate	broadcast	storms	or
On	layer	3	or	4	(TCP/IP):	To	connect	in	parallel	with	the	Internet	router
port	and	check	who	is	loading	the	line	to	the	ISP

Tip

If	you	see	that	there	is	a	lot	of	traffic	going	out	to	port	80	(HTTP)	on	a
specific	IP	address	on	the	Internet,	you	just	have	to	copy	the	address	to	your
browser	and	see	access	to	which	website	is	most	"popular"	with	your	users.

If	you	don't	get	anything,	simply	go	to	a	standard	DNS	resolution	website
(just	Google	DNS	lookup)	and	find	out	which	is	the	traffic	that	loads	your
Internet	line.

You	can	also	limit	the	conversations	statistics	to	a	display	filter	by	selecting
the	Limit	to	display	filter	checkbox	located	down	in	the	down	to	the	left	of	the
window.	In	this	way,	statistics	will	be	presented	on	all	the	packets	passing	the
display	filter.
For	viewing	the	IP	addresses	as	names,	you	can	select	the	Name	resolution

checkbox.	For	viewing	the	name	resolution,	you	will	have	to	first	enable	it	by
navigating	to	View	|	Name	Resolution	|	Enable	for	Network	layer.
For	TCP	or	UDP,	you	can	mark	a	specific	packet	in	the	Packet	list	and	then

select	Follow	TCP	Stream	or	Follow	UDP	Stream	(depending	on	whether	it	is
a	UDP	or	TCP	packet)	from	the	menu	that	appears	on	the	screen.	This	will
define	a	display	filter	that	will	show	you	the	specific	stream	of	data.

How	it	works...
A	network	conversation	is	the	traffic	between	two	specific	endpoints.	For
example,	an	IP	conversation	is	all	the	traffic	between	two	IP	addresses	and	TCP
conversations	represent	all	the	TCP	connections.

There's	more...
There	are	many	network	problems	that	will	simply	"pop	up"	while	using	the
Conversations	list.

Ethernet	conversations	statistics

In	the	Ethernet	conversations	statistics,	look	for	the	following	problems:

Large	amount	of	broadcasts:	you	might	be	viewing	a	broadcast	storm	(a
minor	one.	In	a	major	one,	you	might	not	see	anything.)
Tip

What	usually	happens	in	a	severe	broadcast	storm	is	that	due	to	thousands,
and	even	tens	of	thousands,	of	packets	sent	and	received	per	second	by
Wireshark,	the	software	simply	stops	showing	us	the	data	and	the	screen
freezes.	Only	when	you	disconnect	Wireshark	from	the	network	will	you
see	it.

If	you	see	a	lot	of	traffic	coming	from	a	specific	MAC	address,	look	at	the	first
part	of	the	conversation;	this	is	the	vendor	ID	that	will	give	you	a	hint	about	the
troublemaker.

Tip

Even	though	the	first	half	of	a	MAC	address	identifies	the	vendor,	it	does	not
necessarily	identify	the	PC	itself.	This	is	because	the	MAC	address	belongs	to
the	Ethernet	chip	vendor	that	is	installed	on	the	PC	or	laptop	board	and	is	not
necessarily	from	the	PC	manufacturer.	If	you	are	unable	to	identify	the	address
where	the	traffic	is	arriving	from,	you	can	ping	the	suspect	and	get	its	MAC
address	by	ARP,	find	the	MAC	address	in	the	switches,	and	if	you	have	a
management	system,	use	a	simple	find	command	to	locate	it.

IP	conversations	statistics

In	the	IP	conversations	statistics,	look	for	the	following	problems:

Look	for	IP	addresses	with	a	lot	of	traffic	going	in	or	out	of	them.	If	it	is	a
server	you	know	(and	probably	you	remember	the	server's	address	or
address	range),	then	it	is	OK;	but	it	might	also	be	that	someone	scanned	the

network,	or	just	a	PC	that	generated	too	much	traffic.
Look	for	scanning	patterns	(presented	in	detail	in	Chapter	14,
Understanding	Network	Security).	It	can	be	a	good	scan,	such	as	an	SNMP
software	that	sends	a	ping	to	discover	the	network,	but	usually	the	scans	in
the	network	are	not	good.
You	can	see	a	typical	scan	pattern	in	the	following	screenshot:	

	

In	this	example,	there	is	a	scan	pattern.	A	single	IP	address,	192.168.110.58,
sends	ICMP	packets	to	192.170.3.44,	192.170.3.45,	192.170.3.46,	192.170.3.47,
and	so	on	(in	the	screenshot	we	see	only	a	very	small	part	of	the	scan).	In	this
case	we	had	a	worm	that	infected	all	PCs	on	the	network,	and	the	moment	it
infects	a	PC,	it	starts	to	generate	ICMP	requests	and	sends	them	to	the	network;
such	narrow	band	links	(for	example,	WAN	connections)	can	easily	be	blocked.

TCP/UDP	conversations	statistics:
Look	for	devices	with	too	many	open	TCP	connections.	10	to	20
connections	per	PC	are	reasonable,	hundreds	are	not.
Look	and	try	to	find	unrecognized	port	numbers.	It	might	be	OK,	but	it	can
mean	trouble.	In	the	following	screenshot,	you	can	see	a	typical	TCP	scan:	

	

Using	the	Endpoints	tool	from	the
Statistics	menu
In	this	recipe	we	will	learn	how	to	get	statistics	on	endpoints	information	of	the
captured	data.

Getting	ready
Start	Wireshark,	click	on	Statistics.

How	to	do	it...
To	view	the	endpoint	statistics,	follow	these	steps:

1.	 From	the	statistics	menu,	click	on	Endpoints.

2.	 The	following	window	will	come	up:

3.	 In	this	window,	you	will	be	able	to	see	layers	2	and	3	and	4	endpoints,
which	are	Ethernet,	IP,	and	TCP	or	UDP.

How	it	works...
It	simply	gives	statistics	on	all	the	endpoints	that	Wireshark	has	discovered.	It
could	be	any	of	the	situations	here:

Few	Ethernet	endpoints	(these	are	MAC	addresses)	with	many	IP	end	nodes
(these	are	IP	addresses):	This	will	be	the	case	where,	for	example,	we	have
a	router	that	sends/receives	packets	from	many	remote	devices,	and	what
we	will	see	is	the	MAC	address	of	the	router	and	many	IP	addresses
coming/going	through	it.
Few	IP	end	nodes	with	many	TCP	end	nodes:	this	will	be	the	case	for	many
TCP	connections	per	host.	It	can	be	a	regular	operation	of	a	server	with
many	connections,	and	it	can	also	be	a	kind	of	attack	that	comes	through
the	network	(for	example,	an	SYN	attack).

There's	more...
Here	you	see	an	example	for	a	capture	file	taken	from	a	network	center,	and
what	we	can	get	from	it.

In	the	following	screenshot,	we	see	an	internal	network	with	four	HP	servers	and
a	single	Cisco	router.	We	can	see	this	from	the	first	part	of	the	MAC	address	that
is	resolved	to	vendor	names:

	

When	we	choose	to	see	the	endpoints	under	IPv4:	191,	we	see	many	endpoints
coming	from	the	networks	192.168.10.0,	192.168.30.0,	and	also	other	networks.

	

Using	the	HTTP	tool	from	the
Statistics	menu
In	this	recipe	we	will	learn	how	to	use	HTTP	statistical	information	of	the	data
that	runs	over	the	network.

Getting	ready
Start	Wireshark,	click	on	Statistics.

How	to	do	it...
To	view	the	HTTP	statistics	follow	these	steps:	From	the	Statistics	menu,	select
HTTP.	The	following	window	will	appear:	

In	the	HTTP	submenu,	we	have	the	following:

Packet	Counter	(marked	as	1	in	the	preceding	screenshot):	This
provides	us	with	the	number	of	packets	to	each	website.	This	will	help	us	to
identify	how	many	requests	and	responses	we	have	had.
Requests	(marked	as	2	in	the	preceding	screenshot):	This	is	used	to	see
request	distribution	to	websites.
Load	Distribution	(marked	as	3	in	the	preceding	screenshot):	This	is
used	to	see	load	distribution	between	websites.

We	will	perform	the	following	steps	to	view	the	Packet	Counter	statistics:

1.	 Navigate	to	Statistics	|	HTTP	|	Packet	Counter.
2.	 The	following	filter	window	will	open:	

3.	 In	this	window,	you	configure	a	filter	to	see	the	statistics	that	are	applied	to

these	filters.	If	you	want	to	see	statistics	over	the	whole	captured	file,	leave
it	blank.	This	will	show	you	statistics	over	IP,	that	is,	all	the	HTTP	packets.

4.	 Click	on	the	Create	Stat	button,	and	you	will	get	the	following	window:	

In	order	to	see	the	HTTP	statistics	for	a	specific	node,	you	can	configure	a
filter	for	it	using	a	display	filter	format.

We	will	perform	the	following	steps	to	view	HTTP	Requests	statistics:

1.	 Navigate	to	Statistics	|	HTTP	|	Requests.	The	following	window	will
appear:	

2.	 Choose	the	filter	you	need.	For	all	data,	leave	blank.
3.	 Click	on	the	Create	Stat	button	and	the	following	window	will	come	up:	

4.	 To	get	statistics	for	a	specific	HTTP	host,	you	can	set	a	filter	http.host
contains	<host_name>	or	http.host==<host_name>	(depends	on	whether
you	need	a	hostname	with	a	specific	name	or	a	hostname	that	contains	a
specific	string),	and	you	will	see	statistics	to	this	specific	host.

5.	 For	example,	by	configuring	the	filter	http.host	contains	ndi-com.com,
you	will	get	the	statistics	for	the	website	www.ndi-com.com	(shown	in	the

http://www.ndi-com.com

following	screenshot):	
6.	 What	you	will	get	is:

To	see	Load	Distribution	on	the	Web	or	a	specific	website:

1.	 Navigate	to	Statistics	|	HTTP	|	Packet	Counter.
2.	 The	following	window	will	appear:	

3.	 Choose	the	filter	you	need.	For	all	data,	leave	it	blank.
4.	 Click	on	the	Create	Stat	button	and	the	following	window	will	come	up:	

How	it	works...
When	we	open	a	website,	it	usually	sends	requests	to	several	URLs.	In	this
example,	one	of	the	websites	we	opened	was	www.cnn.com,	which	took	us	to
edition.cnn.com,	where	we	have	sent	several	requests:	to	the	root	URL,	to	the
breaking_news	URL,	and	to	two	other	locations	on	the	home	page.

http://www.cnn.com
http://edition.cnn.com

There's	more...
For	deeper	HTTP	analysis,	you	can	use	purpose-specific	tools.	One	of	the	most
common	ones	is	Fiddler.	You	can	find	it	at	http://www.fiddler2.com/fiddler2/

Fiddler	is	a	software	tool	developed	for	HTTP	troubleshooting	and	therefore	it
provides	more	data	with	a	better	user	interface	for	HTTP.

http://www.fiddler2.com/fiddler2/

Configuring	Flow	Graph	for	viewing
TCP	flows
In	this	recipe	we	will	learn	how	to	use	the	Flow	Graph	feature.

Getting	ready
Open	Wireshark	and	from	the	Statistics	menu	choose	Flow	Graph.	The
following	window	will	open:

How	to	do	it...
You	can	choose	several	options	in	the	Flow	Graph	window,	such	as:

What	to	view:
Choose	All	packets:	for	viewing	all	captured	packets
Choose	Displayed	packets:	for	viewing	only	filtered	packets

Flow	type:
General	flow	will	show	all	captured	or	displayed	packets	(for	what	you
choose	before).
TCP	flow	will	show	only	TCP	flags,	sequence,	and	ACK	numbers.	This
graph	provides	a	very	partial	picture	of	the	flow.

How	it	works...
Simply	by	creating	simple	statistics	from	the	captured	file:	nothing	special	to	say
here.

There's	more...
Understanding	TCP	problems	is	sometimes	quite	complex.	The	best	way	to	do	it
most	of	the	time	is	to	use	graphical	software	that	have	better	graphical	interface,
or	simply	take	a	piece	of	paper	along	with	different	colored	pens	and	draw	it
yourself.

A	friendly	software	that	can	do	the	job	is	the	Cascade	Pilot	package	by	the
developers	of	Wireshark	which	can	be	found	at
http://www.riverbed.com/us/products/cascade/wireshark_enhancements/cascade_pilot_personal_edition.php

You	can	see	an	example	of	a	self-made	graph	in	the	following	image:	

	

After	preparing	a	few	graphs,	you	will	know	them	like	the	back	of	your	hand.

http://www.riverbed.com/us/products/cascade/wireshark_enhancements/cascade_pilot_personal_edition.php

Creating	IP-based	statistics
In	this	recipe	we	will	learn	how	to	create	some	IP-based	statistics.	We	will
discuss	the	following	statistics	tools:

IP	Addresses
IP	Destinations
IP	Protocols	Types

Getting	ready
Open	Wireshark	and	click	on	the	Statistics	menu.

How	to	do	it...
To	get	IP	addresses	statistics,	perform	the	following	steps:

1.	 Navigate	to	Statistics	|	IP	Addresses.
2.	 In	the	window	that	comes	up,	select	the	filter	you	want	to	use	by	clicking

on	the	Filter	button:	

If	you	want	to	see	statistics	of	the	whole	captured	file,	leave	it	blank	and	all
the	IP	packet	statistics	will	be	shown.
If	you	want	to	see	only	statistics	up	to	a	specific	IP	address,	type	the	filter	in

the	display	filter	syntax.	For	example,	the	filter	ip.addr==10.0.0.2	will	show
you	only	IP	packets	sent	to	or	from	this	address.

After	typing	in	the	filter,	you	will	get	the	following	statistics:	

To	get	IP	and	TCP/UDP	destination	statistics,	perform	the	following	steps:

1.	 Navigate	to	Statistics	|	IP	Destinations.
2.	 In	the	following	window,	choose	the	filter	you	want	to	use:	

3.	 This	window	will	show	you	all	those	IP	addresses	to	whose	destination	IPs
it	has	sent	packets,	and	on	what	protocols.

4.	 You	will	get	the	following	statistics:	

5.	 In	this	statistics	table,	you	can	see	that	host	10.0.0.5	has	sent	TCP	packets
to	port	80,	443,	and	5222,	and	UDP	packets	to	ports	53	and	some	others.

This	is	one	of	the	tools	that	brings	up	suspected	issues;	for	example,	when	you
see	a	suspected	port	with	too	many	packets	sent	to	it,	start	looking	for	a	reason.
To	get	IP	protocol	types:

1.	 Navigate	to	Statistics	|	IP	Protocol	Types.
2.	 In	the	following	window,	choose	the	filter	you	want	to	use:	

3.	 You	will	get	the	statistics	of	the	protocols	that	run	over	IP	that	are	mostly
TCP	and	UDP.

How	it	works...
Simply	by	creating	statistics	over	the	captured	file.

There's	more...
There	are	various	options	in	Wireshark	that	give	you	quite	similar	statistics;
these	are	Conversations,	Protocol	Hierarchy,	and	Endpoint,	which	were
discussed	at	the	beginning	of	this	chapter.	You	can	use	them	in	conjunction	with
the	methods	we	learned	in	this	recipe.

Chapter	5.	Using	Advanced	Statistics
Tools
In	this	chapter	we	will	learn	the	following:

Configuring	IO	Graphs	with	filters	for	measuring	network	performance
issues
Throughput	measurements	with	IO	Graph
Advanced	IO	Graph	configurations	with	advanced	Y-Axis	parameters
Getting	information	through	TCP	stream	graphs	–	the	Time-Sequence
(Stevens)	window
Getting	information	through	TCP	stream	graphs	–	the	Time-Sequence	(tcp-
trace)	window
Getting	information	through	TCP	stream	graphs	–	the	Throughput	Graph
window
Getting	information	through	TCP	stream	graphs	–	the	Round	Trip	Time
window
Getting	information	through	TCP	stream	graphs	–	the	Window	Scaling
Graph	window

Introduction
In	Chapter	4,	Using	Basic	Statistics	Tools,	we	discussed	the	basic	statistics	tools
such	as	lists	of	end	users,	conversations,	capture	summary,	and	more.	In	this
chapter	we	will	look	at	the	advanced	statistical	tools	such	as	the	IO	Graph,	TCP
stream	graphs,	and	in	brief,	the	UDP	multicast	streams	as	well.

The	tools	we	will	talk	about	here	enable	us	to	have	a	better	look	at	the	network.
Here	we	have	two	major	tools:

The	IO	Graph	tool	enables	us	to	view	statistical	graphs	for	any	predefined
filter;	for	example,	the	throughput	on	a	single	IP	address,	the	load	between
two	or	more	hosts,	the	application	throughput,	the	TCP	phenomena
distribution,	and	more
We	will	have	a	deeper	look	at	a	single	TCP	connection	using	the	TCP
stream	graphs,	with	the	ability	to	isolate	TCP	problems	and	their	causes

In	this	chapter	we	will	learn	how	to	use	the	tools,	and	in	the	next	chapters	we
will	use	them	to	isolate	and	solve	networking	problems.

Configuring	IO	Graphs	with	filters
for	measuring	network	performance
issues
In	this	recipe	we	will	learn	how	to	use	the	IO	Graph	tool	and	how	to	configure	it
for	network	troubleshooting.

Getting	ready
Under	the	Statistics	menu,	open	the	IO	Graph	tool	by	clicking	on	IO	Graph.
You	can	do	this	during	an	online	file	capture	or	on	a	file	you've	captured	before.
While	using	the	IO	Graph	tool	on	a	live	capture,	you	will	get	live	statistics	on
the	captured	data.

How	to	do	it...
Run	the	IO	Graph	tool	and	you	will	get	the	following	window:	

	

On	the	upper	part	of	the	window,	you	will	get	the	graph	highlighted	as	area	1.
On	the	lower-left	part,	highlighted	as	area	2,	you	will	get	the	filters	that	enable
you	to	configure	display	filters,	which	will	enable	specific	graphs.	On	the	right-
hand	side	of	the	window,	highlighted	as	areas	3	and	4,	you	will	get	the	X-Axis
and	Y-Axis	configuration.	Let's	see	what	we	can	configure	and	how	to	do	it.

Filter	configuration
1.	 In	the	filter	window,	fill	in	a	filter	in	the	display-filter	format.	Only	the

packets	that	pass	this	filter	will	be	taken	into	account	for	this	graph.	You
have	five	optional	filters	to	configure	here.

2.	 Choose	the	type	of	graph	you	want	to	present:	Line,	Impulse,	FBar,	or

Dot.
3.	 Click	on	the	Graph	button.	This	is	required	in	order	to	activate	the	filter

graph.	Don't	forget	it.

X-Axis	configuration
1.	 Choose	a	value	to	enter	in	Tick	interval:.	The	scale	can	be	between	0.001

seconds	and	10	minutes.

Tip

If,	for	example,	we	get	a	peak	of	1,000	packets/second	when	the	tick
interval	X	Axis	is	configured	with	1-second	intervals,	it	means	that	in	the
last	second	we've	got	1,000	packets.	When	we	change	the	tick	interval	for
X	Axis	to	0.1-second	intervals,	the	peak	will	be	different	because	now	we
see	how	many	packets	were	captured	in	the	last	0.1	second.

2.	 Choose	the	Pixels	per	tick:	value	to	configure	the	pixels	per	tick	interval.
3.	 Mark	the	View	as	time	of	day	button	for	choosing	the	time	of	day	format

instead	of	time	since	the	beginning	of	capture.

Y-Axis	configuration
1.	 Choose	the	value	for	Unit:	from	Packets/Tick,	Bytes/Tick,	Bits/Tick,	or

Advanced...	for	choosing	the	Y-Axis	scale.
2.	 Choose	Scale:	for	the	Y	Axis.	You	can	choose	it	to	be	Linear	or	change	it

to	Logarithmic.	You	can	also	leave	it	as	Automatic	or	change	it	to	manual
values	when	required.

3.	 Choose	a	value	for	Smooth:	if	you	want	to	see	a	running	average;	that	is,	in
every	tick	interval	you	will	see	the	average	of	the	past	ticks.	You	can
choose	values	from	4	to	1,024	to	smooth	the	graph.

How	it	works...
The	IO	Graphs	feature	is	one	of	the	important	Wireshark	tools	that	enable	us	to
monitor	online	performance	along	with	offline	capture	file	analysis.

While	you	are	using	this	tool,	it's	important	to	configure	the	right	filter	with	the
right	X-Axis	and	Y-Axis	parameters.

Let's	have	a	look	at	the	next	two	graphs,	in	which	a	PC	with	an	IP	address	of
10.0.0.2	is	browsing	the	Internet.	In	these	two	IO	graphs,	we	have	configured
two	filters:

The	first	graph	is	the	upload	(upstream)	traffic	graph,	which	indicates	all
the	traffic	from	the	IP	address	10.0.0.2;	this	is	the	filter	ip.src==10.0.0.2,
colored	in	red.
The	second	graph	is	the	download	(downstream)	traffic	graph,	which
indicates	all	the	traffic	to	the	IP	address	10.0.0.2;	this	is	the	filter
ip.dst==10.0.0.2,	colored	in	green.

	

In	the	first	graph,	we	see	that	we've	measured	the	traffic	when	the	X	Axis	is
configured	to	a	tick	interval	of	one	second	and	the	Y-Axis	scale	is
configured	to	packets/tick.	The	result	that	we've	got	is	that	while	browsing
(on	the	left-hand	side	of	the	graph)	or	while	watching	a	movie	(on	the	right-
hand	side	of	the	graph),	the	upload	and	download	traffic	is	nearly	identical.

	

In	the	second	graph,	we	see	the	traffic	in	bits/sec.	Here,	we	see	the
bandwidth	required	from	the	network	while	using	it	to	connect	to	the
Internet;	that	is,	an	asymmetrical	bandwidth	when	most	of	the	traffic	is	in
the	download	direction.

There's	more...
Let's	have	a	look	at	another	example	here.	This	is	an	example	of	a	file	download
in	FTP	when	10.0.52.164	downloads	a	file.	Again,	you	can	see	that	in	order	to
get	the	traffic	on	the	network,	we	changed	Unit:	under	Y-Axis	to	Bits/Tick.
Packets/Tick	is	also	important	and	we	will	see	implementations	for	it	in	the
applications	chapters	(chapters	7-14)	later	in	the	book.

Throughput	measurements	with	IO
Graph
IO	Graph	is	a	convenient	tool	for	measuring	the	throughput	of	a	network.	Using
it,	we	can	measure	the	traffic	and	throughput	of	any	predefined	filter.	In	this
recipe	we	will	see	some	examples	for	measuring	the	throughput	of	a	network.

Getting	ready
Connect	your	laptop	with	Wireshark	to	a	network	with	a	port	mirror	to	the	link
you	want	to	measure,	as	you	learned	in	Chapter	1,	Introducing	Wireshark.	Start	a
new	capture	or	open	an	existing	file,	and	open	the	IO	Graphs	tool	from	the
Statistics	menu.

While	measuring	the	throughput,	we	can	measure	the	throughput	on	a
communication	line	between	end	devices	(PC	to	server,	phone	to	phone,	PC	to
the	Internet,	and	so	on)	or	to	a	specific	application.

	

The	process	of	isolating	network	problems	starts	from	measuring	traffic	over	a
link	between	end	devices	on	single	connections	and	seeing	where	it	comes	from.

Some	typical	measurements	are	host-to-host	traffic,	all	the	traffic	to	a	specific
server,	all	the	traffic	to	a	specific	application	on	a	specific	server,	all	the	TCP
performance	phenomena	on	a	specific	server,	and	more.

How	to	do	it...
In	this	recipe,	we	will	provide	some	basic	filters	for	measuring	traffic	in	the
network.

Measuring	throughput	between	end	devices

To	measure	the	throughput	between	end	devices,	simply	configure	a	display
filter	between	their	IP	addresses.

For	example,	to	see	the	traffic	between	10.2.10.101	and	10.2.10.240,	configure
the	filter:	ip.add	req	10.2.10.240	and	ip.add	req	10.2.10.240.

You	can	either	type	the	filter	in	the	IO	Graph's	Filter:	box	or	perform	the
following	steps:

1.	 Place	the	cursor	on	a	packet	in	a	specific	connection.
2.	 Right-click	on	it	and	navigate	to	Conversation	filter	|	IP.	The	filter	string

will	appear	in	the	upper	display	filter	box.
3.	 Copy	the	filter	string	from	the	upper	display	filter	box	to	one	of	the	IO

Graph	Filter:	boxes.
4.	 Click	on	the	filter	bow	button	in	the	IO	Graphs	window	to	activate	it.

	
Measuring	application	throughput

In	order	to	configure	the	performance	measurement	of	a	specific	application,	you
can	configure	a	filter	that	contains	specific	port	numbers	or	a	specific
connection.

There	are	several	ways	to	isolate	an	application	graph.	Here's	one	of	them:

1.	 In	the	captured	data,	click	on	any	packet	that	belongs	to	the	traffic	stream.
In	TCP	it	will	be	a	specific	connection;	in	UDP	it	will	be	just	a	stream
between	two	IP/Port	pairs.

2.	 Right-click	on	it	and	choose	Follow	TCP	stream	or	Follow	UDP	stream.
You	will	get	tcp.streameq<number>	or	udp.streameq<number>.	<number>
is	simply	the	number	of	the	stream	in	the	capture	file.

3.	 Copy	the	string	to	the	filter	window	in	the	IO	Graphs	window	and	you	will
get	the	graph	of	the	specific	stream.

	

If	you	want	a	graph	for	specific	data	on	the	stream,	add	information	to	the	filter.
For	example	(in	the	previous	illustration):

tcp.streameq	2	and	tcp.analysis.retransmissions	will	give	all	the
TCP	retransmissions	on	the	specific	stream	(indicating,	for	example,	a	slow
network,	errors,	or	packet	loss)
tcp.streameq	2	and	tcp.analysis.zero_window	will	give	all	the	TCP
zero	window	phenomena	on	the	specific	stream	(indicating	a	slow	end
device)

How	it	works...
The	power	of	the	IO	Graph	tool	comes	from	the	fact	that	you	can	configure	any
display	filter	and	see	it	as	a	graph	in	various	shapes	and	configurations.	Any
parameter	in	a	packet	can	be	filtered	and	monitored	in	this	way.

There's	more...
Some	examples	for	parameters	that	can	be	monitored	are	explained	in	this
section.

Graph	SMS	usage	–	finding	SMS	messages	sent	by	a	specific
subscriber
1.	 To	configure	the	filter,	choose	SMPP	(Short	Message	Peer	to	Peer

protocol)	packets	with	the	command	Submit_SM.	This	is	the	SMPP
command	that	sends	the	SMS.

2.	 Type	smpp.destination_addr	==	"phone	number"	in	the	filter.	The	filter
smpp.destination_addr	==	"972527098241"	was	configured	in	the
example.

Graphing	number	of	accesses	to	the	Google	web	page
1.	 Open	the	IO	Graphs	window.	You	can	do	it	during	the	capture	to	view

online	statistics	or	open	a	saved	capture	file.
2.	 Configure	the	filter	http.host	contains	"<name>",	in	our	case,

http.host	contains	"google".
3.	 In	the	packet	list	you	will	see	(while	configuring	the	same	filter)	the

information	shown	in	the	following	screenshot:	

In	the	IO	Graphs	window,	you	will	see	the	following	graph:	

In	the	packet	capture	pane,	you	can	see	that	we've	had	two	accesses	to	Google
after	around	86	seconds,	the	next	two	after	around	109	seconds,	and	so	on.

Advanced	IO	Graph	configurations
with	advanced	Y-Axis	parameters
In	standard	measurements	with	the	IO	Graph	tool,	we	measure	the	performance
of	the	network	in	units	of	packets/second,	bytes/second,	or	bits/second.	There	are
some	types	of	data	that	cannot	be	measured	with	these	parameters,	and	this	is	the
reason	we	have	the	Advanced...	feature	in	the	Y-Axis	options.

Getting	ready
Choosing	the	Advanced...	feature	from	the	Unit:	drop-down	menu	under	Y-Axis
opens	a	wider	IO	Graphs	window,	and	provides	the	following	options:

SUM	(*):	This	draws	a	graph	with	the	summary	of	a	parameter	in	the	tick
interval
COUNT	FRAMES	(*):	This	draws	a	graph	that	counts	the	occurrence	of
the	filtered	frames	in	the	tick	interval
COUNT	FIELDS	(*):	This	draws	a	graph	that	counts	the	occurrence	of	the
filtered	field	in	the	tick	interval
MAX	(*):	This	draws	a	graph	with	the	maximum	of	a	parameter	in	the	tick
interval
MIN	(*):	This	draws	a	graph	with	the	minimum	of	a	parameter	in	the	tick
interval
AVG	(*):	This	draws	a	graph	with	the	average	of	a	parameter	in	the	tick
interval
LOAD	(*):	This	is	used	for	response	time	graphs

How	to	do	it...
To	start	using	the	IO	Graphs	window	with	the	Advanced	feature,	perform	the
following	steps:

1.	 Start	the	IO	Graphs	window	from	the	Statistics	menu.
2.	 In	the	Unit:	drop-down	menu	under	Y-Axis,	choose	the	Advanced…

option.	You	will	get	the	following	window:	

	
You	will	see	new	drop-down	menus	with	the	string	SUM(*).
Choose	SUM(*)/COUNT	FRAMES	(*)/COUNT	FIELDS

(*)/MAX(*)/MIN(*)/AVG(*)/	LOAD(*),	and	configure	the	appropriate	filters.
In	the	next	recipes	we	will	see	some	useful	examples.

How	to	monitor	inter-frame	time	delta	statistics

The	time	delta	between	frames	can	influence	TCP	performance,	and	there	are
cases	in	which	we	would	like	to	correlate	these	with	the	performance	we	get
from	the	network.

Let's	look	at	the	following	capture	file:	

	

Here,	we	see	packets	sent	from	the	source	IP	10.2.10.105	as	configured	in	the
display	filter.

To	view	the	time	variance	between	frames,	configure	the	following	parameters:

To	view	the	maximum	frame.time_delta	value,	configure	ip.src	==
10.2.10.105	in	the	field	beside	Filter:	and	choose	MAX(*)	and	type
frame.time_delta	in	the	fields	beside	Calc:
To	view	the	average	frame.time_delta	value,	configure	ip.src	==
10.2.10.105	in	the	field	beside	Filter:	and	choose	AVG(*)	and	type
frame.time_delta	in	the	fields	beside	Calc:
To	view	the	minimum	frame.time_delta	value,	configure	ip.src	==
10.2.10.105	in	the	field	beside	Filter:	and	choose	MIN(*)	and	type
frame.time_delta	in	the	fields	beside	Calc:

The	graph	that	we	will	get	is	as	follows:	

	

What	we	see	in	the	screenshot	is	a	graph	of	the	minimum,	average,	and
maximum	time	delta	between	frames.	What	do	we	do	with	it	and	how	do	we	use
it	for	network	debugging?	This	will	be	covered	in	Chapter	10,	HTTP	and	DNS.

How	to	monitor	the	number	of	TCP	retransmissions	in	a	stream

TCP	events	can	be	of	many	types:	retransmissions,	sliding	window	events,
ACKs	(or	lack	of	them),	and	others.	To	see	the	number	of	TCP	events	over	time,
we	can	use	the	IO	Graph	tool	with	the	Advanced...	feature	and	the	COUNT(*)
parameter.

To	do	this,	perform	the	following	steps:

1.	 Open	IO	Graphs	from	the	Statistics	menu.
2.	 Under	Y-Axis,	choose	Advanced...	for	Unit:.
3.	 Configure	the	filters	as	follows:

IP	source	and	destination	filters	in	the	fields	beside	the	Filter:	buttons
TCP	events	in	the	fields	to	the	left	of	Style:
Choose	COUNT	FRAMES	(*)	in	the	Calc:	field	and	type
tcp.analysis.retransmissions	in	the	filter	field

In	this	example,	filters	were	configured	to	monitor	TCP	retransmissions	on	three
different	TCP	streams.

	

In	the	graph	of	the	preceding	screenshot,	you	can	see	that	retransmissions	from
each	TCP	stream	are	presented	in	different	colors.

How	to	monitor	a	number	of	field	appearances

In	various	network	protocols	(mostly	on	those	running	over	TCP),	variations	in
time	between	frames	(that	is,	the	frame-time	delta	filter)	can	influence	the
performance	significantly.	One	of	the	tools	for	viewing	these	changes	in	the	IO
Graphs	window	is	the	Advanced...	configuration.

To	do	it,	perform	the	following	steps:

1.	 Right-click	on	a	packet	in	the	suspicious	TCP	stream	and	navigate	to
Conversation	filter	|	TCP.	A	filter	will	appear	in	the	main	filter	box.

2.	 Open	IO	Graph	from	the	Statistics	menu.
3.	 Under	Y-Axis,	choose	Advanced...	for	Unit:.
4.	 Configure	the	filters	as	follows:

Copy	the	filter	definition	from	the	upper	filter	box	on	the	right-hand
side	to	the	IO	Graph	filter	box	on	the	left-hand	side
On	the	left-hand	side,	type	the	filter	frame.time_delta
Choose	AVG(*)	to	see	the	average	delta.

Choose	the	appropriate	X-Axis	resolution.

Here	is	an	example.	In	the	following	screenshot,	we	see	a	packet	list	with	time
variations	between	frames	(a	second	time	column	was	added	in	order	to	see	the
real	time	and	time	variations):	

	

You	see	that	there	are	some	large	time	variations	between	frames;	for	example,
29.24	seconds	in	the	frame	1,223,	9.12	seconds	in	the	frame	1,247,	and	more.

In	the	IO	Graphs	window	configured	as	described	earlier,	you	will	see	the
following:	

	

As	you	see	here,	there	are	variations	in	time	between	frames.	Later	in	this	book,
we	will	learn	to	see	what	causes	these	problems	and	how	to	solve	them.

How	it	works...
The	IO	Graph	tool	is	one	of	the	strongest	and	most	efficient	tools	of	Wireshark.
While	the	standard	IO	Graph	statistics	can	be	used	for	basic	statistics,	the
Advanced…	feature	can	be	used	for	in-depth	monitoring	of	response	times,	TCP
analysis	of	a	single	stream	or	several	streams,	and	more.

When	we	configure	a	filter	on	the	left,	we	will	filter	the	traffic	between	hosts,
traffic	in	a	connection,	traffic	on	a	server,	and	so	on.	The	Advanced…	feature
provides	us	with	more	details	on	traffic.	Here	are	a	few	examples:

On	the	left	you	see	the	TCP	stream;	on	the	right	you	see	the	time	delta
between	frames	in	the	stream
On	the	left	you	see	the	video/RTP	stream;	on	the	right	you	see	the
occurrence	of	a	marker	bit

There's	more...
You	can	always	click	on	IO	Graph,	and	it	will	bring	you	to	the	reference	packet
in	the	packet	pane.

Getting	information	through	TCP
stream	graphs	–	the	Time-Sequence
(Stevens)	window
One	of	the	tools	in	Wireshark	that	enables	us	to	dig	deeper	into	applications
behavior	is	the	TCP	stream	graphs.	These	graphs,	as	we	will	see	in	the	following
recipes,	enable	us	to	get	the	filling	of	the	application	behavior	along	with	the
possibility	to	locate	problems	in	it.

Getting	ready
Open	an	existing	capture	or	start	a	new	capture.	Click	on	a	specific	packet	in	the
capture	file.	Even	though	you	can	use	this	feature	on	a	running	capture,	it	is	not
meant	for	online	statistics;	so	it	is	recommended	that	you	start	a	capture,	stop	it,
and	then	use	this	tool.

How	to	do	it...
To	view	TCP	stream	graph	statistics,	perform	the	following	steps:

1.	 Click	on	the	packet	of	the	stream	you	want	to	monitor.

Tip

The	TCP	Stream	shows	a	directional	graph,	so	when	you	click	on	a	packet,
it	should	be	in	the	direction	you	want	to	view	the	statistics	on.	If,	for
example,	you	download	a	file	and	want	to	view	the	download	statistics,
click	on	a	packet	in	the	download	direction.

2.	 From	the	Statistics	menu	navigate	to	TCP	StreamGraph	|	Time-Sequence
Graph	(Stevens).	The	following	window	will	open	up:

	

The	graph	actually	shows	the	advance	of	byte	transfer	over	time.	In	this
example	we	see	a	continuous	diagonal	line,	which	is	an	indication	of	a	good
file	transfer.

To	measure	the	throughput	of	a	file	transfer,	simply	calculate	the	bytes
transferred	in	a	unit	of	time	as	shown	in	the	following	screenshot:

	

We	see	that	the	transfer	rate	is	1,200,000	bytes	in	100	seconds,	that	is,
12,000	bytes/seconds	or	95	Kbits/sec.

3.	 Clicking	on	a	point	in	the	graph	using	the	scrollbar	will	magnify	the	graph
around	the	point	that	you	clicked	on.

4.	 Right-clicking	on	a	point	in	the	graph	will	take	us	to	the	packet	pane	in	the
captured	file.

5.	 For	changing	graph	parameters,	we	have	a	small	window	opened	parallel	to
the	graph	as	shown	in	the	following	screenshot:

	
6.	 For	changing	from	zoom	in	to	zoom	out,	click	on	the	in	or	out	button.

How	it	works...
The	Time-Sequence	Graph	(Stevens)	is	a	simple	graph	that	counts	the	TCP
sequence	numbers	over	time.	Since	TCP	sequence	numbers	count	the	bytes	sent
by	TCP,	these	are	actually	application	bytes	(including	application	headers)	sent
from	one	side	to	another.

This	graph	(as	we	will	learn	in	the	TCP	and	applications	chapters)	can	give	us	a
good	indication	of	the	application's	behavior.	For	example,	a	diagonal	line	means
a	good	file	transfer,	while	a	diagonal	line	with	interrupts	shows	a	problem	in
transfer.	A	diagonal	line	with	a	high	gradient	indicates	fast	data	transfer,	while	a
low	gradient	indicates	a	low	rate	of	transfer	(depends	on	the	scale	of	course).

There's	more...
Left-clicking	on	a	point	in	the	graph	will	take	you	to	the	packet	in	the	packet
pane.	When	you	see	a	problem,	zoom	into	it,	left-click	on	it,	and	check	what
went	wrong	with	the	packets.

While	viewing	a	graph,	it	is	important	to	know	what	the	application	is.	A	graph
that	indicates	a	problem	in	one	application	can	be	a	perfect	network	behavior	for
another	application.

Getting	information	through	TCP
stream	graphs	–	the	Time-Sequence
(tcp-trace)	window
TCP	time-sequence	graphs	based	on	the	UNIX	tcpdump	command	provide	us
with	additional	data	on	the	connection	that	we	monitor.	In	addition	to	the
standard	sequence/seconds	in	Time-Sequence	(Stevens),	we	also	get	information
on	the	ACKs	that	were	sent,	retransmissions,	window	size,	and	more	details	that
enables	us	to	analyze	problems	on	the	connection.

Getting	ready
Open	an	existing	capture	or	start	a	new	capture.	Click	on	a	specific	packet	in	the
capture	file.	Even	though	you	can	use	this	feature	on	a	running	capture,	it	is	not
meant	for	online	statistics;	so	it	is	recommended	that	you	start	a	capture,	stop	it,
and	then	use	this	tool.

How	to	do	it...
To	view	TCP	stream	graph	statistics,	perform	the	following	steps:

1.	 Click	on	a	packet	in	the	stream	you	want	to	monitor.

Tip

The	TCP	stream	shows	a	directional	graph,	so	when	you	click	on	a	packet,
it	should	be	in	the	direction	you	want	to	view	the	statistics	on.	If,	for
example,	you	download	a	file	and	want	to	view	the	download	statistics,
click	on	a	packet	in	the	download	direction.

2.	 From	the	Statistics	menu	navigate	to	TCP	StreamGraph	|	Time-Sequence
Graph	(tcp-trace).	The	following	window	will	open	up:

	

The	graph	shows	the	advance	of	byte	transfer	over	time	in	the	lower	black
graph	and	the	window	size	in	the	upper	gray	graph.	When	there	is	space
between	the	two,	it	means	that	there	is	some	TCP	buffering	left	and	TCP
will	transfer	bytes.	Once	they	get	closer	and	touch	each	other,	it	would	be	a
window-full	phenomenon	that	does	not	enable	further	data	transfer.

3.	 We	obtain	the	following	screenshot	when	we	zoom	into	a	specific	area:

	
4.	 We	obtain	the	following	captured	packets	when	we	zoom	into	a	particular

area	in	the	graph:

	

You	can	see	that	in	the	packet	capture,	there	is	a	frame	in	time	1,273

(seconds	after	the	beginning	of	the	capture),	a	break,	a	packet	in	time	1,386,
a	break,	and	a	packet	in	1499.

In	the	TCP	stream	graph	you	see	the	breaks	in	transmission,	and	we	can
look	for	its	reason	when	we	are	back	to	the	packets	pane.

How	it	works...
The	Time	sequence	(TCP-trace)	graph	is	taken	from	the	UNIX	tcpdump
command,	which	also	checks	the	window	size	published	by	the	receiver	(this	is
the	buffer	size	allocated	by	the	receiver	to	the	process),	along	with	retransmitted
packets	and	ACKs.

Working	with	this	graph	provides	us	with	a	lot	of	information,	which	we	will	use
later	for	network	debugging.	The	phenomena	from	a	window	that	is	being	filled
faster	than	expected	to	a	lot	of	retransmissions	and	others	will	become	visual
with	this	graph	that	will	help	us	to	solve	them.

There's	more...
The	more	we	zoom	in,	the	more	details	we	will	get	as	shown	in	the	following
screenshot:

	

A	bar	is	an	indication	of	a	packet	that	carries	data	between	the	initial	and	final
sequence	numbers.	The	bar	that	is	not	in	the	regular	graph	and	looks	like	it	runs
away	from	it	is	a	retransmission	and	the	gray	bar	is	a	duplicate	ACK.	We	will
learn	about	these	phenomena	in	Chapter	9,	UDP/TCP	Analysis.

Getting	information	through	TCP
stream	graphs	–	the	Throughput
Graph	window
The	Throughput	Graph	window	of	the	TCP	stream	graphs	enables	us	to	look	at
the	throughput	of	a	connection	and	check	for	instabilities.

Getting	ready
Open	an	existing	capture	or	start	a	new	capture.	Click	on	a	specific	packet	in	the
capture	file.	Even	though	you	can	use	this	feature	on	a	running	capture,	it	is	not
meant	for	online	statistics;	so	it	is	recommended	that	you	start	a	capture,	stop	it,
and	then	use	this	tool.

How	to	do	it...
To	view	TCP	stream	graph	statistics,	perform	the	following	steps:

1.	 Click	on	a	packet	in	the	stream	you	want	to	monitor.
2.	 From	the	Statistics	menu,	navigate	to	TCP	StreamGraph	|	Throughput

Graph.	The	following	window	will	open	up:	

	

In	the	graph,	we	see	that	the	throughput	is	not	stable	and	varies	between	around
20,000	bytes/sec	to	1000	bytes/sec.	This	can	be	due	to	an	unstable	file	transfer
(which	is	the	case	in	this	FTP	download	over	the	HSUPA	cellular	connection),	or
just	an	application	that	works	this	way	(for	example,	browsing	the	Internet).

How	it	works...
The	throughput	graph	simply	counts	the	TCP	sequence	numbers	over	time	and
since	sequence	numbers	are	actually	the	application's	data,	this	gives	us	the
application	throughput	in	bytes	per	second.

There's	more...
A	stable	file	transfer	should	look	almost	like	a	solid	line,	as	shown	in	the
following	graph:

Here,	MB	is	mega	bytes	and	Mb	is	mega	bits.

Getting	information	through	TCP
stream	graphs	–	the	Round	Trip	Time
window
The	Round	Trip	Time	window	of	the	TCP	stream	graphs	enables	us	to	look	at
the	round	trip	between	sequence	numbers	and	the	time	they	were	acknowledged.
Along	with	other	graphs,	it	provides	us	with	a	look	at	the	performance	of	the
connection.

Getting	ready
Open	an	existing	capture	or	start	a	new	capture.	Click	on	a	specific	packet	in	the
capture	file.	Even	though	you	can	use	this	feature	on	a	running	capture,	it	is	not
meant	for	online	statistics,	so	it	is	recommended	that	you	start	a	capture,	stop	it,
and	then	use	this	tool.

How	to	do	it...
To	view	the	TCP	stream	graph	statistics,	perform	the	following	steps:

1.	 Click	on	a	packet	in	the	stream	you	want	to	monitor.
2.	 From	the	Statistics	menu	navigate	to	TCP	StreamGraph	|	Round	Trip

Time	Graph.	The	following	window	will	open	up:	

	

In	the	preceding	graph,	we	see	that	most	of	the	sequence	numbers	were
acknowledged	in	a	short	time;	however,	there	is	some	instability	that	will
influence	the	TCP	performance.

How	it	works...
What	we	see	in	the	graph	is	a	plot	of	TCP	sequence	numbers	versus	the	time	that
took	to	acknowledge	them.	Actually,	this	is	the	time	between	a	sent	packet	and
the	ACK	received	for	that	packet.

There's	more...
When	you	see	a	graph	that	shows	instabilities,	it's	not	necessarily	a	problem.	It
can	also	be	that	this	is	how	the	application	works.	You	can	see	that	it	took	time
to	acknowledge	a	packet	because	there	is	a	problem,	or	because	a	server	is
waiting	for	a	response,	or	because	a	client	is	browsing	a	web	server	and	the	user
is	waiting	between	clicks	on	new	links.

Getting	information	through	TCP
stream	graphs	–	the	Window	Scaling
Graph	window
The	Window	Scaling	Graph	of	the	TCP	stream	graph	enables	us	to	look	at	the
window	size	published	by	the	receiving	side,	which	is	an	indication	of	the
receiver's	ability	to	process	data.	Along	with	the	other	graphs,	it	provides	us	with
a	look	at	the	performance	of	the	connection.

Getting	ready
Open	an	existing	capture	or	start	a	new	capture.	Click	on	a	specific	packet	in	the
capture	file.	Even	though	you	can	use	this	feature	on	a	running	capture,	it	is	not
meant	for	online	statistics,	so	it	is	recommended	that	you	start	a	capture,	stop	it,
and	then	use	this	tool.

How	to	do	it...
To	view	TCP	stream	graph	statistics,	perform	the	following	steps:

1.	 Click	on	a	packet	in	the	stream	you	want	to	monitor.
2.	 From	the	Statistics	menu	navigate	to	TCP	StreamGraph	|	Window

Scaling	Graph.	The	following	window	will	open	up:	

	

In	this	graph,	we	see	the	instability	caused	by	one	of	the	sides.	This	can	be	an
indication	of	a	slow	server	or	client	that	cannot	process	all	the	data	it	receives
and	therefore,	by	reducing	the	received	window	size,	it	tells	the	other	side	to
send	less	data.

How	it	works...
The	software	here	simply	watches	the	window	size	on	the	connection	and	draws
it.	In	Chapter	9,	UDP/TCP	Analysis,	we	will	get	into	the	details.

There's	more...
When	the	window	size	decreases,	the	application	throughput	should	decrease	as
well.	The	window	size	is	completely	controlled	by	the	two	ends	of	a	connection,
for	example,	a	client	and	a	server;	variations	in	the	window	size	do	not	have
anything	to	do	with	network	performance.

Chapter	6.	Using	the	Expert	Infos
Window
In	this	chapter	we	will	talk	about	the	following:

The	Expert	Infos	window	and	how	to	use	it	for	network	troubleshooting
Error	events	and	understanding	them
Warnings	events	and	understanding	them
Notes	events	and	understanding	them

Introduction
One	of	Wireshark's	strongest	capabilities	is	the	ability	to	analyze	network
phenomena	and	suggest	to	us	a	probable	cause	for	it.	Along	with	other	tools,	it
gives	us	detailed	information	on	network	performance	and	problems.	In	this
chapter,	we	will	learn	about	the	Expert	System.	It	is	a	tool	that	provides	us	with	a
deeper	analysis	of	network	phenomena,	including	events	and	problems.	Later	in
this	book,	we	will	provide	detailed	recipes	on	how	to	use	the	Expert	Infos
window	along	with	other	tools	to	find	and	resolve	network	problems.

In	the	first	recipe,	we	will	learn	how	to	work	with	the	Expert	Infos	window.	In
the	next	recipes,	we	will	learn	about	the	probable	causes	for	the	majority	of
events	that	you	can	expect.

The	Expert	Infos	window	and	how	to
use	it	for	network	troubleshooting
The	Expert	Infos	window	provides	us	with	a	list	of	events	and	network
problems	discovered	by	Wireshark.	In	this	recipe,	we	will	learn	how	to	start	the
Expert	Infos	window	and	how	to	refer	to	the	various	events.

Getting	ready
Start	Wireshark,	and	start	a	live	capture	or	open	an	existing	file.

How	to	do	it...
To	start	the	Expert	Infos	window,	perform	the	following	steps:

Navigate	to	the	Analyze	menu	and	click	on	Expert	Info.	The	following	window
will	open:

	

Now	you	can	choose	any	one	of	the	upper	bars:	Errors:,	Warnings:,	Notes:,
Chats:,	Details:,	or	Packet	Comments:.

Tip

The	number	at	the	right-hand	side	of	the	bar	shows	the	number	of	events	in	this
category.

The	upper	bars	give	you	the	following	information:

Errors:	These	are	serious	problems,	mostly	malformed	packets	or	missing
fields	in	a	protocol	header.	These	can	be	malformed	packets	of	various
types	such	as	malformed	SPOOLSS,	GTP,	or	others.	These	can	also	be	bad
checksum	errors	such	as	IPv4	bad	checksum.

In	the	following	screenshot	you	can	see	malformed	TCP	and	SSL	packets:

	

In	the	following	screenshot,	you	can	see	another	type	of	error,	which	is	a
protocol	(in	this	case	the	BOOTP/DHCP)	option	error,	that	is,	when
Wireshark	identifies	a	missing	field	in	the	packet:

	
Warnings:	A	warning	indicates	a	problem	in	the	application	or	in
communication,	things	such	as	TCP	zero	window,	TCP	window	full,
previous	segment	not	captured,	out-of-order	segment,	and	others	that	are
unnatural	to	the	protocol	behavior.	You	can	see	an	example	of	this	in	the

following	screenshot:

	
Notes:	A	note	is	when	Wireshark	indicates	an	event	that	may	cause	a
problem,	but	is	still	within	the	normal	behavior	of	the	protocol.	TCP
retransmission,	for	example,	will	be	displayed	here	because	even	though	it
is	a	critical	problem	that	slows	down	the	network,	it	is	still	under	the
normal	behavior	of	TCP.	Other	events	here	are	duplicate	ACK,	fast
retransmission,	and	so	on.
Chats:	This	tab	provides	information	about	the	usual	workflow,	for
example,	TCP	connection	start	(SYN),	connection	end	(FIN),	connection
reset	(RST),	HTTP	Post,	HTTP	codes,	and	so	on.
Details:	This	tab	provides	all	the	events	in	an	ordered	list.	In	older	versions
of	Wireshark,	this	was	directly	under	the	Analyze	menu.
Packet	Comments:	You	can	manually	add	a	comment	to	every	packet.
This	column	will	show	all	the	comments	in	the	capture	file.

To	add	a	comment	to	a	packet,	right-click	on	it	and	choose	Packet	Comment....
A	window	will	open	in	which	you	will	be	able	to	add	or	change	your	comment.
You	can	see	this	in	the	following	screenshot:

	

To	go	to	the	event	in	the	packet	capture	pane,	simply	click	on	the	packet	under
the	event	in	the	Expert	Infos	window,	and	it	will	lead	you	to	it.

Note

It	is	important	to	note	that	although	a	warning	event	may	have	no	importance,	a
note	event	can	influence	the	network	badly.	Always	get	into	the	problem	details,
see	where	is	it	coming	from,	and	what	is	its	meaning.

How	it	works...
The	Wireshark	Expert	Infos	window	is	an	expert	system	that	provides	us	with
information	about	problems	in	the	network	and	also	some	suggestions	to	the
probable	cause	of	it	in	some	cases.	Although	it	gives	reasonable	results,	always
double-check	its	findings.

There	are	cases	where	Wireshark	finds	problems	that	are	not	genuine,	and	there
are	other	cases	where	the	real	problems	that	exist	do	not	show	up.

Tip

Don't	forget	that	the	best	troubleshooting	tool	is	your	brain	(and	your	knowledge
of	networking).	Wireshark	is	a	very	smart	tool,	but	still	it	is	only	a	tool.

It	can	be	that	you	started	the	capture	during	a	data	transfer;	so	you	will	see	the
previous	segment's	loss	messages	or	even	more	sophisticated	problems,	when	for
some	reason	(good	or	not)	you	have	captured	only	a	part	of	the	data,	and
Wireshark	refers	to	it	as	a	complete	stream	of	data	and	displays	many	errors
about	it.	We	will	see	many	examples	of	these	issues	later	in	the	book.

There's	more...
Expert	Info	severities	can	also	be	filtered	and	presented	in	the	packet	pane	by
displaying	filters.	To	view	events	according	to	display	filters,	perform	the
following	steps:

1.	 Click	on	Expression...	on	the	right-hand	side	of	the	display	filter	window.
2.	 Scroll	down	to	get	the	Expert	messages	(you	can	just	type	the	word	expert

and	you	will	get	there).

As	illustrated	in	the	following	screenshot,	you	will	get	the	following	filters:
expert.message,	expert.group,	and	expert.severity:	

expert.group	refers	to	expert	message	groups.	This	filter	categorizes
problems	according	to	their	types,	for	example,	checksum	problems,	TCP
sequence-related	problems,	and	so	on.	Have	a	look	at	the	following
screenshot	and	you	will	see	a	list	of	these	issues:	

The	main	categories	in	expert.group	are	as	follows:
Checksum:	This	indicates	an	invalid	checksum.
Sequence:	This	indicates	TCP	sequence-related	problems.
Response:	This	indicates	application	response	code	problems	(4xx	response
code	files).
Request:	This	indicates	application	requests.
Undecoded:	This	indicates	data	that	cannot	be	decoded	by	dissector.
Reassemble:	This	indicates	problems	while	reassembling	(usually	when	a
fragment	is	missing).
Malformed:	This	indicates	a	malformed	packet	or	dissector	problem,	and
the	dissection	of	this	packet	is	aborted.
Debug:	This	indicates	debugging	(should	not	occur	in	released	versions).
Protocol:	This	indicates	the	violation	of	protocol	specification	(for
example,	missing	field,	wrong	length,	and	so	on),	dissection	of	this	packet
will	probably	be	continued.
Comment:	This	indicates	packets	with	a	comment	added	to	them
(comments	can	be	added	to	a	packet	by	right-clicking	on	it	and	choosing
the	Packet	comment	…	option.

expert.message	refers	to	specific	messages.	Here,	for	example,	you	can
configure	a	filter	that	displays	a	message	that	contains	or	matches	a	specific
string.
expert.severity	refers	to	messages	with	specific	severities,	that	is	error,
warning,	note	and	so	on.

You	can	also	choose	to	show	events	severities	on	the	Expert	Info	window.

1.	 Navigate	to	Edit	|	Preferences....
2.	 Choose	User	Interface.
3.	 In	the	lower	half	of	the	right	pane,	mark	the	Display	LEDs	in	the	Expert

Infos	dialog	tab	labels:	checkbox	as	presented	in	the	following	screenshot:

Click	on	OK.
Open	the	Expert	Infos	window	and	the	severity	LEDs	will	appear	on	each

bar.

The	severity	level	LED	will	also	appear	on	the	lower	left	corner	of	the	Wireshark
main	window.

See	also
Chapter	9,	UDP/TCP	Analysis

Error	events	and	understanding	them
In	this	recipe,	we	will	get	into	error	and	event	types,	checksum	errors,
malformed	packets,	and	other	types	of	errors,	and	what	we	can	understand	from
them.

Getting	ready
Start	capturing	or	open	an	existing	file,	and	then	start	the	Expert	Infos	window.

How	to	do	it...
1.	 From	the	Analyze	menu,	open	Expert	Infos	by	clicking	on	Expert	Info.
2.	 Click	on	the	Errors:	bar	(should	be	opened	as	default).	You	will	get	the

following	window	(all	events	are	examples):	

In	the	preceding	window,	you	can	see	the	following	two	types	of	errors:
Checksum	errors:	These	can	be	in	Ethernet,	IP,	or	other	protocols.	In	this
case,	it	can	be	because	of	real	errors	or	offload.
Malformed	packets:	These	are	usually	in	the	application	protocols.	In	this
case	also,	it	can	be	due	to	a	real	problem	or	a	dissector	error.

How	it	works...
Checksum	is	an	error-checking	mechanism	that	uses	a	byte	or	a	sequence	of
bytes	inserted	in	the	packet	in	order	to	implement	a	frame	verification	algorithm.
The	principle	of	error-checking	algorithms	is	to	calculate	a	formula	over	the
entire	message	(layer	4),	packet	(layer	3)	or	frame	(layer	2),	insert	the	result	in
bytes	inside	the	packet,	and	when	the	packet	arrives	at	the	destination,	it
calculates	the	formula	again.	If	we	get	the	same	result,	it	is	a	good	packet;	if	not,
there	is	an	error.	The	error-checking	mechanism	can	be	calculated	over	the	entire
packet	or	only	over	the	header,	depending	on	the	protocol.

Offload	mechanisms	are	mechanisms	on	which	the	IP,	TCP,	and	UDP	checksums
are	calculated	on	the	NIC	just	before	they're	transmitted	to	the	wire.	In
Wireshark,	these	show	up	as	corrupt	packets	because	Wireshark	captures	packets
before	they	are	sent	to	the	network	adapter;	therefore,	it	will	not	see	the	correct
checksum	because	it	has	not	been	calculated	yet.

For	this	reason,	even	though	it	might	look	like	severe	errors,	in	many	cases
checksum	errors	are	actually	Wireshark	errors	of	misconfiguration.	In	cases
where	you	see	many	checksum	errors	on	packets	that	are	sent	from	your	PC,	it	is
probably	because	of	offload.

To	cancel	the	checksum	validation,	you	can	do	either	of	the	following	depending
on	your	protocol:

For	IPv4,	when	you	see	many	checksum	errors	and	you	are	sure	they	are
because	of	the	offload,	navigate	to	Edit	|	Preferences....	Further,	navigate
to	Protocols	|	IPv4	and	uncheck	the	Validate	the	IPv4	checksum	if
possible:	checkbox.
For	TCP,	when	you	see	many	checksum	errors	and	you	are	sure	they	are
because	of	the	offload,	navigate	to	Edit	|	Preferences....	Further,	navigate
to	Protocols	|	TCP	and	uncheck	the	Validate	the	TCP	checksum	if
possible:	checkbox.

There's	more...
Malformed	packets	can	be	Wireshark	bugs	or	real	malformed	packets.	Use	other
tools	for	isolating	the	problem.	Suspected	bugs	can	be	reported	on	the	Wireshark
website.

Tip

When	you	see	a	large	amount	of	malformed	packets	of	checksum	errors,	it	is
probably	because	of	offload	or	dissector	errors.	Networks	with	more	than	1-2
percent	errors	of	any	kind	will	cause	many	other	events	(retransmissions	for
example)	and	will	become	much	slower	than	expected,	and	therefore,	you	cannot
have	a	high	error	rate	with	a	functioning	network!

See	also
Chapter	9,	UDP/TCP	Analysis

Warning	events	and	understanding
them
As	described	earlier,	warning	events	indicate	problems	in	the	application	or	in
communication.	In	this	recipe,	we	will	describe	the	main	events	in	this	category.

Getting	ready
Start	capturing	or	open	an	existing	file,	and	start	the	Expert	Infos	window.

How	to	do	it...
1.	 From	the	Analyze	menu,	open	Expert	Infos	by	clicking	on	Expert	Info.
2.	 Click	on	the	Warnings:	bar.	You	will	get	the	following	window	(all	events

are	examples):	

You	will	see	here	several	event	categories:
Reassembly	problems:	These	are	mostly	un-reassembled	packets.	These
are	usually	indicated	as	Wireshark	dissector	problems.
TCP	window	problems:	These	are	mostly	zero	window	and	window	full
problems.	These	usually	indicate	slow-end	devices	(servers,	PCs,	and	so
on).
Segment	loss,	segments	not	in	order:	These	indicate	previous	segment
losses	and	the	ACKed	segment	that	wasn't	captured.	These	are	usually	TCP
problems	that	are	caused	by	network	problems.

How	it	works...
Wireshark	watches	the	parameters	of	the	monitored	packets	as	follows:

It	watches	TCP	window	sizes	and	checks	if	the	window	size	reduced	to	zero
It	looks	for	TCP	packets	(segments)	that	are	out	of	order,	that	is,	if	they
were	sent	before	or	after	the	expected	time
It	looks	for	ACKs	for	TCP	packets	that	were	not	sent

These	parameters,	along	with	many	others,	provide	you	with	a	good	starting
point	to	look	for	network	problems.	We	will	go	into	the	details	of	it	in	Chapter	9,
UDP/TCP	Analysis.

There's	more...
Don't	forget	that	warning	events	are	those	that	Wireshark	refers	to	as	important,
but	it	is	not	necessarily	so.	If,	for	example,	you	have	previous	segment	not
captured,	they	will	be	under	warnings,	but	it	can	be	due	to	capture	problems.

See	also
Chapter	9,	UDP/TCP	Analysis

Notes	events	and	understanding	them
As	described	earlier,	when	Wireshark	indicates	that	an	event	may	cause	a
problem	but	is	still	inside	the	normal	behavior	of	the	protocol,	it	will	be	under
the	Notes	bar.	TCP	retransmission,	for	example,	will	be	displayed	under	the
Notes	bar	because	even	though	it	is	a	critical	problem	that	slows	down	the
network,	it	is	still	under	the	normal	behavior	of	TCP.

Getting	ready
Start	capturing	or	open	an	existing	file	and	start	the	Expert	Infos	window.

How	to	do	it...
1.	 From	the	Analyze	menu,	open	Expert	Infos	by	clicking	on	Expert	Info.
2.	 Click	on	the	Notes	bar.	You	will	get	the	following	window	(all	events	are

examples):	

	

You	will	see	here	several	event	categories:
Retransmissions,	duplicate	ACKs,	fast	retransmissions	that	usually	indicate
slow	network,	packet	loss,	or	very	slow	end	devices	or	applications
Keep-alives	that	indicate	TCP	or	application	problems
Time	to	live	and	routing	events	that	in	most	cases	indicate	routing	problems

Tip

Additional	events	will	be	discussed	in	Chapter	9,	UDP/TCP	Analysis,	Chapter
10,	HTTP	and	DNS,	Chapter	11,	Analyzing	Enterprise	Applications',	Behavior,
and	Chapter	12,	SIP,	Multimedia,	and	IP	Telephony.

How	it	works...
Wireshark	watches	the	parameters	of	the	monitored	packets.	It	watches	TCP
sequences	and	acknowledges	numbers	while	checking	for	retransmissions	and
other	sequencing	problems.	It	looks	for	IP	Time	To	Live	(TTL)	with	value	of	1
coming	from	a	remote	network,	and	tells	you	it	is	a	problem.	It	looks	for	keep-
alives	that	may	be	in	a	normal	condition	but	can	also	indicate	a	problem.

These	parameters,	along	with	many	others,	provide	you	with	a	good	starting
point	to	look	for	network	performance	problems.

There's	more...
Many	symptoms	that	are	seen	here	can	be	an	indication	of	several	types	of
problems.	For	example,	a	packet	can	be	retransmitted	because	of	an	error	that
caused	the	packet	to	be	lost,	because	of	bad	network	conditions	(low	bandwidth
or	high	delay)	that	caused	the	packet	not	to	arrive	on	time,	and	it	can	be	also
because	of	a	nonresponsive	server	or	client.	The	Expert	Info	system	will	give
you	the	symptom.	We	will	learn	later	in	this	book	how	to	solve	this	problem.

See	also
You	can	read	more	on	TCP	performance	issues	in	Chapter	9,	UDP/TCP
Analysis.	It	includes	TCP	retransmissions,	fast	retransmissions	and	why
they	happen,	what	are	ACKs	and	duplicate	ACKs,	zero	window,	window
changes	and	other	TCP	sliding	windows	issues,	and	more.

Chapter	7.	Ethernet,	LAN	Switching,
and	Wireless	LAN
In	this	chapter	we	will	cover	the	following	topics:

Discovering	broadcast	and	error	storms
Analyzing	Spanning	Tree	Protocols
Analyzing	VLANs	and	VLAN	tagging	issues
Analyzing	wireless	(Wi-Fi)	problems

Introduction
In	this	chapter,	we	will	focus	on	how	to	find	and	resolve	layer-2-based	problems
with	the	focus	on	Ethernet-based	issues	such	as	broadcast	events	and	errors	and
how	to	find	out	where	they	are	coming	from.	We	will	also	focus	on	LAN
protocols	such	as	Spanning	Tree,	VLANs,	and	Wireless	LAN.

These	issues	have	to	be	resolved	before	we	go	up	to	layers	3,	4,	and	the
Application	layers,	since	layer	2	problems	will	be	reflected	in	the	upper	layer
protocols.	For	example,	packet	losses	in	layer	2	will	cause	retransmissions	in
TCP,	which	is	a	layer	4	protocol,	and	these	can	cause	slow	application	response
time	in	the	upper	layers.

Discovering	broadcast	and	error
storms
One	of	the	most	troublesome	problems	in	communication	networks	is	the
broadcast	and	error	storms.	These	problems	can	happen	because	of	layer	2
loops,	layer-2-based	attacks,	a	problematic	network	adapter,	or	a	service	that
sends	packets	to	the	network.

In	this	chapter	we	will	provide	some	basic	recipes	on	how	to	find,	isolate,	and
solve	these	types	of	problems.

Tip

A	broadcast	storm	is	when	you	get	thousands	and	even	tens	of	thousands	of
broadcasts	per	second.	In	most	cases	it	would	lock	out	the	network	completely.

Getting	ready
In	these	types	of	problems,	you	will	usually	be	called	on	to	solve	the	network	is
very	slow	or	network	has	stopped	working	problems.

Several	important	facts	to	remember	are:

Broadcasts	are	not	forwarded	by	routers.
Broadcasts	are	not	forwarded	between	VLANs	(this	is	why	VLANs	are
called	broadcast	domains),	so	every	VLAN	is	a	single	broadcast	domain.
Error	packets	are	not	forwarded	by	LAN	switches	(at	least	not	through	the
good	ones).
Multicasts	are	forwarded	through	switches,	unless	configured	otherwise.
Multicasts	are	forwarded	through	routers	only	if	the	routers	are	configured
to	do	so.
A	reasonable	number	of	broadcasts	are	transmitted	in	every	network.	This	is
how	networks	work.	Too	many	broadcasts	could	be	a	problem.

Tip

There	is	a	difference	between	too	many	broadcasts	and	a	broadcast	storm.	Too
many	broadcasts	(for	example,	a	few	hundred	per	second)	can	load	the	network
but	still,	in	most	cases,	users	will	not	notice	it.	Broadcast	storms	will	lock	out	the
network	completely.

How	to	do	it...
To	find	out	where	the	problem	comes	from,	go	through	the	following	steps:

1.	 Since	"slow	network"	is	a	problem	sensed	by	users,	start	with	asking	the
following	questions:

Is	this	problem	in	the	HQ?
In	a	single	branch?
All	over	the	network	or	a	specific	VLAN?

Don't	ask	the	users	about	VLANs,	of	course;	users	are	not	networking
experts.	Ask	them	about	applications	running	on	their	group,	on	their
department,	and	so	on.

Tip

In	an	organization	network,	VLAN	will	usually	be	configured	per
department	(or	several	departments)	and	per	geographical	area	(or
several	areas)	or	even	per	organization	functionality;	for	example,	HR
VLAN,	finance	VLAN,	users	of	a	specific	software	VLAN,	and	so	on.
By	asking	if	the	problem	is	as	per	one	of	these	characters,	you	will	be
able	to	narrow	the	area	in	which	you	need	to	look	for	the	problem.

2.	 The	next	question	should	be	a	trivial	one:	"Is	the	network	still	working?"	In
a	broadcast	storm,	the	network	will	become	very	slow;	in	most	cases,	to	the
point	that	applications	will	stop	functioning.	In	this	case,	you	have	the
following	typical	problems:

Spanning	Tree	Problems
A	device	that	generates	broadcasts
Routing	loops	(will	be	discussed	in	Chapter	8,	ARP	and	IP	Analysis)

Tip

The	question	I'm	always	asked	is:	"How	many	broadcasts	are	too
many?"	Well,	there	are,	of	course,	several	answers	for	this.	It	depends
on	what	the	network	devices	are	doing	and	the	protocols	that	are
running	on	them.

A	reasonable	number	of	broadcasts	should	be	from	1	to	2	up	to	4	to	5

per	device	per	minute.	For	example,	if	your	network	is	built	from	100
devices	on	a	single	VLAN,	you	should	expect	no	more	then	5-10
broadcasts	per	second	(5	broadcasts	x	100	devices	gives	500
broadcasts	per	minute,	that	is,	around	9-10	per	second).	More	than
these	is	also	reasonable,	as	long	as	they	are	not	coming	in	thousands
and	you	know	what	they	are.

Spanning	Tree	Problems

In	Spanning	Tree	Problem,	you	will	get	thousands	and	even	tens	of	thousands	of
broadcasts	per	second	(refer	to	the	How	it	works...	section	in	this	recipe	to	know
why).	In	this	case,	your	Wireshark,	and	probably	your	laptop,	will	freeze.	Close
Wireshark,	disconnect	cables	to	isolate	the	problem,	and	check	the	STP
configuration	in	the	switches.

A	device	that	generates	Broadcasts

A	typical	broadcast	storm	generated	from	a	specific	device	will	have	the
following	characteristics:

Significant	number	of	broadcasts	per	second	(thousands	and	more)
In	most	cases,	the	broadcasts	would	be	from	a	single	source;	but	in	case	of
attacks,	they	can	be	from	multiple	sources
Usually	in	constant	packet/second	rate,	that	is,	with	intervals	between
frames	that	are	nearly	equal

We	can	see	how	we	find	a	broadcast	storm	according	to	the	parameters
mentioned	in	the	preceding	list	in	the	next	three	screenshots.

In	the	following	screenshot	we	see	a	large	number	of	broadcast	packets	sent
from	the	source	MAC	(HP	network	adapter)	to	ff:ff:ff:ff:ff:ff:

	

In	the	preceding	screenshot	we	just	saw	that	the	time	column	is	configured	in
seconds	since	the	previous	displayed	packet.	You	can	configure	it	by	navigating
to	View	|	Time	Display	Format.

The	following	screenshot	shows	the	traffic	on	an	IO	Graph;	we	see	that	the	total
number	of	packets/second	is	5,000:

	

In	the	following	screenshot	we	see	what	we	will	get	in	the	Conversations
window.	Here,	we	will	also	get	an	enormous	number	of	broadcasts	that	can	be
viewed	in	the	Ethernet	and	the	IPv4	statistics	(I've	captured	data	for	18	seconds).

	

In	the	preceding	case,	the	problem	was	a	service	called	SMB	Mailslot	Protocol.
Simple	trial	and	error	to	find	what	this	service	is,	and	disabling	it	on	the	station
that	caused	it	solved	the	problem.

Tip

It	is	important	to	note	that	when	you	disable	a	service	(especially	the	one	that
belongs	to	the	operating	system),	make	sure	that	the	system	keeps	functioning
and	stays	stable	over	time.	Don't	leave	the	site	before	you	have	verified	it!

Fixed	pattern	broadcasts

You	can	also	have	broadcasts	in	fixed	patterns,	for	example,	every	fixed	amount
of	time,	as	shown	in	the	following	screenshot:

	

The	graph	is	configured	for	Tick	interval:	(under	X	Axis)	of	1	min,	and	for	the
following	filters:

The	red	filter	for	all	broadcasts	in	the	network	(eth.addr	==
ff:ff:ff:ff:ff:ff)
The	green	filter	for	broadcasts	that	are	ARP	requests	(arp.opcode	==1)

What	we	see	here	is	that	around	every	five	minutes,	there	is	a	burst	of	ARP
requests	(the	green	dots).	If	we	click	on	one	of	the	dots	in	the	graph,	it	will	take
us	to	the	packet	in	the	capture	pane.	In	the	following	screenshot,	we	see	the	scan
pattern	that	happens	every	five	minutes:

	

In	the	preceding	screenshot,	we	can	see	that	it	is	the	D-Link	router	that	scans	the
internal	network.	This	can	be	good	or	bad,	and	we	will	get	to	the	details	later	in
Chapter	14,	Understanding	Network	Security.	In	any	case,	it's	good	to	check
what	is	running	in	our	network.

How	it	works...
Broadcasts	in	IPv4	networks	are	quite	common,	and	these	layer	3	broadcasts	will
be	sent	over	layer	2	broadcasts.	Every	time	a	layer	3	device	sends	a	broadcast	to
the	network	(an	IP	address	that	ends	with	all	1s,	refer	to	Chapter	8,	ARP	and	IP
Analysis),	it	will	be	converted	to	layer	2's	all	fs	destination	address.

There	are	several	families	of	broadcasts	that	you	will	see	in	IP-based	networks.
Some	of	them	are	as	follows:

TCP/IP-based	network	protocols	such	as	ARP	requests,	DHCP	requests,
and	others
Network	protocols	such	as	NetBIOS	Name	Service	(NBNS)	queries,
NetBIOS	Server	Message	Block	(SMB)	announcements,	Network	Time
Protocol	(NTP),	and	others
Applications	that	send	broadcasts	such	as	Dropbox,	Microsoft	Network
Load	Balancing,	and	others

In	IPv6,	we	don't	have	broadcasts,	but	we	have	unicasts,	multicasts,	and
anycasts.	Since	the	protocol	works	with	multicasts	for	discovery	mechanisms,
announcements,	and	other	mechanisms,	we	will	see	a	lot	of	them.

There's	more…
A	problem	I	come	across	in	many	cases	is	how	to	use	the	broadcast	and
multicast	storm	control	definitions	in	LAN	switches	(the	storm-control
broadcast	level	[high	level]	[lower	level]	command	in	Cisco	devices).

The	problem	is	that	in	many	cases,	I	see	configurations	that	limit	the	number	of
broadcasts	to	50,	100,	or	200	broadcasts	per	second,	and	this	is	not	enough.	In	a
network,	you	could	happen	to	install	a	software	that	sends	broadcasts	or
multicasts	to	the	network	that	crosses	these	values.	Then,	according	to	what	you
have	configured	in	the	switch,	it	will	start	sending	traps	to	the	management
system	or	even	disconnecting	ports	(the	storm-control	action	{shutdown	|
trap}	command	in	Cisco	devices),	depending	on	what	you	have	configured.

The	solution	for	this	is	simply	to	configure	high	levels	of	broadcasts	as	the
threshold.	When	a	broadcast	storm	happens,	you	will	get	thousands	of
broadcasts;	so	configuring	a	threshold	level	of	1,000	to	2,000	broadcasts	or
multicasts	per	second	provides	you	with	the	same	protection	level,	without	any
disturbances	to	the	regular	network	operation.

See	also
For	more	information	about	IPv4	refer	to	Chapter	8,	ARP	and	IP	Analysis

Analyzing	Spanning	Tree	Protocols
All	of	us	have	worked	with,	or	at	least	heard	about,	STP	(Spanning	Tree
Protocol).	The	reason	I	call	this	recipe	Analyzing	Spanning	Tree	Protocols	is
because	there	are	three	major	versions	of	it	as	follows:

Spanning	Tree	Protocol	(STP):	This	is	an	IEEE	802.1D	standard	from
1998	called	802.1D-1998
Rapid	Spanning	Tree	Protocol	(RSTP):	This	is	an	IEEE	802.1W	standard
from	2001,	later	added	to	802.1D,	called	802.1D-2004
Multiple	Spanning	Tree	(MST):	This	was	originally	defined	in	IEEE
802.1S	and	later	merged	into	IEEE	802.1Q

There	are	also	some	proprietary	versions	from	Cisco	and	other	vendors.	In	this
recipe	we	will	focus	on	the	standard	versions,	and	learn	how	to	troubleshoot
problems	that	might	occur	during	STP/RSTP/MST	operations.

Getting	ready
The	best	way	to	find	out	STP	problems	is	to	log	in	to	the	LAN	switches	and	use
the	vendor's	commands	(for	example,	Cisco	IOS	or	Juniper	JUNOS	CLI)	to	find
and	fix	the	problem.	If	you	have	properly	configured	SNMP	on	your	network
device,	you	will	get	all	the	messages	on	the	management	console.

The	purpose	of	this	recipe	is	to	see	how	to	use	Wireshark	for	this	purpose,	even
though	we	still	recommend	to	use	it	as	a	second	line	tool	for	this	purpose.

So	just	open	your	laptop,	start	Wireshark,	and	start	capturing	data	on	the	LAN.

How	to	do	it...
There	are	several	things	to	notice	in	a	network	regarding	STP:

Which	STP	version	is	running	on	the	network?
Are	there	any	topology	changes?

Which	STP	version	is	running	on	the	network?

Wireshark	will	provide	you	with	the	version	of	the	STP	type	(STP,	RSTP,	or
MST)	running	on	the	network	by	looking	at	the	Bridge	Protocol	Data	Units
(BPDUs).	BPDUs	are	the	update	frames	that	are	multicast	between	switches.

The	protocol	versions	are:

For	STP,	protocol	version	ID	equals	0
For	RSTP/MST,	the	protocol	version	ID	equals	3

Tip

In	the	standards	you	will	not	find	the	word	"switch";	it	will	always	be	"bridge"
or	"multiport	bridge".	In	this	book,	we	will	use	the	terms	bridge	and	switch
alternatively.

Are	there	too	many	topology	changes?

When	you	monitor	STP	operations,	you	may	be	concerned	when	you	see	many
topology	changes.	Topology	changes	are	normal	in	STP,	but	too	many	of	them
can	have	an	impact	on	network	performances.

A	topology	change	happens	when	a	new	device	is	connected	to	the	network.	You
can	see	a	topology	change	in	the	following	screenshot:

	

When	you	see	too	many	topology	changes,	configure	the	LAN	switch	ports	that
are	connected	to	hosts,	which	do	not	support	STP,	(typically,	end	stations	that
users	frequently	power	on	and	off)	with	the	portfast	feature	(applied	for	Cisco
switches;	for	other	vendors,	check	the	vendor's	manual).

Tip

In	the	old	STP	(IEEE	802.1d),	after	connecting	a	device	to	a	switch	port,	it	takes
the	switch	around	a	minute	to	start	and	forward	packets.	This	can	be	a	problem
when	a	client	tries	to	log	in	to	the	network	servers	during	this	period	of	time.
The	portfast	feature	forces	the	port	to	start	forwarding	within	a	few	seconds
(usually	8	to	10),	in	order	to	prevent	these	kinds	of	problems.

If	topology	changes	continue,	check	what	can	be	the	problem	and	who	is	causing
it.

How	it	works...
Spanning	Tree	Protocol	prevents	a	loop	in	the	local	area	networks.	A	loop	can
happen	if	you	connect	two	or	more	switches	with	multiple	connections	as	shown
in	the	following	figure:	

	

Let's	see	how	a	loop	is	created:

1.	 Station	A	sends	a	broadcast	to	the	network.	A	broadcast	can	be	an	ARP,
NetBIOS,	or	any	other	packet	with	all	ffs	in	the	destination	MAC	address.

2.	 Since	broadcasts	are	forwarded	to	all	ports	of	the	switch,	SW	1	receives	the
broadcast	from	port	1	and	forwards	it	to	ports	2	and	3.

3.	 SW	1	and	SW	3	will	forward	the	packets	to	their	other	ports,	which	will	get
them	to	ports	2	and	3	of	SW	4.

4.	 SW	4	will	forward	the	packet	from	port	2	to	port	3,	and	the	packet	coming
from	port	3	to	port	2.

5.	 We	will	get	two	packets	circling	endlessly:	the	one	that	has	been	forwarded
to	port	3	(the	red	arrows),	and	the	one	that	has	been	forwarded	to	port	2	(the
green	arrows)	of	SW	1.

6.	 Depending	on	the	switch	forwarding	speed,	we	will	get	up	to	tens	of
thousands	of	packets	that	will	block	the	network	completely.

The	Spanning	Tree	Protocol	prevents	this	from	happening	by	simply	building	a

tree	topology,	that	is,	by	defining	a	loop-free	topology.	Links	are	disconnected
and	brought	back	to	service	in	the	case	of	a	failure.

In	the	following	figure,	we	see	how	we	initially	connect	all	switches	with
multiple	connections	between	them,	and	how	STP	creates	the	tree:	

	

BPDUs	are	update	frames	that	are	sent	by	multicast	between	the	LAN	switches.

First,	on	the	Ethernet	level	as	we	see	in	the	following	screenshot,	the	packet	will
be	multicast	from	the	source	MAC	of	the	switch	sending	the	update:	

	

The	BPDU	is	carried	by	Ethernet	802.3	frame	has	the	format	as	shown	in	the
next	diagram:	

	

In	the	following	table,	you	can	see	the	fields	in	the	STP	frame:

Field Bytes What	is	it Values Display	filter

Protocol 2 The	protocol	identifier. Always	0 stp.protocol

ID

Version 1 The	protocol	version. For	STP	=	0

For	RSTP	=	2

For	MST	=	3

stp.version

Message
Type

1 The	BPDU	type. For	STP	=	0

For	RSTP	=	2

For	MST	=	2

stp.type

Flags 1 The	protocol	flags. In	the	previous	illustration. stp.flags

Root	ID 8 The	root	identifier	(Root	ID),	that	is,
the	bridge	priority	concatenated	with
the	bridge	hardware	address	(MAC).

The	MAC	address	of	the
root	bridge.

stp.root.prio

stp.root.ext

stp.root.hw

Root
Path
Cost

4 The	path	cost	to	the	root. Path	cost	as	calculated	by
Spanning	Tree.	In	case	this
is	the	root,	path	cost	will	be
zero.

stp.root.cost

Bridge
ID

8 The	bridge	identifier	(Bridge	ID),	that
is,	the	bridge	priority	concatenated	with
the	bridge	hardware	address	(MAC).

The	bridge	MAC	address. stp.bridge.prio

stp.bridge.ext

stp.bridge.hw

Port	ID 2 The	port	identifier. The	identifier	of	the	port
from	which	the	update	was
sent.

stp.port

Message
Age

2 The	Message	Age	field	indicates	the
amount	of	time	that	has	elapsed	since	a
bridge	sent	the	configuration	message
on	which	the	current	configuration
message	is	based.

For	every	BPDU,	the	bridge
that	sends	the	frame	sends	a
value	of	0,	incremented	by	1
for	every	bridge	that
forwards	it.

stp.msg_age

Max.
Time

2 The	maximum	age,	which	is	the
maximum	time	(practically	the	number

Usually	20 stp.max_age

of	bridges)	that	the	frame	can	stay	in
the	network.

Hello
Time

2 Time	between	BPDUs. Usually	2	seconds stp.hello

Forward
Delay

2 The	Forward	Delay	field	indicates	the
length	of	time	that	bridges	should	wait
before	transitioning	to	a	new	state	after
a	topology	change.

Usually	15	seconds stp.forward

Note	that	in	the	case	of	MST,	an	additional	header	will	be	added	for	the	MST
parameters.

Port	states

In	STP,	the	port	states	are	as	follows:

Disabled:	In	this	state	no	frames	are	forwarded	and	no	BPDUs	are	heard
Blocking:	In	this	state	no	frames	are	forwarded,	but	BPDUs	are	heard
Listening:	In	this	state	no	frames	are	forwarded,	but	the	port	listens	for
frames
Learning:	In	this	state	no	frames	are	forwarded,	but	MAC	addresses	are
captured
Forwarding:	In	this	state	frames	are	forwarded,	and	MAC	addresses	are
captured

The	moment	you	connect	a	device	to	the	LAN	switch,	the	port	goes	through
these	stages	and	the	time	it	takes	is	as	follows:

From	Blocking	to	Listening	takes	20	seconds
From	Listening	to	Learning	takes	15	seconds
From	Learning	to	Forwarding	takes	15	seconds

In	RSTP	and	MST,	the	port	states	are	as	follows:

Discarding:	In	this	state	frames	are	discarded
Learning:	In	this	frame	no	frames	are	forwarded,	and	MAC	addresses	are
captured
Forwarding:	In	this	state	frames	are	forwarded,	and	MAC	addressesare
captured

The	entire	port	state	transition	from	Discarding	to	Forwarding	should	take	a	few
seconds,	depending	on	the	network	topology	and	complexity.

There's	more…
For	Spanning	Tree	debugging,	the	best	thing	is	to	get	the	data	from	a	direct
connection	to	the	LAN	switches.	A	well-configured	SNMP	trap	to	a	management
system	can	also	assist	in	this	task.

Some	examples	of	STP	packets	are	as	follows:

In	the	following	screenshot	you	see	an	STP	frame.	You	can	see	that	the
source	MAC	address	is	a	Nortel	address,	and	in	the	BPDU	itself	you	see
that	the	root	and	the	bridge	identifiers	are	equal;	this	is	because	the	bridge
that	sends	the	packet	is	the	root.	The	port	ID	is	8003,	which	in	Nortel
switches	indicates	port	number	3.

In	the	following	screenshot,	you	can	see	a	Rapid	STP	BPDU.	You	can	see
here	the	protocol	identifier	that	equals	2	and	the	port	state	that	is
designated.

In	the	previous	screenshot,	you	can	see	an	example	for	MST.	Here	we	see
the	MST	extension	right	after	the	standard	STP	frame.

Analyzing	VLANs	and	VLAN	tagging
issues
VLAN,	or	Virtual	LAN,	is	a	mechanism	that	divides	a	LAN	into	separate	LANs
without	any	connectivity	between	them,	and	this	is	where	the	name	virtual
comes	from.	In	this	section	we	will	have	a	look	at	recipes	to	monitor	VLAN
traffic.

The	purpose	of	this	recipe	is	to	give	the	reader	a	general	description	of	how	to
use	Wireshark	for	VLAN	issues.	An	easier	way	to	solve	related	problems	is	to
use	the	vendor's	CLI	(Cisco	IOS,	Juniper	JUNOS,	and	so	on)	for	this	purpose.

Getting	ready
We	will	discuss	two	issues	in	this	recipe:

How	to	monitor	traffic	inside	a	VLAN
How	to	view	tagged	frames	going	through	a	VLAN-tagged	port

In	the	first	case,	a	simple	configuration	is	required.	In	the	second	case,	there	are
some	points	to	take	care	of.

While	capturing	on	a	VLAN,	you	won't	necessarily	see	the	VLAN	tags	in
packets.	The	question	of	whether	you	will	see	the	VLAN	tags	actually	depends
on	the	operating	system	you	are	running,	and	if	your	Network	Interface	Card
(NIC)	and	the	NIC	driver	supports	this	feature.

Note

The	question	of	whether	your	OS	and	NIC	supports	VLAN	tagging	entirely
depends	on	the	OS	and	the	NIC	vendor.	Go	to	the	vendor's	manuals	or	Goggle	it
to	find	out.

In	the	following	figure	you	can	see	a	typical	topology	with	VLANs.	The	upper
switch	is	connected	by	two	trunks	(these	are	ports	that	tag	the	Ethernet	frames)
to	the	lower	switches.	On	this	network	you	have	VLANs	10,	20,	and	30,	while
PCs	connected	to	each	of	the	VLANs	will	not	be	able	to	see	PCs	from	other
VLANs.

	

How	to	do	it...
Connect	Wireshark	to	the	switch	you	want	to	monitor.	Let's	look	at	the	preceding
configuration	(shown	in	the	preceding	figure).

Monitoring	traffic	inside	a	VLAN

In	order	to	monitor	traffic	on	an	entire	VLAN

1.	 Connect	your	laptop	to	the	central	switch	and	to	one	of	the	ports.
2.	 Configure	the	port	mirror	from	the	monitored	VLAN	to	the	port	you	are

connected	to.	For	example,	if	you	connect	your	laptop	to	SW1	port	4,	and
you	want	to	monitor	traffic	from	VLAN10,	the	commands	will	be	(in
Cisco):

Switch(config)#monitor	session	1	source	vlan	10

Switch(config)#monitor	session	1	destination	interface	

fastethernet	0/4

This	will	show	you	traffic	from	VLAN10	that	is	forwarded	through	the
central	switch,	SW1.

Tip

For	further	information	on	how	to	configure	port	mirroring	on	various
vendor	websites,	search	for	SPAN	(in	Cisco),	port	mirror,	or	mirroring
(HP,	DELL,	Juniper,	and	others).	While	monitoring	traffic	in	a	blade	center,
usually,	you	can	only	monitor	traffic	on	a	physical	port;	however,	there	are
applications	that	enable	you	to	monitor	traffic	on	only	a	specific	server	on	a
blade	(for	example,	Cisco	Nexus	1000V).

Viewing	tagged	frames	going	through	a	VLAN	tagged	port

Monitoring	tagged	traffic	is	not	a	straightforward	mission.	The	issues	of	whether
you	see	VLAN	tags	while	capturing	data	with	Wireshark	or	not	will	depend	on
the	network	adapter	you	have,	the	driver	that	runs	over	it,	and	what	they	do	with
VLAN	tags.

The	simplest	way	to	verify	that	your	laptop	can	capture	tagged	frames	is	as
follows:

1.	 Start	capturing	the	tagged	port	with	the	port	mirror.	If	you	see	tags,
continue	with	your	work.

2.	 If	you	don't	see	any	tags,	go	to	the	adapter	configuration.	In	Windows	7,
you	will	get	there	by	clicking	on	Start	and	then	navigating	to	Control	Panel
|	Network	and	Internet	|	View	Network	Status	and	Tasks	|	Change
Adapter	Settings	|	Local	Area	Connection.	Next,	perform	the	steps	as
shown	in	the	following	screenshot:

	
3.	 Configure	the	adapter	with	Priority	&	VLAN	Disabled.	This	will	move

the	tags	for	the	WinPcap	driver	and	for	the	Wireshark.

Note

In	the	previous	screenshot	we	see	an	example	of	a	Lenovo	laptop	with
Realtek	NIC.	The	illustration	gives	an	example	on	a	popular	device,	but	it
can	be	different	on	other	laptops	or	servers.	The	principle	should	be	the
same;	disable	the	adapter	by	extracting	the	VLAN	tag,	so	it	will	be
forwarded	to	the	WinPcap	driver	and	presented	on	Wireshark.

How	it	works...
Tags	are	small	pieces	of	data	added	to	a	packet	in	order	to	add	VLAN
information	to	it.	The	tag	is	a	4-byte	long	string	(32	bits),	as	presented	in	one	of
the	following	diagrams.

Most	network	adapters	and	their	drivers	will	simply	pass	VLAN	tags	to	the
upper	layer	to	handle	them.	In	these	cases,	Wireshark	will	see	VLAN	tags	and
present	them.

In	more	sophisticated	adapters	and	drivers,	the	VLAN	tag	will	be	handled	in	the
adapter	itself.	This	includes	some	of	the	most	common	adapters	with	Intel	and
Broadcom	Gigabit	chipsets.	In	these	cases,	you	will	have	to	disable	the	VLAN
feature.

	

When	configuring	the	NIC	driver	in	order	to	ensure	that	it	will	not	handle	VLAN
tags,	packets	will	simply	be	forwarded	to	the	WinPcap	driver	and	presented	by
Wireshark.

VLAN	tagging

	

In	the	following	screenshot	you	see	an	example	for	a	tagged	frame;	the	frame	is
tagged	with	VLAN	ID	=	20.

	

There's	more…
Wireshark	will	also	capture	double	tags,	just	like	in	the	802.1ad	standard.	These
tags	are	what's	called	service	tags	and	are	added	at	the	service	provider	edge,	in
order	to	divide	between	the	provider	and	the	customer	tags.	The	provider	tag	is
called	S-Tag	(802.1ad),	and	the	customer	tag	is	called	C-Tag	(802.1Q).	It	is	also
referred	to	as	a	QinQ	mechanism.

See	also
For	more	information	about	WinPcap,	go	to	the	Winpcap	home	page	at
http://www.winpcap.org/
For	more	information	on	the	UNIX/Linux	library,	refer	to	the	tcpdump
home	page	at	http://www.tcpdump.org/

http://www.winpcap.org/
http://www.tcpdump.org/

Analyzing	wireless	(Wi-Fi)	problems
Wireless	LAN	(Wi-Fi)	became	very	popular	in	the	last	decade,	starting	from	the
old	802.11b	through	802.11g	and	to	the	latest	802.11n	standard	for	high-
bandwidth	wireless	communications.

There	are	also	the	emerging	standards	such	as	IEEE	802.11ac	with	products
coming	in	to	the	market,	along	with	the	802.11ad,	which	is	still	under
development.

In	this	recipe	we	will	learn	how	to	resolve	Wi-Fi	problems,	and	how	to	use
Wireshark	to	capture	Wi-Fi	frames	and	for	basic	traffic	analysis.

Getting	ready
When	users	complain	about	bad	performance	when	they	connect	through	a	Wi-
Fi	connection,	go	as	close	as	you	can	with	your	laptop	to	the	user	location	and
verify	that	you	have	your	Wi-Fi	adapter	enabled.

How	to	do	it…
The	basic	tool	is	right	in	the	laptop	(as	we	can	see	in	the	following	screenshot)
where,	you	have	the	first	indication	for:

The	signal	strength,	that	is	the	Received	Signal	Strength	Indicator
(RSSI).	In	some	cases,	you	will	see	only	the	quality	of	signal;	in	other
cases,	you	will	also	see	the	dBm	number
The	access	point	ID,	that	is	the	Service	Set	Identification	(SSID)
The	security	protocol	that	is	used
Radio	type	(802.11n	as	shown	in	the	following	screenshot)

	

You	can	also	use	dedicated	software,	many	of	them	being	freeware,	to	discover
available	Wi-Fi	networks	and	channels	(some	of	them	from	the	laptop	vendors,
and	some	from	others).	In	the	following	screenshot	you	can	see	a	list	of	wireless
networks	discovered	by	a	software	name	WIFi	Locator
(http://tcpmonitor.altervista.org/);	however,	there	are	many	other	software	with
basic	discovery	features:

http://tcpmonitor.altervista.org/

	

RSSI	levels	indicate	that	the	higher	the	number	is,	the	lower	is	the	strength:

-60dBm	and	better:	This	indicates	a	good	signal	level
-80dBm	to	-60dBm:	This	indicates	a	reasonable	signal	level
-80	dBm	to	-90dBm:	This	indicates	a	weak	signal	level
-90	dBm	and	lower:	This	indicates	a	very	weak	signal

If	you	have	RSSI	in	the	reasonable	range	and	above,	the	received	level	is	usually
enough,	and	you	should	look	for	frequency	disturbances	and	other	radio
problems.

Note

A	rule	of	thumb	that	I	usually	apply	for	wireless	network	design	is	that	for
standard	enterprise	applications,	I	require	75dBm	and	better,	and	for	wireless
networks	that	should	also	be	used	for	VoIP,	I	require	-65dBm	or	better.

If	you	want	to	check	if	there	are	any	disturbances,	you	can	use	software	that	will
discover	RSSI	over	time,	and	will	give	you	a	more	accurate	picture	of	your
network.	In	the	following	screenshot	you	see	such	a	software,	called	inSSIDer;
it	gives	you	a	more	accurate	picture	about	which	access	points	are	working	and
their	details.

	
1.	 Try	to	find	out	the	following	problems:

Different	access	points	(APs)	working	on	the	same	channel	in	the	same
area
Low	RSSI	values	(indicated	in	RSSI	numbers	lower	than	-90dBm)

2.	 The	next	step	is	to	use	spectrum	analyzers	to	check	which	frequencies	are
used	in	your	area.	You	can	expect	frequency	disturbances	in	areas	such	as
airports,	seaports,	and	military.	Spectrum	analyzers	are	available	from
various	vendors	such	as	Fluke	Networks,	Agilent,	and	Anritsu.

3.	 Wireshark	can	be	used	to	analyze	Wi-Fi	control	frames.	The	first	thing	to
look	for	is	whether	the	APs	are	sending	beacon	frames.	In	the	following
screenshot,	you	can	see	these	frames:

	

The	stations	can	send	beacon	probe	request	frames	to	find	a	nearby	access
point.

Tip

A	probe	request	frame	is	sent	by	a	station	when	it	wants	to	obtain
information	from	another	Wi-Fi	device,	for	example,	to	determine	the
access	points	within	the	range.

The	station	can	also	acknowledge	the	beacon	frames	coming	from	the
access	point	in	order	to	register	to	the	AP.

Tip

The	access	point	periodically	sends	beacon	frames	to	announce	its	presence
and	relay	information.	This	information	includes	timestamps,	SSIDs,	and
other	parameters	with	regard	to	the	access	point.	Radio	wireless	NICs
continually	scan	all	802.11	radio	channels	and	listen	to	beacons,	in	order	to
choose	the	best	access	point	to	associate	with.

4.	 After	accepting	and	acknowledging	the	beacon	frame,	a	standard	DHCP
process	will	start,	as	described	in	Chapter	8,	ARP	and	IP	Analysis.

How	it	works…
The	Wireless	LAN	standards	are	based	on	the	IEEE	802.11	committee.	The
standards	started	with	802.11a,	802.11b,	802.11g,	802.11n,	and	lately	802.11ac
and	802.11ad	for	higher	bandwidth.

As	seen	in	the	following	figure,	Wireless	LAN	networks	are	based	on	access
points	(APs),	and	wireless	clients	connect	to	them.

	

The	most	common	wireless	standard	today	is	the	802.11n,	which	uses	the
advanced	modulation	Multiple	Input	Multiple	Output	(MIMO),	to	work	with
up	to	four	antennas	and	some	additional	technologies,	to	increase	bandwidth.

Chapter	8.	ARP	and	IP	Analysis
In	this	chapter	we	will	cover	the	following	issues:

Analyzing	connectivity	problems	with	ARP
Using	IP	traffic	analysis	tools
Using	GeoIP	to	look	up	physical	locations	of	the	IP	address
Finding	fragmentation	problems
Analyzing	routing	problems
Finding	duplicate	IPs
Analyzing	DHCP	problems

Introduction
In	this	chapter	we	will	learn	how	to	analyze	Layer	3	(IP)	and	Layer	3	to	Layer	2
resolution	(ARP).	We	will	discuss	the	Internet	Protocol	(IP),	Address
Resolution	Protocol	(ARP),	Dynamic	Host	Configuration	Protocol	(DHCP),
routing	issues	and	others,	and	the	problems	that	you	might	face	while
troubleshooting	these	protocols.

We	will	start	with	presenting	the	protocol's	normal	behavior	for	the	various
protocols	and	continue	with	showing	what	can	go	wrong	and	how	to	solve	it.

In	general,	when	we	analyze	a	network	problem,	we	will	go	bottom	up:	if	you
cannot	get	connectivity,	look	for	the	problem	in	the	following	order:

1.	 Layer	1:	Check	if	the	cable	is	connected	and	the	link	LED	on	the	switch
and	your	PC	is	turned	on.	This	step	is	to	be	executed	manually.

2.	 Layer	2:	Check	if	ARP	has	discovered	the	MAC	address	of	the	destination.
In	case	of	a	remote	location,	check	for	connectivity	between	every	two
nodes/routers	on	the	way.	This	can	be	executed	with	the	command	line
(look	at	the	ARP	recipe	following	this).

3.	 Layer	3:	Check	by	using	the	ping	command	to	the	destination,	and	if	you
do	not	receive	a	response,	trace	route	to	it.	This	can	be	executed	with	the
command	line	and	in	some	cases	with	Wireshark.

4.	 Layer	4:	Check	if	the	process/server	on	the	other	side	is	answering.	This
step	is	to	be	executed	with	Wireshark.

5.	 Layers	5-7:	Check	for	application	problems.	This	step	is	to	be	executed
with	Wireshark.

In	Chapter	7,	Ethernet,	LAN	Switching,	and	Wireless	LAN,	we	talked	about
Layers	1	and	2.	In	this	chapter	we	will	talk	about	Layer	3,	that	is	IP,	and	the
resolving	process	between	Layer	3	and	Layer	2,	that	is	ARP.	In	Chapter	9	,
UDP/TCP	Analysis,	we	will	talk	about	Layer	4,	that	is	TCP	and	UDP,	and	in	the
rest	of	the	book	about	application	layers.

Analyzing	connectivity	problems	with
ARP
ARP	is	used	by	IP	to	resolve	the	destination	MAC	address	out	of	the	IP	address
of	the	device	that	we	wish	to	communicate	with.	When	we	send	packets	to	a
destination,	the	first	packet	is	the	ARP	request	to	find	the	MAC	address	of	the
destination.	We	get	it	from	the	destination	and	then	send	the	other	packets
destined	to	it.

Tip

ARP	operation	is	only	local,	that	means	the	ARP	request,	which	is	a	broadcast,
will	be	sent	only	on	the	LAN.	In	case	you	send	a	packet	to	a	device	on	your	IP
network	(with	the	same	IP	network	and	mask),	ARP	will	try	to	find	its	address.
When	you	send	a	packet	to	someone	out	of	your	network,	ARP	will	be	sent	to
find	out	the	default	gateway	MAC	address.

Getting	ready
We	will	use	three	methods	to	find	the	basic	connectivity	problems:

The	standard	command	line	(In	MS-Windows	go	to	Start	and	in	the
command	window	type	run.	In	Linux	use	any	available	Shell)
Wireshark
Connecting	to	a	LAN	switch	or	router	directly	and	getting	information	from
there
Tip

To	connect	to	the	communication	devices	(routers,	switches,	and	so	on),
you	first	connect	with	a	console	cable	(in	Cisco,	this	is	the	light-blue	flat
cable);	you	configure	the	device	with	an	IP	address,	and	then	you	can
access	the	device	via	Telnet,	HTTP,	or	SNMP	software.	With	all	of	these
methods	you	can	read	the	device	counters	that	provide	you	with
information	of	the	traffic,	errors,	CPU	utilization,	and	more.

In	each	one	of	the	following	recipes,	we	will	see	exactly	what	to	use	and	where.

How	to	do	it...
In	this	recipe,	we	will	see	several	connectivity	issues	and	how	to	deal	with	them.
Let's	look	at	the	very	simple	network	in	the	following	figure.	Here,	we	can	see	a
typical	network	and	discuss	some	of	the	connectivity	problems	that	can	happen
on	it.

	

In	the	network,	we	can	see	two	PCs,	PC1	and	PC2,	that	are	connected	to	switch
ports	16	and	20	respectively,	a	server	connected	to	switch	port	24,	a	router	that
connects	us	to	the	remote	offices	on	switch	port	3,	and	a	firewall	that	connects	us
to	the	Internet	on	switch	port	5.	Our	laptop	with	Wireshark	installed	on	it	is
connected	to	port	2.

Let's	see	some	of	the	problems	that	might	occur	here	and	how	to	solve	them.

Let's	consider	case	1	when	there	is	no	connectivity	from	the	PCs	to	the	server:

1.	 Ping	the	server	from	PC1	and	PC2.
2.	 If	there	is	no	answer,	type	ARP	–a	on	the	command	line.	In	the	ARP	table,

you	should	see	the	IP	address	of	the	server	and	its	MAC	address.
3.	 If	you	see	the	MAC	address	of	the	server,	probably	there	is	a	firewall

running	on	the	server	that	blocks	ICMP	requests.	For	the	test,	disable	the
firewall	and	test	again.

Tip

A	firewall,	VPN	client,	or	an	antivirus	software	that	comes	with	some
firewall	features	can	block	ICMP	requests.	Don't	forget	it	while	testing
network	connectivity	issues.

4.	 If	you	have	pinged,	but	your	application	still	doesn't	work,	go	to	Chapter	9,
UDP/TCP	Analysis,	and	continue	from	there.

You've	gone	through	steps	1	to	3	in	case	1,	and	still	don't	get	a	ping
response	(you	get	request	time	out).

5.	 Connect	to	the	LAN	switch	and	get	the	list	of	MAC	addresses	that	the
switch	has	learned.

Tip

In	every	managed	switch,	you	will	be	able	to	see	the	list	of	MAC	addresses
that	the	switch	has	learned	and	on	which	ports	the	switch	has	learned	them.

In	Cisco,	the	command	for	this	will	be	show	mac-address-table	or	show
mac	address	table	(depends	on	the	IOS	version).

6.	 If	you	don't	see	the	addresses	of	your	PC	and	the	server,	check	for	physical
problems	such	as	bad	cable,	adapter	problem,	and	switch	port	problem.	For
doing	so,	you	can	simply	switch	cables	or	replace	the	switch	for	the	test,
replace	ports	on	the	switch	and	so	on.

Now	let's	see	how	to	use	Wireshark	to	resolve	this	problem.
7.	 When	clients	complain	about	connectivity	problems	to	a	specific	device

(server,	printer,	and	so	on),	you	connect	Wireshark	to	the	port	(with	port
mirror),	and	you	see	many	ARP	requests	and	no	answer.	You	can	see	an
example	of	this	in	the	following	screenshot:

	
8.	 In	this	example,	we	see	that	both	172.30.116.100	and	172.30.116.253	are

looking	for	the	MAC	address	of	172.30.116.254,	but	there	is	no	reply.
9.	 In	this	case,	check	in	the	switch	if	the	MAC	address	has	been	learned,	and

if	not,	check	for	physical	problems.

ARP	poisoning	and	Man-in-the-Middle	attacks

One	of	the	types	of	a	Man-in-the-Middle	attack	is	when	an	attacker	poisons	the
ARP	cache	of	the	devices	that	he	wants	to	listen	to	with	the	MAC	address	of	his
Ethernet	NIC.	Once	the	ARP	cache	has	been	successfully	poisoned,	each	of	the
victim	devices	sends	all	their	packets	to	the	attacker	while	communicating	with
the	other	device.	The	attacker,	of	course,	will	resend	it	to	them	after	reading	the
data.

This	is	called	Man-in-the-Middle	attack	since	it	puts	the	attacker	in	the	middle	of
the	communication	path	between	the	two	victim	devices.	It	is	also	called	ARP
Poisoning	since	the	attacker	actually	poisons	the	victim's	ARP	cache	with	wrong
information.

In	the	following	figure,	we	see	an	example	of	a	Man-in-the-Middle	attack:

	

The	following	screenshot	shows	Wireshark:

	
Gratuitous	ARP

A	gratuitous	ARP	takes	place	when	a	device	wants	to	verify	if	some	other	device
has	its	own	IP	address.	In	this	case,	you	will	see	an	ARP	with	the	same	source
and	destination	address	fields.	There	is	nothing	wrong	with	gratuitous	ARPs.
There	are	devices	that	work	this	way;	for	example,	home	routers	that	scan	for
attached	devices.

	
ARP	sweeps

ARP	sweep	is	used	when,	for	some	reason,	we	see	a	device	that	scans	the
network	with	ARPs,	requests,	or	response	in	order	to	get	information	or	attack
the	network.

While	watching	an	ARP	sweep,	just	check	for	the	following:

Is	it	requests	or	replies,	and	who	is	the	sender?
How	many	ARPs	(per	second)?

Requests	or	replies,	and	who	is	the	sender

ARP	requests	and	replies	are	a	part	of	the	regular	network	operation.	Here	are
some	rules	of	thumb	to	make	sure	they	are	actually	so:

Requests	from	different	sources—no	problem,	this	is	how	a	network	works
(as	long	as	there	are	not	too	many	of	them!)
Many	requests	from	a	singles	device—look	at	the	source	address	and	verify
who	is	the	device	actually	sending	the	requests	to:

It	can	be	a	management	system	that	auto-discovers	the	network
It	can	be	a	router	that	scans	to	see	who	is	on	the	local	network	(see	the
previous	screenshot)
If	you	don't	identify	the	source,	it	might	be	a	problem,	like	a	worm	or

ARP	poisoning.	Get	into	the	details!
If	you	see	replies	that	are	not	to	specific	requests,	it	might	be	a	problem.
Get	intothe	details!

How	many	ARPs

An	ARP	is	sent	when	a	device	wishes	to	send	data	to	a	destination	for	the	first
time	(see	the	How	it	works...	section).	It	is	difficult	to	estimate	the	exact	number
of	ARPs	per	minute	on	a	network,	but	this	thumb	rule	gives	you	a	general	idea.

Around	1-2	ARPs	per	device	per	minute	is	ok.	If,	for	example,	you	have
100	devices	(PCs,	servers,	printers,	and	so	on)	on	your	network,	up	to	200
ARPs	per	minute	or	2-3	ARPs	per	second	are	still	ok.
Even	if	you	have	more	than	this,	for	example,	5	and	even	10	per	second	for
the	network	mentioned	earlier,	it	is	not	necessarily	a	problem;	it	will	be	a
good	idea	to	just	look	for	a	suspicious	pattern.

Tip

The	number	of	ARPs	on	the	network	depends	on	what	the	devices	on	the
network	actually	do.	If	all	devices	are	connecting	only	to	a	single	device
(for	example,	to	a	router	that	connects	them	to	the	world),	you	will	see	a
small	number	of	ARPs.	However,	if	devices,	for	example,	send	periodic
messages	to	all	their	neighbors,	you	will	see	many	ARPs.	Don't	forget,	God
is	in	the	details!

How	it	works...
When	we	send	a	packet	from	our	IP	address	to	a	destination	IP	address	through
the	LAN,	we	send	the	data	in	an	IP	packet	that	is	encapsulated	in	an	Ethernet
frame.

	

Let's	say	for	example,	we	send	a	Ping	(ICMP	request)	from	192.168.1.1	to
192.168.1.3	on	the	same	LAN.	To	send	the	packet,	we	need	the	IP	and	the	MAC
addresses	of	the	destination,	but	what	we	have	is	only	its	IP	address.	We	know	it
because	this	is	our	destination.

In	order	to	find	out	what	is	the	MAC	address	of	the	destination,	we	simply	send
an	ARP	broadcast	to	the	LAN,	asking	all	devices	attached	to	it:	who	has	the	IP
address	192.168.1.3?	If	the	destination	station	is	alive,	it	sends	an	ARP	response
with	the	MAC	address	of	the	destination.

From	this	moment,	the	source	station	holds	the	data	in	a	cache,	the	ARP	Cache,
and	the	next	time	it	wants	to	transmit,	the	station	transmits	the	data	directly	to
the	destination	address.

The	ARP	Cache	remains	in	the	host	buffer	for	the	next	several	minutes	(how
many	minutes	depends	on	the	operating	system).	The	ARP	entry	is	flushed	a	few
minutes	after	the	last	packet	is	sent	to	the	destination.

The	ARP	request	will	be	a	broadcast	sent	to	the	LAN,	as	you	see	in	the

following	screenshot:

	

The	ARP	reply	will	be	a	packet	sent	from	the	destination	that	we	looked	for	to
the	source	with	the	required	MAC	address,	as	you	see	in	the	following
screenshot:

	

Anything	that	doesn't	look	like	the	standard	and	is	a	known	exception	(for
example,	gratuitous	ARP,	ARP	sweep	by	router)	should	be	checked!

There's	more...
Here	is	a	short	example	to	understand	the	principle	of	ARP	operation.	In	the
following	diagram,	we	see	an	interesting	case:	two	devices	attached	to	the	same
LAN	with	different	subnets	with	a	default	gateway	configured	to	their	own	IP
address.	The	question	is:	will	a	Ping	(or	any	communication)	work	between
them?

	

Well,	intuitively,	you	will	say	no	because	these	are	two	devices	on	different
subnets	and	therefore	require	a	router	between	them.	But	let's	look	at	what
actually	happens	over	the	wire:

192.168.1.10	wants	to	send	a	packet	to	192.168.2.20.	Since	the	default
gateway	is	configured	to	its	own	address,	it	thinks	the	destination	is	on	the
same	LAN	and	sends	an	ARP	request.
Since	we	are	on	the	same	LAN	as	the	destination,	the	destination	receives
the	ARP	request	(because	it	is	a	broadcast)	and	answers	to	192.168.1.10
with	its	MAC	address.
Now,	the	source	has	the	MAC	address	of	the	destination.	It	sends	the	packet
to	it,	and	although	not	on	the	same	IP	subnet,	the	destination	receives	the
packet.

Another	important	issue	is	Proxy	ARP.	While	a	proxy	in	communications	is	a
device	that	performs	an	operation	on	behalf	of	someone	else,	Proxy	ARP	is	the
technique	in	which	one	host,	usually	a	router,	answers	the	ARP	requests	intended
for	another	machine.

The	proxy	ARP	concept	is	implemented	in	various	cases,	for	example:

While	placing	a	device	in	front	of	a	router,	for	example,	WAN
acceleration/optimization	device.	When	you	configure	this	device	in	bridge
(or	transparent)	mode,	it	will	answer	to	the	ARP	requests	intended	for	the
router.
Firewalls,	web	filters,	and	other	devices	that	work	in	the	transparent	mode
and	are	located	in	front	of	a	server.
In	case	of	a	software	that	requires	an	IP	address	in	addition	to	the	IP	of	the
server	it	is	installed	on.

Using	IP	traffic	analysis	tools
IP	is	the	network	protocol	in	the	TCP/IP	protocol	stack	that	carries	all	upper
layer	information.	Whether	it	is	HTTP,	Video,	IP	Telephony,	or	other	application,
IP	will	be	the	Layer-3	protocol	for	all	of	them.	In	this	section,	we	will	look	at
some	tools	that	will	help	us	with	the	analyses	of	IP	traffic.

Getting	ready
Just	open	Wireshark,	connect	it	to	the	network,	configure	port	mirror	to	the
device	you	want	to	test,	and	start	it.

How	to	do	it...
There	are	several	tools	and	configurations	that	will	help	you	with	the	analysis	of
IP	traffic.	Among	them	are:

IP	statistics
IP	name	resolution

IP	statistics	tools

When	you	monitor	a	communication	line,	connectivity	to	a	server,	traffic	to	the
Internet,	or	any	other	type	of	traffic,	there	are	several	tools	for	monitoring	the
source	and	destination	IPs.

Following	are	the	steps	for	seeing	the	source	and	destination	IPs:

1.	 From	the	menu,	choose	View	|	Name	Resolution	and	mark	Enable	for	the
Network	layer.	If	you	are	watching	an	existing	file,	after	you	make	the
change,	click	on	the	Reload	icon.	The	capture	screen	will	be	presented	with
DNS	names	in	addition	to	IP	addresses.

	
2.	 In	order	to	see	the	statistics,	choose	from	the	Statistics	|	Conversations

menu	and	mark	Name	resolution	at	the	bottom-left	corner	of	the	window,
as	illustrated	in	the	next	screenshot:	

	

How	it	works...
This	is	very	simple.	Wireshark	uses	the	DNS	server	configured	on	your	laptop	in
order	to	translate	the	IP	addresses	to	names.	In	some	cases,	it	can	be	very	helpful
to	find	out	problematic	traffic	patterns.	These	can	be,	for	example:

Traffic	to	websites	that	is	not	allowed	according	to	company	policy.
Automatic	software	updates,	for	example,	Anti-virus	websites	and
Microsoft	updates.	The	solution	to	this	is	the	central	servers	that	download
the	software	while	all	company	PCs	get	the	software	and	updates	from	this
server.
Toolbar	traffic	can	cause	a	huge	amount	of	traffic	if	installed	on
organization	devices	(think	about	50-100	opened	connections	on	every
device	in	your	company	in	addition	to	regular	traffic).

There's	more...
You	can	see,	for	example,	a	browser	configured	with	the	Conduit	toolbar.	The
moment	you	run	it,	you	will	see	many	connections	to	the	websites	that	you
know,	and	to	the	websites	that	you	don't.	Here,	for	example,	you	see	connections
to	the	Conduit	website,	and	also	to	a	Content	Delivery	Network	(CDN)	vendor.

	

To	see	the	exact	website	and	pages,	you	can,	of	course,	select	Statistics	|	HTTP
and	choose	the	relevant	feature	(with	IP	configured	as	filter).

Some	rules	for	efficient	usage	of	toolbars:

Have	a	policy	about	what	to	use	and	what	not,	and	block	users	from
installing	toolbars	that	are	not	allowed
Monitor	your	line	to	the	Internet,	and	make	sure	where	the	traffic	is	going

Using	GeoIP	to	look	up	physical
locations	of	the	IP	address
Wireshark	1.1.2	and	the	higher	versions	can	use	GeoIP	(commercial	version)	and
GeoLite	(free	version)	databases	to	look	up	the	city,	country,	AS	number,	and
other	information	for	an	IP	address	discovered	by	Wireshark.

Getting	ready
1.	 Go	to	the	following	website:	http://dev.maxmind.com/geoip/geolite.
2.	 For	IPv4,	download	the	following	files	(the	binaries):

GeoLite	Country
GeoLite	City
GeoLite	ASN

For	IPv6,	download	the	following	files:
GeoLite	Country	(IPv6)
GeoLite	City	(IPv6)
GeoLite	ASN	(IPv6)
Tip

Autonomous	System	(AS)	is	a	term	used	in	Exterior	Gateway	Protocols
(EGPs),	for	identifying	all	routers	under	the	control	of	the	same	network
operator.	When	you	connect	to	the	Internet	through	two	different	Internet
Service	Providers	(ISPs),	you	will	get	your	own	AS,	while	the	two	ISPs
have	their	ASe	While	configuring	connectivity	to	the	Internet	with	two
different	Internet	Service	Providers	(ISPs),	ASs	are	configured	along	with
an	EGP	routing	protocol.	The	market	standard	for	EGP	protocol	is	Border
Gateway	Protocol	version	4	(BGPv4).

You	will	get	the	binary	files	with	the	country,	city,	and	Autonomous	System
(AS)	numbers.

http://dev.maxmind.com/geoip/geolite

How	to	do	it...
After	you	have	downloaded	the	files,	follow	these	steps:

1.	 Put	all	of	the	files	in	the	same	directory	(you	can	also	put	them	in	different
directories,	but	it	will	be	less	convenient).

2.	 Now,	you	must	tell	Wireshark	where	the	files	are.	Go	to	Edit	|	Preferences
|	Name	Resolution	and	select	GeoIP	database	directories.

3.	 Add	the	full	path	of	the	GeoIP	directory,	as	shown	in	the	following
screenshot:	

Click	on	Apply	and	close	the	window	and	restart	Wireshark.
Now,	start	Wireshark	(or	open	saved	file),	select	Statistics	|	Endpoints,	and

see	the	GeoIP	information	in	any	of	the	tabs	that	contains	the	IP	addresses:	

You	can	also	see	the	GeoIP	data	in	the	IP	packet	detail	tree.	To	enable	this,	go
to	Edit	|	Preferences	|	Protocols	|	IP	and	make	sure	that	Enable	GeoIP	lookup
is	checked.

How	it	works...
The	IP	addresses	are	provided	by	Internet	Assigned	Numbers	Authority
(IANA),	a	suborganization	of	the	Internet	Standard	Organization	(ISO),	to
regional	organizations	called	Regional	Internet	Registrars	(RIPE-NCC,	APNIC,
AFRINIC,	LACNIC,	and	ARIN),	who	then	allocate	them	to	national	ISPs,	and
national	ISPs	allocate	them	to	individual	customers.	GeoIP	simply	is	a	database
of	these	locations,	so	it	resolves	the	IP	addresses	that	Wireshark	captures
according	to	this	database.

The	GeoLite	files	are	free	IP	geographical	location	databases	that	are	updated
monthly.	It	can	be	found	at
http://dev.maxmind.com/geoip/geolite#IP_Geolocation-1.

http://dev.maxmind.com/geoip/geolite#IP_Geolocation-1

There's	more...
The	GeoIP	can	be	used	for	several	reasons:

To	view	the	sites	(websites,	FTP	servers,	and	so	on),	that	people	in	your
organization	are	connecting	to
To	resolve	source	IP	addresses	of	connections	that	are	coming	from	the
world	to	your	organization
For	fun

Finding	fragmentation	problems
Fragmentation	is	a	common	mechanism	in	IP	that	takes	a	large	IP	packet	and
divides	it	into	smaller-size	packets	that	will	fit	in	the	Layer-2	Ethernet	frames.	In
most	of	the	cases,	there	shouldn't	be	any	problems	with	the	mechanism,	but	there
might	be	performance	issues	due	to	this	mechanism.

Getting	ready
Just	open	Wireshark,	connect	it	to	the	network,	configure	port	mirror	to	the
device	that	you	want	to	test,	and	start	it.	Fragmentation	will	mostly	influence
interactive	applications	such	as	databases,	and	these	are	the	places	where	we
should	look	for	problems.

How	to	do	it...
When	fragmentation	takes	place,	you	will	see	UDP	or	TCP	packets	along	with
fragmented	IP	Protocol	packets,	as	shown	in	the	following	screenshot:	

	

While	suspecting	performance	problems,	for	example,	a	database	client	that
experiences	slow	connectivity	with	the	server,	follow	these	steps	to	see	if	the
problem	is	due	to	fragmentation:

1.	 Test	the	connectivity	between	clients	and	the	server	to	verify	that	there	are
no	other	problems.

2.	 Look	for	fragmentation	between	the	client	and	the	server.	Fragments	will	be
shown	as	in	the	previous	screenshot	(IPv4	fragments).

3.	 In	the	case	that	you	suspect	fragmentation	to	be	the	reason	for	the	problem,
contact	a	good	Database	Administrator	(DBA)	that	will	tune	the	database
to	send	out	packets	that	do	not	cause	fragmentation	to	the	network.

4.	 The	recommended	packet	size	in	Ethernet	is	not	greater	than	1460	bytes
minus	the	TCP	header	size.	Thus,	the	segments	coming	out	of	the	interface
should	have	a	size	of	1420-1440	bytes.

In	cases	where	we	need	more	bytes	for	the	header,	for	example,	when	we	use
tunneling	mechanisms	and	TCP	options,	the	DBA	will	have	to	reduce	this	size
even	more.	The	best	way	will	be	simply	to	reduce	it	to	such	a	size	that	you	will
not	see	any	fragments.

How	it	works...
It	is	important	to	understand	two	terms	that	define	the	size	of	the	data	units	that
are	sent	over	the	network,	as	you	see	in	the	following	diagram:

Maximum	Transfer	(or	Transmission)	Unit	(MTU):	This	is	the	size	of
the	IP	packet	including	the	header	and	the	data
Maximum	Segment	Size	(MSS):	This	is	the	maximum	size	of	the	TCP
payload,	that	is,	the	size	of	the	upper-layer	protocol	and	data	

	

The	fragmentation	mechanism	that	is	used	in	IPv4	works	as	shown	in	the
following	illustration:	

	
1.	 An	original	large	packet	enters	the	NIC	or	the	router	with	a	packet	size	that

needs	to	be	fragmented.
2.	 The	packet	is	fragmented	into	several	parts	depending	on	the	original	size.
3.	 For	the	fragmentation,	we	have	these	fields:

ID:	This	is	identical	to	the	ID	of	the	original	packet
Bit	0:	Always	0
Bit	1	(DF	Bit):	0	=	May	Fragment,	1	=	Don't	Fragment.
Bit	2	(MF	Bit):	Don't	Fragment:	0	=	Last	Fragment,	1	=	More
Fragments
Fragment	offset:	This	indicates	the	number	of	bytes	from	the
beginning	of	the	original	packet

In	IPv4,	the	NIC	itself	can	fragment	the	packet	along	with	every	router	on	the
way	to	the	destination.

In	IPv6,	fragmentation	can	be	done	only	by	the	sender	and	not	by	the	routers	to

the	destination.	In	IPv6,	fragmentation	is	implemented	by	the	extension	headers.

There's	more...
A	packet	can	be	fragmented	several	times	on	the	way	to	the	destination,	while	in
any	case,	it	will	be	reassembled	by	the	end	device	only.

In	the	example	in	the	following	illustration,	we	see	a	part	of	a	large	network	in
which	the	customer	has	several	hundred	remote	offices	connection	to	a	central
data	center	through	a	service	provider	(SP)	network.

	

In	the	remote	offices,	there	were	5	to	10	PCs	with	DB	clients	connecting	to	the
DB	servers	in	the	central	data	center.	IPSec	and	GRE	tunnels	were	used	for
encrypting	the	data	through	the	SP	network.

The	problem	was	that	in	some	of	the	database	applications,	the	database	created
frames	of	1800	bytes	that	were	fragmented:

First,	it	was	created	in	the	NIC	and	sent	out	of	it	in	two	fragments:	1500
bytes	and	300	bytes
Second,	it	was	created	in	the	router	because	the	tunnel	required	some	bytes
for	itself	that	divided	the	1500	bytes	frame	to	1420	bytes	and	80	bytes
frame

The	bottom	line	is	that	for	every	packet	sent	by	the	PC	the	servers	received	3
packets,	and	since	the	customer	had	several	thousand	clients	and	quite	an	old
server,	the	whole	thing	worked	very	slowly.

In	the	next	screenshot,	you	see	the	packets	when	they	leave	the	client.	In	the	first
packet,	which	is	the	first	fragment	leaving	the	NIC,	we	see:

	

In	the	preceding	screenshot,	we	see	that	packets	443	and	444	(1)	are	both
fragments	of	the	original	packet.	In	packet	443,	we	see	that	the	total	length	is
1500	bytes	(2),	the	ID	is	0x89a8	(3),	more	fragments	flag	is	set	(4),	meaning	that
there	are	more	fragments	to	follow,	and	the	fragment	offset	is	0	(5),	meaning	that
this	is	the	first	fragment	in	the	stream.

In	the	next	screenshot,	we	see	the	next	fragment,	that	is,	packet	444	in	the
capture	file:

	

In	packet	444,	we	see	that	the	total	length	is	212	bytes	(2),	the	ID	is	0x89a8	(3),
which	is	the	same	as	in	packet	443,	more	fragments	flag	is	not	set	(4)	meaning
that	this	is	the	last	fragment	from	the	original	packet,	and	the	fragment	offset	is
1480	(5),	meaning	that	this	is	the	second	fragment	from	the	original	packet.

Analyzing	routing	problems
One	of	the	most	critical	issues	in	networks	is	routing.	These	include	routing
loops,	no	route	to	destination,	and	many	more.	Most	of	the	routing	problems	will
not	require	using	Wireshark	in	order	to	solve	them.	In	most	of	the	cases,	some
knowledge	of	routing	principles	and	protocols	along	with	common	sense	will	do
the	job.	In	this	recipe,	we	will	try	to	provide	some	basic	tips	along	with	some
basic	issues	such	that	Wireshark	can	be	of	assistance.

Getting	ready
First,	make	sure	you	are	familiar	with	the	very	basic	commands,	Ping	and
Tracert	(or	Traceroute).	In	most	of	the	cases,	these	commands	along	with
logging	in	to	the	routers	will	help	you	with	solving	the	problems.

In	this	recipe,	we	will	show	some	important	things	on	the	captured	file	that	can
indicate	a	routing	problem.

How	to	do	it...
In	this	section,	we	will	not	give	a	recipe	of	what	to	do,	like	we	usually	do,	but
rather	mention	things	to	watch	and	notice.

Among	the	things	you	should	notice,	the	crucial	ones	are:

The	first	and	most	important,	Time	To	Live	(TTL)	messages.	A	TTL	value
of	0	should	raise	an	alert	since	the	meaning	of	it	in	most	of	the	cases	is	a
loop.	Wireshark	will	not	tell	you	where	the	loop	is	coming	from,	but	seeing
these	messages	is	an	alert	to	something	that	went	wrong.	A	typical	message
will	be:	TTL	expired	in	transit.
The	following	ICMP	message	should	indicate	a	configuration	problem	in	a
router	or	in	several	routers:

Destination	network	unreachable:	It	usually	indicates	a	missing
route	in	one	of	the	network	routers
Destination	host	unreachable:	It	usually	indicates	a	device	(for
example,	a	PC)	on	the	destination	network	that	is	not	connected	to	the
network	or	a	default	gateway	is	not	configured	on	it

Another	issue	that	should	raise	a	flag	is	when	you	see	packets	going	from	a
source	IP	address	to	the	destination,	back	to	the	source,	back	to	the	destination,
and	so	on,	while	the	TTL	value	is	reduced	by	one	in	every	packet,	which	is	a
clear	indication	of	a	loop.

How	it	works...
The	TTL	is	an	8-bit	field	in	the	IP	header	that	is	implemented	in	the	following
way:

The	sender	inserts	a	number	to	it.	The	number	value	is	usually	64,	128,	or
256,	depending	on	the	operating	system	that	sends	the	packet.
Each	router	decrements	this	value	by	one.	If,	for	example,	a	packet	is	sent
with	a	value	of	128	and	crosses	10	routers,	the	TTL	value	will	be	118.
A	router	that	will	see	a	value	of	1	in	the	TTL	field	will	decrement	it	to	0	and
drop	the	packet,	as	well	as	send	an	ICMP	error	message	to	the	source
address	from	which	it	has	received	the	packet.

Tip

The	TTL	field	in	the	IP	packet	can	tell	us	how	many	routers	the	packet	has
crossed	on	the	way	from	the	source	to	us.	This	is	due	to	two	assumptions:	first,
while	sending	a	packet	from	end-to-end	through	the	Internet,	it	will	not	cross
more	than	30	hops	(routers);	this	is	the	way	the	Internet	is	planned,	and	second,
the	sender	inserts	a	value	of	64,	128,	or	256	in	the	TTL	field.	If,	for	example,	we
see	a	TTL	value	of	110,	the	meaning	is	that	it	has	crossed	18	routers	on	the	way
to	us	(128-110)	because	it	cannot	be	that	it	has	crossed	146	routers	(256-110).

There's	more...
A	typical	routing	problem	can	be	seen	in	the	following	illustration.	In	this
network,	we	have	a	central	data	center	with	two	remote	offices.	The	network	was
built	this	way	in	order	to	provide	redundancy	from	the	remote	offices	to	the
central	data	center.

	

EIGRP	is	running	in	the	routers,	in	addition	to	static	routes	to	the	Internet.	A
partial	(and	relevant	to	the	case)	routing	table	is	presented	in	the	following	figure
(only	routes	that	are	relevant	to	the	example	are	resent):	

	

The	problem	was	that	we've	had	a	very	rare	case	in	which	both	lines	to	the
center,	R1	to	RDC,	and	R2	to	RDC	were	disconnected	(a	tractor	that	cut	both	in
the	last	mile).

Of	course,	both	offices	were	disconnected	immediately.	The	question	was	why
the	central	office	that	had	several	hundred	PCs	in	addition	to	the	data	center
became	very	slow,	especially	on	the	Internet.

When	I	connected	Wireshark	to	the	central	switch	with	port	mirror	to	the	whole
switch	(port	mirror	to	VLAN1),	I	saw	the	loop.	Packets	were	traveling	between
the	servers	and	firewall	with	TTL	decrement	in	every	packet.	This	is	a	loop.

What	happened?

1.	 The	moment	the	two	lines	were	disconnected,	EIGRP	in	router	RDC
stopped	seeing	R1	and	R2.

2.	 When	a	server	sends	a	packet	to	networks	10.10.0.0/16	or	10.20.0.0/16,	the
server	sends	it	to	its	default	gateway;	that	is,	RDC.

3.	 When	the	packet	arrived	to	it,	RDC	sent	it	to	the	firewall.	This	is	the	route
to	0.0.0.0	that	takes	place	if	EIGRP	becomes	inactive.

4.	 The	firewall	gets	the	packet	and	sends	it	back	to	RDC.	This	is	what	he	has
in	his	routing	table.

5.	 All	packets	from	servers	in	the	data	center	that	are	sent	to	the	remote
locations	start	to	ping-pong	between	the	servers	and	the	firewall,	and	that	is
enough	traffic	to	slow	down	the	servers	and	access	to	the	Internet.

Finding	duplicate	IPs
One	of	the	most	annoying	problems	in	IP	networks	is	duplicate	IP	addresses.	The
funny	thing	is	that	if	you	are	familiar	with	the	problem,	what	causes	it,	and	how
to	find	it,	it	becomes	one	of	the	most	simple	ones	to	solve.

Getting	ready
When	you	suspect	a	duplicate	address	in	the	network,	the	first	thing	to	do	will	be
to	use	the	simple	CLI	commands—ARP	and	Ping.	If	you	don't	locate	the
problem,	connect	Wireshark	to	the	switch	and	in	a	large	network	to	every	VLAN
in	the	network	and	move	step-by-step	until	you	find	the	problem.

How	to	do	it...
We	start	with	the	phenomena,	such	as	slow	access	to	a	server	or	to	another
device,	slow	access	to	the	Internet,	and	all	the	pings	that	you	don't	get	replies	to.

1.	 When	you	get	slow	access	to	a	network	device,	one	of	the	problems	that
might	arise	is	that	the	IP	address	of	this	device	collides	with	another
address.	To	verify	this,	ping	the	IP	address.

Tip

In	some	devices,	when	their	address	collides	with	an	identical	address,	the
driver	will	simply	be	turned	off	(the	little	symbol	at	the	bottom-left	corner
of	the	screen	in	the	Windows	operating	system).	In	other	devices,	you	will
not	get	any	notification	for	a	conflict,	and	this	is	the	place	where	problems
will	arise.

2.	 Type	arp	–a	in	the	Command	Line	Interface	(CLI).	Use	the	command
cmd	in	Windows	(or	any	shell	in	Linux).	If	you	get	two	lines	for	the	IP
address	you've	pinged	with	different	MAC	addresses,	this	is	a	duplicate.

3.	 Google	the	MAC	addresses	of	the	two	devices,	and	the	first	part	of	the
address	will	tell	you	who	the	vendor	is.	This	will	lead	you	to	the	trouble
maker.

4.	 If	you	need	the	location	of	the	device,	log	in	to	your	LAN	switch	(when	you
have	a	managed	switch,	of	course),	and	from	the	switch	MAC	address
table,	you	will	see	the	switch	port	that	you	are	connected	to.

Tip

There	is	a	software	that	shows	you	the	list	of	devices	that	are	connected	to
every	switch	along	with	their	MAC	address,	IP	address,	DNS	names,	and
more.	Google	for	switch	port	mapper	or	switch	port	mapping	tools	and	you
will	find	lots	of	them.

5.	 If	you	don't	get	anything	with	Ping	and	ARP,	simply	start	Wireshark	and
port	mirror	the	network	VLANs.	Wireshark	will	show	you	a	duplicate
address	error	with	the	relevant	details.

6.	 The	error	message	that	you	will	get	will	be	as	shown	in	the	following
screenshot:

	

How	it	works...
When	you	ping	an	IP	address	that	appears	twice	on	your	local	network,	the	two
devices	(or	more)	that	have	the	same	IP	address	will	answer	to	the	ARP	request
that	you	sent,	and	your	ARP	cache	will	have	two	entries	for	the	same	IP	address.

In	many	cases,	your	device	will	indicate	it	by	closing	its	IP	driver	and	notify	you
by	a	pop-up	window	or	any	other	type	of	notification	that	you	will	be	aware	of.

In	other	cases,	the	colliding	devices	will	not	notify	the	conflict,	and	then	you	will
find	a	problem	only	with	Ping	and	ARP,	as	described	before.

In	any	case,	when	you	connect	Wireshark	to	the	network	and	see	duplicate	IP
messages,	don't	ignore	it.

There's	more...
Duplicate	IP	usually	happens	when	there	are	two	identical	addresses	in	the
network,	but	it	becomes	even	more	interesting	when	you	have	three	identical
addresses.

You	can	see	a	funny	example	for	this	in	the	upcoming	screenshot:	

	

In	this	customer	network,	they've	internal	network	of	around	150	devices	with
connectivity	to	the	Internet	through	a	firewall.	The	problem	was	a	very	slow
connection	to	the	Internet.

When	they	did	a	ping	to	a	server	on	the	Internet	(any	server),	they	got	the
following	responses:

Reply	from	173.194.35.148:	bytes=32	time=98ms	TTL=51

Request	timed	out.

Reply	from	173.194.35.148:	bytes=32	time=124ms	TTL=51

Request	timed	out.

Reply	from	173.194.35.148:	bytes=32	time=134ms	TTL=51

Request	timed	out.

Reply	from	173.194.35.148:	bytes=32	time=582ms	TTL=51

Request	timed	out.

The	customer	made	some	changes	to	the	network,	the	network	became	even
slower,	and	pinging	the	same	server	on	the	Internet	got	them	the	following
response:

Reply	from	173.194.35.148:	bytes=32	time=98ms	TTL=51

Request	timed	out.

Request	timed	out.

Reply	from	173.194.35.148:	bytes=32	time=124ms	TTL=51

Request	timed	out.

Request	timed	out.

Reply	from	173.194.35.148:	bytes=32	time=134ms	TTL=51

Request	timed	out

Request	timed	out….

When	I	came	into	the	picture,	the	first	thing	I	did	was	to	ping	the	server	on	the
Internet	and	type	ARP	–a	to	see	what	I	got.	And	what	I	saw	was	the	IP	address
10.10.10.200	with	three	different	MAC	addresses.	Of	course,	it	was	a	three-time
duplicate	address,	and	digging	into	the	problem	showed	me	what	actually
happened	there,	as	illustrated	in	the	following	figure:	

	

What	happened	was	that	the	network	default	gateway	to	the	Internet	was	not
actually	the	firewall,	but	a	web-filtering	device	that	was	located	between	the
network	and	the	firewall	with	the	address	10.10.10.200,	while	the	network
between	it	and	the	firewall	was	172.16.1.2/30.

What	actually	happened	is	explained	as	follows:

1.	 In	the	first	place,	they	configured	the	DHCP	server	on	the	network	to
exclude	addresses	10.10.10.201-254,	so	the	FW	address	was	not	excluded.

2.	 Then	they	connected	a	new	LAN	switch	to	the	stack.	The	LAN	switch	was
configured	by	default	to	receive	the	IP	address	by	DHCP,	so	it	received	the
address	10.10.10.200	and	that	was	the	first	duplicate.

3.	 And	the	funniest	thing	was	that	the	customer	suspected	a	problem	of
connecting	to	the	Internet,	so	they	disconnected	the	web-filter	server.	The
stupid	problem	was	that	they	disconnected	the	external	interface	of	the
web-filter	server	and	connected	the	internal	interface	to	the	switch	while
changing	its	address	to	the	address	of	the	firewall	that	was	still	connected	to
the	network.

4.	 What	they	got	is	presented	in	the	following	illustration,	that	is,	triple
10.10.10.200	addresses.

	

The	conclusion	from	this	case	and	from	many	other	cases	I've	experienced	is	that
one	of	the	most	important	conclusions,	is:	Always	have	an	updated	drawing	of
your	network!!!

Analyzing	DHCP	problems
Dynamic	Host	Configuration	Protocol	(DHCP)	is	the	protocol	that	provides
you	with	an	IP	address	automatically	while	connecting	to	the	network.	In	this
recipe,	we	will	learn	how	to	locate	some	of	the	common	DHCP	problems.

Getting	ready
When	you	have	a	DHCP	server	on	your	network,	and	PCs	are	not	able	to	receive
IP	addresses	automatically,	just	connect	Wireshark	with	port	mirror	to	the	device
that	doesn't	receive	the	address,	connect	and	disconnect	the	device	from	the
network,	or	simply	use	the	ipconfig	/release	and	ipconfig	/renew
commands.	Now,	we	will	have	a	look	at	what	can	go	wrong.

How	to	do	it...
Have	a	look	at	the	DHCP	procedure	described	in	the	How	it	works	…	section.
Anything	that	is	not	going	according	to	this	procedure	is	wrong,	so	check	for	the
following:

1.	 Did	the	client	send	the	DHCP	Discover	packet?
2.	 If	it	did,	the	client	works	fine.
3.	 If	it	didn't:

Something	is	wrong	with	the	client.	Check	if	the	client	is	configured
with	DHCP	(obtain	an	IP	address	automatically	as	marked	in	the
TCP/IP	configuration	window).
It	can	be	that	the	client	is	physically	not	connected	to	the	network.	It
happens	a	lot	with	wireless	communications	(WiFi),	where	the	client
does	not	have	connectivity	to	the	network	and	therefore,	does	not	send
the	DHCP	Discover	packet	since	it	doesn't	have	a	network	to	send	it
over.

The	client	sends	DHCP	Discover	and	receives	DHCP	Offer	from	a	single
server.	This	is	ok;	continue	watching	the	wire.
The	client	sends	DHCP	Discover	and	receives	DHCP	Offer	from	two	or	more

servers.	This	is	a	problem.	You	have	more	than	one	DHCP	server	on	your	LAN,
and	you	might	get	different	address	allocations	to	clients	on	the	LAN.	Turn	off
one	of	the	servers	(at	least	the	DHCP	service	on	it).
You	receive	DHCP	Discover	and	send	DHCP	Request;	this	is	fine.
If	you	immediately	receive	DHCP	Ack	with	the	IP	parameters,	everything	is
fine.
If	you	don't	receive	anything,	and	you	send	another	DHCP	Request,	it	can	be
a	slow	or	non-responsive	server.	Check	it.

If	you	receive	a	DHCP	Decline	message,	it	is	the	server	that	has	refused	your
request.
1.	 It	can	be	that	the	server	does	not	have	available	addresses.	In	this	case,

extend	your	address	range.
2.	 It	can	be	also	that	the	server	has	allocated	your	previous	IP	address	to

someone	else.	This	is	a	server	configuration	issue;	so	if	you	need	this
feature,	configure	the	server	to	save	IP	addresses	per	clients.

How	it	works...
DHCP	is	considered	to	be	a	simple	protocol,	but	actually	it	is	very	complex.
When	you	connect	a	client	to	the	network,	it	will	go	through	the	following	steps:

1.	 DHCP	Discover:	The	client	initializes	a	limited	version	of	TCP/IP	and
broadcastsa	request	looking	for	a	DHCP	server.	The	request	is	sent	from
UDP	port	68	to	UDP	port	67.

2.	 DHCP	Offer:	DHCP	servers	listen	on	UDP	port	67,	and	if	a	server	receives
the	request,	it	answers	with	a	DHCP	offer,	that	is	offering	to	provide	the
service	of	address	assignment.

3.	 DHCP	Request:	The	client	receives	the	DHCP	offer	and	sends	back	a	request
to	receive	information.	The	request	will	be,	for	example,	the	IP	address	that
we	requested	before	(because	we	had	it	before),	for	our	MAC	address	so
that	the	server	will	recognize	us	as	a	prior	client	with	a	saved	IP	address	and
other	parameters.

4.	 DHCP	Ack:	Here	the	server	sends	the	requested	information,	including	the	IP
address,	subnet	mask,	default	gateway,	DNS	servers,	and	other	parameters
that	are	configured	on	the	server.

In	the	next	screenshot,	we	see	a	standard	procedure	of	DHCP	that	works
properly:

	

There's	more...
A	very	common	problem	is	when	you	connect	a	device	to	your	network,	you
receive	an	IP	address	and	you	don't	have	any	idea	where	it	came	from.	Usually,
this	is	because	someone	has	connected	a	DHCP	server	to	your	LAN	without
telling	you.	In	most	of	the	cases,	it	will	be	a	small	Internet	router.	This	is	very
simple	to	find	out:

1.	 If	you	type	ipconfig	and	get	an	address	that	you	don't	know,	it	might	be	a
problem.

2.	 Since	the	router	we	suspect	is	connected	to	the	network,	assign	your	IP
address,	subnet	mask,	and	a	default	gateway.	When	you	ping	your	default
gateway,	you	actually	ping	the	router,	which	is	likely	to	be	the
troublemaker.

3.	 Type	ARP	–a	to	give	you	the	troublemaker's	MAC	address.	This	will	tell
you	two	things:

Who	is	the	vendor?	When	you	know	who	is	the	vendor	is	(D-Link,
Edimax,	Netgear,	and	many	others),	you	can	simply	go	and	look	for	it.
By	logging	into	the	LAN	switch,	the	MAC	address	will	also	tell	you
which	port	it	is	connected	to.	Go	to	your	communications	room	and
disconnect	it.

Of	course,	while	listening	to	the	port	with	Wireshark,	you	will	see	the	vendor
MAC	address	easily.

Chapter	9.	UDP/TCP	Analysis
This	chapter	contains	the	following	recipes:

Configuring	TCP	and	UDP	preferences	for	troubleshooting
TCP	connection	problems
TCP	retransmissions	–	where	they	come	from	and	why
Duplicate	ACKs	and	fast	retransmissions
TCP	out-of-order	packet	events
TCP	Zero	Window,	Window	Full,	Window	Change,	and	other	Window
indicators
TCP	resets	and	why	they	happen

Introduction
The	goal	of	Transmission	Control	Protocol	(TCP)	and	User	Datagram
Protocol	(UDP)	is	to	pass	information	between	end	applications,	for	example,
from	a	web	client	to	a	web	server,	mail	client	to	a	mail	server,	and	so	on.	This	is
done	by	providing	identification	to	end	applications	and	forwarding	packets
between	them.	These	identifications	are	called	port	numbers,	and	a	port	number
with	its	IP	address	is	called	a	socket.	In	the	following	diagram	you	can	see	what
happens	when	you	open	a	connection	from	your	browser	to	a	web	server.	The
web	server	listens	on	port	80	and	you	will	open	a	connection,	for	example,	from
port	1024.

So,	the	server	is	listening	to	requests	on	port	80	and	will	send	responses	to	you
on	port	1024.

	

While	TCP	is	a	reliable,	connection-oriented	protocol,	UDP	does	not	support
connectivity	and	reliability,	but	simply	transfers	datagrams	between	two	end
processes.

Tip

There	is	an	additional	layer-4	protocol,	which	is	called	SCTP	(Stream	Control
Transmission	Protocol).	This	protocol	can	be	considered	as	an	improved	version
of	TCP,	and	mostly	used	in	a	service	provider's	networks.	SCTP	is	not	included
in	the	scope	of	this	book.

In	this	chapter,	we	will	focus	on	TCP,	its	behavior,	various	problems,	and	how	to
use	Wireshark	in	order	to	isolate	and	solve	them.

Configuring	TCP	and	UDP
preferences	for	troubleshooting
In	most	cases	you	can	use	the	default	Wireshark	parameters	for	TCP	and	UDP
network	analysis,	but	there	are	also	some	changes	that	can	be	configured.	The
changes	will	be	configured	in	the	Preferences	window.

Getting	ready
For	TCP	or	UDP	configuration:

1.	 Start	Wireshark,	and	from	the	Edit	menu,	choose	Statistics.
2.	 Under	Protocols,	choose	TCP	or	UDP.

How	to	do	it...
In	this	section	we	will	see	how	to	configure	TCP	and	UDP	preferences.

UDP	parameters

Let's	see	some	parameters	that	can	influence	the	capture	of	UDP:	

	

You	can	configure	the	following	parameters	in	UDP:

Show	UDP	summary	in	protocol	tree:	Mark	this	button	if	you	want	the
UDP	summary	line	to	be	shown	in	the	protocol	tree	(set	by	default)
Try	heuristic	sub-dissectors	first:	Try	to	decode	a	packet	using	the
heuristic	method	before	using	a	sub-dissector	registered	to	the	specific	port
Validate	the	UDP	checksum	if	possible:	Validates	the	UDP	checksum
Collect	process	flow	information:	Collects	process	flow	information

By	default	only	the	first	parameter	is	set.	In	most	cases	it	is	enough.

TCP	parameters

	

You	can	configure	the	following	parameters	in	TCP:

Show	TCP	summary	in	protocol	tree:	Mark	this	button	if	you	want	the
TCP	summary	line	to	be	shown	in	the	protocol	tree	(set	by	default).
Validate	the	TCP	checksum	if	possible:	This	feature	can	slow	down
performance.	In	most	cases	it	is	not	required.
Allow	subdissector	to	reassemble	TCP	streams:	This	option	is	for	stream
analysis	(set	by	default).
Analyze	TCP	sequence	numbers:	When	this	is	set,	Wireshark	analyzes
sequence	numbers	and	track	phenomena	such	as	retransmission,	duplicate
ACKs,	and	so	on,	which	is	one	of	the	important	features	of	Wireshark.
Relative	sequence	numbers:	When	this	is	set,	Wireshark	will	show	you
every	TCP	connection	that	starts	from	Seq=0.
Track	number	of	bytes	in	flight:	This	setting	enables	Wireshark	to	track
the	number	of	unacknowledged	bytes	flowing	on	the	network	(set	by
default).
Calculate	conversation	timestamps:	This	feature	enables	the	calculations
of	TCP	timestamps	option.
Try	heuristic	sub-dissectors	first:	Try	to	decode	a	packet	using	heuristic
method	before	using	a	sub-dissector	registered	to	the	specific	port.
Ignore	TCP	Timestamps	in	summary:	Ignore	the	timestamp	option	in	the
TCP	header.
Do	not	call	subdissector	for	error	packets:	This	option	does	not	analyze

erroneous	TCP	packets.

How	it	works...
There	are	some	parameters	in	the	TCP	preferences	that	I	would	like	to	say	a	few
words	about.

Referring	to	relative	sequence	numbers,	when	you	look	at	a	TCP	connection
you	see	that	it	always	starts	with	sequence	numbers	equal	to	zero.	These	are	the
relative	numbers	that	are	normalized	to	zero	by	Wireshark.	The	real	numbers	are
numbers	between	0	and	232,	picked	by	the	TCP	process,	which	are	difficult	to
follow.	The	TCP	standard	does	not	set	any	rule	for	picking	this	number.

The	calculating	conversations	timestamps	refers	to	the	timestamp	option	of	the
TCP	packet.	The	TCP	timestamps	option	carries	two	4-byte	timestamp	fields,	as
seen	in	the	next	diagram:

	

The	problem	that	the	timestamp	option	comes	to	solve	is	the	sensitivity	of	TCP
to	delay	variations.	The	solution,	and	written	in	RFC	1323,	is	to	use	TCP	options
in	the	following	ways	(for	every	TCP	connection):

The	sender	places	a	timestamp	in	each	data	segment	that	it	sends	(the	Tsval
field)
The	receiver	reflects	these	timestamps	in	ACK	segments	(the	Tsecr	field)

Then,	a	single	subtraction	gives	the	sender	an	accurate	RTT	measurement	for
every	ACK	segment	(which	will	correspond	to	every	other	data	segment,	with	a
sensible	receiver).	This	mechanism	is	called	Round	Trip	Time	Measurement
(RTTM).

There's	more…
UDP	is	a	very	simple	protocol	with	a	very	simple	header	that	includes	only	four
fields:	source	port,	destination	port,	packet	length,	and	checksum.	Checksum	is
used	by	the	receiver	to	check	whether	to	accept	the	packet	or	drop	it.	In	case	of	a
packet	drop,	there	is	no	recovery	mechanism.	In	some	cases,	the	application	will
recover	it	(for	example,	DNS	that	sends	the	request	again),	and	in	some	cases	it
won't.

TCP	is	more	sophisticated.	It	is	a	connection-oriented,	reliable	protocol,	with
sequencing	mechanism,	flow,	and	congestion	control.	These	subjects	will	be
discussed	later	in	this	chapter.

SCTP	is	a	reliable,	connection-oriented	protocol	that	allows	the	transfer	of
multiple	streams	per	connection,	optional	bundling	of	multiple	user	messages
into	a	single	SCTP	packet,	support	for	cookies,	multi-homing,	and	other
mechanisms.	It	was	initially	developed	for	carrying	signaling	messages	in
cellular	networks,	and	later	implemented	with	other	application	protocols.

TCP	connection	problems
When	two	TCP	processes	wish	to	communicate,	they	open	the	connection,	send
the	data,	and	then	close	the	connection.	This	happens	when	you	open	a	browser
to	the	Internet,	connect	from	your	mail	client	to	the	mail	server,	or	connect	with
Telnet	to	your	router	or	any	other	application	that	works	over	TCP.

When	TCP	opens	the	connection,	it	sends	a	request	for	open	connection	from	the
source	port	to	destination	port.

Some	problems	can	occur	during	the	establishment	or	closing	of	the	application.
Using	Wireshark	to	locate	and	solve	these	problems	is	the	goal	of	this	recipe.

Getting	ready
If	you	experience	one	of	the	following	problems,	use	Wireshark	in	order	to	find
out	what	is	the	reason	for	it.

These	problems	can	be	of	many	types.	Of	these:

You	try	to	run	an	application	and	it	does	not	work.	You	try	to	browse	the
Internet	and	you	don't	get	any	response.
You	try	to	use	your	mail	but	you	don't	have	a	connection	to	the	mail	server.
Problems	can	be	due	to	simple	reasons,	such	as	the	server	being	down,	the
application	is	not	running	on	the	server,	or	the	network	is	down	somewhere
on	the	way	to	the	server.
Problems	can	be	also	due	to	more	complicated	reasons,	such	as	DNS
problems,	insufficient	memory	on	the	server	that	does	not	enable	you	to
connect	(due	to	high	memory	consumption	by	an	application,	for	example),
duplicate	IPs,	and	many	others.

In	this	recipe	we	focus	on	these	GO/NO-GO	problems	that	are	usually	quite	easy
to	solve.

How	to	do	it...
Here	you	will	see	some	indicators	and	what	you	can	see	when	you	use	Wireshark
for	debugging	TCP	connectivity	problems.	Usually	these	problems	result	in
trying	to	run	an	application	and	getting	no	results.

When	you	try	to	run	an	application,	for	example,	a	database	client,	a	mail	client,
watching	cameras	servers,	and	so	on,	and	you	don't	get	any	output,	follow	these
steps:

1.	 Verify	that	the	server	and	applications	are	running.
2.	 Verify	if	your	client	is	running,	you	have	an	IP	address	configured

(manually	or	by	DHCP),	and	you	are	connected	to	the	network.
3.	 Ping	the	server	and	verify	you	have	connectivity	to	it.

Tip

In	some	cases,	you	will	not	have	Ping	to	the	server,	but	still	have
connectivity	to	the	application.	This	can	happen	because	a	firewall	is
blocking	the	ICMP	messages,	so	if	you	don't	have	Ping	to	a	destination	it
doesn't	necessarily	mean	that	something	is	wrong.	The	firewall	can	be	a
dedicated	device	in	the	network	or	a	windows	(or	Linux/UNIX)	firewall
installed	on	the	end	device.

4.	 In	the	capture	file,	look	for	one	of	the	following	patterns:
Triple	SYN	messages	with	no	response	(in	the	following	screenshot)
SYN	messages	with	a	reset	(RST)	response

In	both	cases	it	can	be	that	a	firewall	is	blocking	the	specific	application	or	the
application	is	not	running.

In	the	following	screenshot,	we	see	a	simple	case	in	which	we	simply	don't	get
access	to	web	server	81.218.31.171	(packets	61,	62,	and	63).	It	can	be	because
it	is	not	permitted	by	a	firewall,	or	simply	because	there	is	a	problem	with	the
server.	We	can	also	see	that	we	have	a	connection	to	another	website
(108.160.163.43,	packets	65,	66,	and	67),	so	the	connection	problem	is	only	to
81.218.31.171.

	

In	the	next	screenshot	we	see	a	slightly	more	complex	case	of	the	same	situation.
In	this	case,	we've	had	a	cameras	server	that	the	customer	wanted	to	log	in	to	and
watch	the	cameras	on	a	remote	site.	The	camera's	server	had	the	IP	address
135.82.12.1	and	the	problem	was	that	the	customer	was	able	to	get	the	main
web	page	of	the	server	with	the	login	window,	but	couldn't	log	into	the	system.
In	the	following	screenshot,	we	can	see	that	we	open	a	connection	to	the	IP
address	135.82.12.1.	We	see	that	a	TCP	connection	is	opened	to	the	HTTP
server,	and	at	first	it	looks	like	there	are	no	connectivity	problems:

	

The	problems	arise	when	we	filter	all	traffic	to	the	IP	address	135.82.12.1,	that
is,	the	cameras	server.

Here	we	see	that	when	we	try	to	connect	to	TCP	port	6036,	we	get	an	RST/ACK
response,	which	can	be:

A	firewall	that	blocks	port	6036	(that	was	the	case	here)
When	port	address	translation	(PAT)	is	configured,	and	we	translate	only

port	80	and	not	6036
The	authentication	of	the	username	and	password	were	done	on	TCP	port
6036,	the	firewall	allowed	only	port	80,	the	authentication	was	blocked,	and
the	application	didn't	work

	

To	summarize,	when	you	don't	have	connectivity	to	a	server,	check	the	server
and	the	client	if	all	TCP/UDP	ports	are	forwarded	throughout	the	network,	and	if
you	have	any	ports	that	you	don't	know	about.

Tip

In	some	cases	when	you	install	new	applications	in	your	network,	it	is	good	to
connect	Wireshark	on	the	client	and	the	server,	and	check	what	is	actually
running	between	them.	The	software	house	will	not	always	tell	you	what	they
are	actually	transferring	over	the	network	(sometimes	this	is	because	they	are	not
aware	of	it!),	and	firewalls	can	block	information	that	you	are	not	aware	of.

How	it	works...
Starting	a	TCP	connection,	as	seen	in	the	next	screenshot,	happens	in	three	steps:

	
1.	 The	TCP	process	on	the	client	side	sends	an	SYN	packet.	This	is	a	packet

with	the	SYN	flag	set	to	1.	In	this	packet	the	client:
Specifies	its	initial	sequence	number.	This	is	the	number	of	the	first
byte	that	the	client	sends	to	the	server.
Specifies	its	window	size.	This	is	the	buffer	the	clients	allocate	to	the
process	(the	place	in	the	client's	RAM).
Sets	the	options	that	will	be	used	by	it:	MSS,	Selective	ACK,	and	so
on.

When	the	server	receives	the	request	to	establish	a	connection,	the	server:
Sends	an	SYN/ACK	packet	to	the	client,	confirming	the	acceptance	of	the
SYN	request.
Specifies	the	server's	initial	sequence	number.	This	is	the	number	of	the
first	byte	that	the	server	sends	to	the	client.
Specifies	the	server's	window	size.	This	is	the	buffer	size	that	the	server
allocates	to	the	process	(the	place	in	the	server's	RAM).
Responds	to	the	options	requested	and	sets	the	options	on	the	server	side.

When	receiving	the	server's	SYN/ACK,	the	client:
Sends	an	ACK	packet	to	the	server,	confirming	the	acceptance	of	the
SYN/ACK	packet	from	the	server.
Specifies	the	client's	window	size.	This	is	the	buffer	size	that	the	client
allocates	to	the	process.	Although	this	parameter	was	defined	in	the	first

packet	(the	SYN	packet),	the	server	will	refer	to	this	one	since	it	is	the	latest
window	size	received	by	the	server.

In	the	options	field	of	the	TCP	header,	we	have	the	following	main	options:

Maximum	Segment	Size	(MSS):	This	is	the	maximum	size	of	the	TCP
datagram,	that	is,	the	number	of	bytes	from	the	beginning	of	the	TCP
header	to	the	end	of	the	entire	packet.
Windows	Size	(WSopt):	This	factor	is	multiplied	with	the	Window	Size
field	in	the	TCP	header	to	notify	the	receiver	on	a	larger	size	buffer.	Since
the	maximum	window	size	in	the	header	is	64	KB,	a	factor	of	4	gives	us	64
KB	multiplied	by	4,	that	is,	a	256	KB	window	size.
SACK:	Selective	ACK	is	an	option	that	enables	the	two	parties	of	a
connection	to	acknowledge	specific	packets,	so	when	a	single	packet	is	lost,
only	this	packet	will	be	sent	again.	Both	parties	of	the	connection	have	to
agree	on	SACK	in	the	connection	establishment.
Timestamps	options	(TSopt):	This	parameter	was	explained	earlier	in	this
chapter,	and	refers	to	measurement	of	the	delay	between	client	and	the
server.

By	this	stage,	both	sides:

Agree	to	establish	a	connection
Know	the	other	side's	initial	sequence	number
Know	the	other	side's	window	size

Tip

Anything	but	a	full	three-way	handshake	while	establishing	a	connection	should
be	considered	as	a	problem.	This	includes	SYN	without	a	response,	SYN	and
then	SYN/ACK	and	no	last	ACK,	SYN	which	is	answered	with	a	reset	(RST	flag
equal	1),	and	so	on.

There's	more…
Some	rules	of	thumb	are	as	follows:

In	case	an	SYN	packet	is	answered	with	RST,	look	for	the	firewall	that
blocks	the	port	numbers.
Triple	SYN	without	any	answer	occurs	either	due	to	an	application	that
didn't	respond,	or	a	firewall	that	blocks	the	request	on	a	specific	port.
Always	verify	if	you	have	Network	Address	Translation	(NAT),	port
forwarding,	and	mechanisms	that	play	with	TCP	or	UDP	ports.	These
mechanisms	can	interrupt	with	the	standard	operation	of	TCP.

TCP	retransmission	–	where	do	they
come	from	and	why
When	TCP	sends	a	packet	or	a	group	of	packets	(refer	to	the	How	it	works…
section	later	in	this	recipe),	it	waits	for	acknowledgment	to	confirm	the
acceptance	of	these	packets.	Retransmissions,	obviously,	happen	due	to	a	packet
that	has	not	arrived,	or	acknowledgment	that	has	not	arrived	on	time.	There	can
be	various	reasons	for	this,	and	finding	the	reason	is	the	goal	of	this	recipe.

Getting	ready
When	you	see	that	the	network	becomes	slow,	one	of	the	reasons	for	this	can	be
retransmissions.	Connect	Wireshark	in	the	port	mirror	to	the	suspicious	client	or
server,	and	watch	the	results.

In	this	recipe,	we	will	see	some	common	problems	that	we	encounter	with
Wireshark,	and	what	they	indicate.

How	to	do	it...
Let's	get	started:

1.	 Start	capturing	data	on	the	relevant	interface.
2.	 Go	to	the	Analyze	|	Expert	Info	menu.
3.	 Under	Notes,	look	for	Retransmissions.
4.	 You	can	click	on	the	(+)	sign	and	a	list	of	retransmissions	will	open.	A

single	mouse	click	on	every	line	will	bring	you	the	retransmission	in	the
packet	capture	pane.

5.	 Now	comes	the	important	question:	how	to	locate	the	problem.

Tip

When	you	capture	packets	over	a	communication	line,	server	interface,	link
to	the	Internet,	or	any	other	line,	you	can	have	traffic	from	many	IP
addresses,	many	applications,	and	even	specific	procedures	on	every
application,	for	example,	accessing	a	specific	table	in	a	database
application.	The	important	thing	here	is	to	locate	the	TCP	connections	on
which	the	retransmissions	happen.

6.	 You	can	see	where	the	retransmissions	come	from	by:
Moving	packet-by-packet	in	the	Expert	Info	window,	and	looking	for
what	packets	does	it	take	you	in	the	packet	capture	pane	(good	for
experienced	users)
In	the	packet	pane,	configure	the	display	filter	expert.message	==
"Retransmission	(suspected)",	and	you	will	get	all	retransmissions
in	the	capture	file
By	applying	the	filter,	and	then	checking	the	Limit	to	display	filter
section	to	the	right-bottom	corner	of	the	window	in	the	Statistics	à
Conversations	window

Case	1	–	retransmissions	to	many	destinations

In	the	following	screenshot,	you	see	that	we've	got	many	retransmissions,	spread
between	many	servers,	with	destination	ports	80	(HTTP).	What	we	can	also	see
from	here	is	the	10.0.0.5	port	sends	the	retransmission,	so	packets	were	lost	on
the	way	to	the	Internet,	or	acknowledgement	was	not	sent	back	on	time	from	the
web	servers.

	

Well,	obviously	something	is	wrong	on	the	line	to	the	Internet.	How	can	we
know	what	it	is?

1.	 From	the	Statistics	menu,	open	IO	Graph.
2.	 In	this	case	(case	1),	we	see	that	the	line	is	nearly	empty.	Probably	it	is	an

error,	or	another	loaded	line	on	the	way	to	the	Internet.
3.	 You	can	check	packet	losses	and	errors	that	cause	them	by	logging	into	the

communications	equipment	or	by	any	SNMP	browser	(when	the	SNMP
agent	is	configured	on	the	equipment).	Check	the	following	screenshot	for
reference:

	

Case	2	–	retransmissions	on	a	single	connection

If	all	retransmissions	will	be	on	a	single	IP,	with	a	single	TCP	port	number,	it
will	be	a	slow	application.	We	can	see	this	in	the	following	screenshot:

	

For	retransmissions	on	a	single	connection,	perform	the	following	steps:

1.	 We	can	also	verify	this	by	opening	Conversations	from	the	Statistics
menu,	and	by	selecting	the	Limit	to	display	filter	checkbox,	we	will	get	all
the	conversations	that	have	retransmissions,	in	this	case,	a	single
conversation.

2.	 By	choosing	the	IPv4	tab	as	shown	in	the	following	screenshot	we	will	see
from	which	IP	addresses	we	get	the	retransmissions:

	
3.	 By	choosing	the	TCP	tab	as	shown	in	the	following	screenshot	we	will	see

from	which	port	numbers	(or	applications)	we	get	the	retransmissions:

	

To	isolate	the	problem,	perform	the	following	steps:

1.	 Look	at	the	IO	graph,	and	make	sure	that	the	line	is	not	busy.

Tip

An	indication	of	a	busy	communication	line	will	be	a	straight	line	very
close	to	the	maximum	bandwidth	of	the	line.	For	example,	if	you	have	a	10
Mbps	communication	line,	you	port	mirror	it,	and	see	in	the	IO	graph	a
straight	line	which	is	close	to	the	10	Mbps,	this	is	a	good	indication	of	a
loaded	line.	A	non-busy	communication	line	will	have	many	ups	and
downs,	peaks	and	empty	intervals.

2.	 If	the	line	is	not	busy,	it	can	be	a	problem	on	the	server	for	the	IP	address
10.1.1.200	(10.90.30.12	is	sending	most	of	the	retransmissions,	so	it	can
be	that	10.1.1.200	responds	slowly).

3.	 From	the	packet	pane	we	see	that	the	application	is	FTP-DATA.	It	is
possible	that	the	FTP	server	works	in	an	active	mode.	Hence	we've	opened
a	connection	on	one	port	(2350),	and	the	server	changed	the	port	to	1972,	so
it	can	be	a	slow	non-responsive	FTP	software	(that	was	the	problem	here
eventually).

Case	3	–	retransmission	patterns

An	important	thing	to	watch	for	in	TCP	retransmissions	is	if	the	retransmissions
have	any	pattern	that	you	can	see.

In	the	following	screenshot,	we	see	that	all	retransmissions	are	coming	from	a
single	connection,	between	a	single	client	and	NetBIOS	Session	Service	(TCP
port	139)	on	the	server.

	

Looks	like	a	simple	server/application	problem,	but	when	we	look	at	the	packet
capture	pane,	we	see	something	interesting	(refer	to	the	following	screenshot):

	

The	interesting	thing	is	that	when	we	look	at	the	pattern	of	retransmissions,	we
see	that	they	occur	cyclically	every	30	ms.	The	time	format	here	is	seconds,

since	the	previously	displayed	packet	and	the	time	scale	is	in	seconds.

The	problem	in	this	case	was	a	client	that	performed	a	financial	procedure	in	the
software	that	caused	the	software	to	slow	down	every	30-36	ms.

Case	4	–	retransmission	due	to	a	non-responsive	application

Another	reason	for	retransmissions	can	be	when	a	client	or	a	server	does	not
answer	to	requests.	In	this	case,	you	will	see	five	retransmissions,	with	an
increasing	time	difference.	After	these	five	consecutive	retransmissions,	the
connection	is	considered	to	be	lost	by	the	sending	side	(in	some	cases,	reset	will
be	sent	to	close	the	connection,	depending	on	the	software	implementation).
After	the	disconnection,	two	things	may	happen:

An	SYN	request	will	be	sent	by	the	client,	in	order	to	open	a	new
connection.	What	the	user	will	see	in	this	case	is	a	freeze	in	the	application,
and	after	15-20	seconds	it	will	start	to	work	again
No	SYN	will	be	sent,	and	the	user	will	have	to	run	the	application	(or	a
specific	part	of	it)	again

In	the	following	screenshot	we	can	see	a	case	in	which	a	new	connection	is
opened:

	
Case	5	–	retransmission	due	to	delayed	variations

TCP	is	a	protocol	that	is	quite	tolerant	of	delays,	as	long	as	the	delay	does	not
vary.	When	you	have	variations	in	delay,	you	can	expect	retransmissions.	The
way	to	find	out	if	this	is	the	problem	is	as	follows:

1.	 The	first	thing	to	do	is,	of	course,	to	ping	the	destination,	and	get	the	first
information	of	the	communications	line	delay.	Look	at	the	How	it	works…
section	to	see	how	it	should	be.

2.	 Check	for	the	delay	variations,	which	can	happen	due	to	the	following
reasons:

A	delay	can	happen	due	to	a	non-stable	or	busy	communication	line.	In
this	case,	you	will	see	delay	variations	using	the	Ping	command.
Usually	it	will	happen	on	lines	with	a	narrow	bandwidth,	and	in	some
cases	on	cellular	lines.
A	delay	can	happen	due	to	a	loaded	or	inefficient	application.	In	this
case,	you	will	see	many	retransmissions	on	this	specific	application
only.
A	delay	can	happen	due	to	a	loaded	communication	equipment	(CPU
load,	buffer	load,	and	so	on).	You	can	check	this	by	accessing	the
communication	equipment	directly.

3.	 Use	the	Wireshark	tools	as	explained	in	Chapter	13,	Troubleshooting
Bandwidth	and	Delay	Problems.

Tip

The	bottom	line	with	TCP	retransmissions	is	that	retransmissions	are	a
natural	behavior	of	TCP	as	long	as	we	don't	have	too	many	of	them.
Degradation	in	performance	will	start	when	the	retransmissions	are	around
0.5	percent,	and	disconnections	will	start	around	5	percent.	It	also	depends
on	the	application	and	its	sensitivity	to	retransmissions.

Finding	what	it	is

When	you	see	retransmissions	on	a	communication	link	(to	the	Internet,	on	a
server,	between	sites,	or	any	other	link),	perform	the	following:

1.	 Locate	the	problem—is	it	a	specific	IP	address,	specific	connection,	specific
application,	or	some	other	problem.

2.	 Check	if	the	problem	is	because	of	the	communication	link,	packet	loss,	or
a	slow	server	or	PC.	Check	if	the	application	is	slow.

3.	 If	it	is	not	due	to	any	of	the	preceding	reasons,	check	for	delay	variations.

How	it	works...
Let's	see	the	regular	operation	of	TCP,	and	what	are	the	causes	for	problems	that
might	happen.

Regular	operation	of	the	TCP	Sequence/Acknowledge	mechanism

One	of	the	mechanisms	that	is	built	into	TCP	is	the	retransmission	mechanism.
This	mechanism	enables	the	recovery	of	data	that	is	damaged,	lost,	duplicated,
or	delivered	out	of	order.

This	is	achieved	by	assigning	a	sequence	number	to	every	transmitted	byte,	and
expecting	an	acknowledgment	(ACK)	from	the	receiving	party.	If	the	ACK	is	not
received	within	a	timeout	interval,	the	data	is	retransmitted.

At	the	receiver	end,	the	sequence	numbers	are	used	in	order	to	verify	that	the
information	comes	in	the	order	that	it	was	sent.	If	not,	rearrange	it	to	its	previous
state.

This	mechanism	works	as	follows:

1.	 At	the	connection	establishment,	both	sides	tell	each	other	what	will	be
their	initial	sequence	number.

2.	 When	data	is	sent,	every	packet	has	a	sequence	number.	The	sequence
number	indicates	the	number	of	the	first	byte	in	the	TCP	payload.	The	next
packet	that	is	sent	will	have	the	sequence	number	of	the	previous	one,	plus
the	number	of	bytes	in	the	previous	packet,	plus	one	(in	the	next
screenshot).

3.	 When	a	packet	is	sent,	the	RTO	(Retransmission	Timeout)	counter	starts	to
count	the	time	from	the	moment	it	was	sent.

Tip

The	Retransmission	Timeout	timer	is	based	on	the	Van	Jacobson	congestion
avoidance	and	control	algorithm,	which	basically	says	the	TCP	is	tolerant	to
high	delays,	but	not	to	fast	delay	variations.

4.	 When	the	receiver	receives	the	packet,	it	answers	with	an	ACK
(Acknowledge)	packet	that	tells	the	sender	to	send	the	next	packet.	In	the

following	screenshot	you	will	see	how	it	works:
1.	 You	can	see	from	here	that	10.0.0.7	is	downloading	a	file	from

62.219.24.171.	The	file	is	downloaded	via	HTTP	(the	Wireshark
window	was	configured	to	show	tcp.seq	and	tcp.ack	from	the	Edit	|
Preferences	columns	configuration,	as	described	in	Chapter	1,
Introducing	Wireshark).

	
2.	 You	can	see	from	here	that	62.219.24.171	sends	a	packet	with	a

sequence	number	of	120185105,	and	then	a	packet	with	the	sequence
number	120186557.	When	receiving	these	two	packets,	the	client
10.0.0.7	tells	the	server	to	send	him	the	next	packet	with	ACK	=
120188009,	after	which	the	server	sends	the	packet	with	the	sequence
number	120188009,	and	the	next	packet	with	sequence	number
120189461,	and	so	on.

You	can	see	a	diagram	for	this.

	

What	are	TCP	retransmissions	and	what	do	they	cause

When	a	packet	acknowledgment	is	lost,	or	when	an	ACK	does	not	arrive	on
time,	the	sender	will	perform	two	things:

1.	 Send	the	packet	again,	as	described	earlier	in	this	recipe.
2.	 Decrease	the	throughput.

In	the	next	screenshot	we	see	an	example	of	retransmissions	that	reduce	the
sender	throughput	(red	thin	lines	added	for	clarity):

	

There's	more...
TCP	is	tolerant	of	high	delays,	as	long	as	they	are	reasonably	stable.	The
algorithm	that	defines	the	TCP	behavior	under	delay	variations	(among	other
things)	is	called	the	Van	Jacobson	algorithm	(after	the	name	of	its	inventor).	The
Van	Jacobson	algorithm	enables	tolerance	of	up	to	3-4	times	the	average	delay,
so	if	for	example,	you	have	a	delay	of	100	ms,	TCP	will	be	tolerant	to	delays	of
up	to	300-400	ms	as	long	as	they	are	not	frequently	changed.

See	also
You	can	check	the	Van	Jacobson	algorithm	at
http://ee.lbl.gov/papers/congavoid.pdf.

http://ee.lbl.gov/papers/congavoid.pdf

Duplicate	ACKs	and	fast
retransmissions
Another	phenomenon	that	you	will	see	in	TCP	is	what	is	called	duplicate	ACKs
and	fast	retransmissions.	This	phenomenon	also	happens	due	to	performance
problems,	and	in	this	recipe	we	will	focus	on	how	to	find	them	and	what	they
indicate.

Getting	ready
When	you	see	that	the	network	becomes	slow,	one	of	the	reasons	for	this	can	be
duplicate	ACKs.	Connect	the	Wireshark	in	the	port	mirror	to	the	suspicious
client	or	server	and	see	the	results.

How	to	do	it...
In	most	cases,	duplicate	ACKs	will	happen	because	of	high	latency,	delayed
variations,	or	a	slow	end	point	that	simply	does	not	response	to	ACK	requests.

When	looking	for	a	reason	for	slow	communication,	duplicate	ACKs	can	be	one
of	the	reasons	for	it.

1.	 When	you	see	a	reasonable	amount	of	duplicate	ACKs,	that	is,	1	or	2
percent,	this	is	probably	not	your	problem.

2.	 When	you	see	a	huge	number	of	duplicate	ACKs	(say	ten	of	them),	you
might	have:

A	very	busy	communication	line	that	causes	variations	in	delays
A	non-responsive	server	or	client	(depends	on	who	is	not	responding)

A	fast	retransmission	is	a	packet	that	is	sent	in	response	to	the	duplicate
ACKs.
In	the	next	screenshot	you	see	an	example	of	the	problem.	In	the	example	you

see	how	a	fast	retransmission	is	sent	after	51	DupACKs	(duplicate	ACKs):	

	
Here	is	how	you	can	solve	the	problem:
If	you	have	a	small	number	of	duplicate	ACKs	and	retransmissions	(less
than	1	percent),	it's	tolerable.
When	you	have	this	over	cellular	or	wireless	networks,	or	in	connections

over	the	Internet,	the	delay	and	delay	variations	are	common	to	these
networks,	so	there	is	really	nothing	much	you	can	do	about	it.
If	you	have	it	in	your	organization's	network,	it	might	be	a	problem.	If	it's
on	the	LAN,	check	for	severe	problems,	such	as	switch	buffers	and	CPU
load,	very	slow	servers,	and	so	on.	If	it's	on	the	WAN,	check	for	delays	and
loaded	or	unstable	lines.

How	it	works...
A	duplicate	ACK	happens	if	a	packet	is	detected	as	missing	(the	expected
sequence	number	was	not	received),	or	when	an	unexpected	sequence	number
was	received.	In	this	case,	the	receiver	generates	an	ACK	indicating	the	next
expected	sequence	number	that	it	wishes	to	receive.	The	receiver	will	continue
to	generate	ACKs	requesting	the	missing	segment,	until	it	will	receive	it.

On	the	sender	side,	when	it	receives	three	identical	ACKs	(the	original	ACK	and
two	duplicate	ACKs)	with	the	same	value,	it	assumes	there	is	a	packet	loss	and	it
resends	the	missing	packet,	regardless	of	whether	the	RTO	is	expired	or	not.	The
packet	that	is	sent	again	is	called	fast	retransmission.

Duplicate	ACKs	also	reduce	the	throughput	that	is	sent	over	the	network.	How
much	throughput	is	reduced	depends	on	the	TCP	version.	In	the	earlier	versions
of	TCP	(that	is	Tahoe,	Reno,	and	New-Reno)	the	idea	was	that	in	the	appearance
of	a	duplicate	ACK,	the	sender	reduces	the	throughput	to	half	of	what	it	was
before.	In	case	of	many	DupACKs,	the	throughput	will	be	reduced	to	minimum.

In	the	next	screenshot	you	see	a	typical	example	for	what	is	caused	by	duplicate
ACKs	and	retransmissions:

	

In	this	screenshot	we	see	that	first	duplicate	ACKs	reduce	the	throughput	to
around	40	percent	of	what	it	was	before,	and	then	retransmissions	reduce	it	to
minimum.

There's	more...
The	mechanism	that	is	used	in	duplicate	ACKs	is	called	fast	recovery.	In	recent
years	some	advanced	versions	of	TCP	were	introduced,	especially	for	cellular
networks,	in	order	to	improve	the	behavior	of	TCP	under	high	and	changing
delay	conditions.	In	these	examples,	you	might	see	some	differences	in	the
behavior	of	the	sender	and	receiver,	for	example,	lighter	degradation	in
performance,	faster	recovery,	and	so	on.	Still,	the	characteristic	behavior	of	TCP
is	maintained.

TCP	out-of-order	packet	events
Another	phenomenon	that	you	will	see	in	networks	is	previous	segment	loss
and	out-of-order	segments.	Both	relate	to	packets	arriving	out	of	order,	and	in
some	cases	indicate	a	problem.

When	you	see	this	on	a	network	connection,	it	might	happen	due	to	network
problems	or	an	interruption	in	capture.	In	this	recipe	we	will	focus	on	this	issue
and	what	it	can	cause.

Getting	ready
Start	Wireshark	and	connect	it	on	a	mirrored	port.	The	three	phenomena	that	we
want	to	focus	on	in	this	recipe	are:

Previous	segment	lost:	This	occurs	when	a	packet	arrives	with	a	sequence
number	higher	than	the	next	expected	sequence	number	on	that	connection,
indicating	that	one	or	more	packets	prior	to	the	flagged	packet	did	not
arrive
Out-of-order	packet:	This	occurs	when	a	packet	is	seen	with	a	sequence
number	lower	than	the	previously	received	packet	on	that	connection
Previous	segment	not	captured	(Wireshark	Version	1.8.x	and	higher):
This	is	like	the	previous	segment	lost

How	to	do	it...
When	will	it	happen?

You	might	see	these	in	the	following	events:

At	the	beginning	of	capture:	This	event	occurs	when	you	start	a	capture
during	an	open	connection.	In	this	case,	you	will	see	packets	on	a
connection	without	the	SYN/SYN-ACK/ACK,	therefore,	Wireshark	thinks
something	went	wrong.
Real	packet	losses:	In	this	case	you	will	also	see	retransmissions	of	the	lost
packets	and/or	duplicate	ACKs	telling	the	sender	to	send	the	lost	packets.

	

In	the	previous	screenshot,	we	see	a	good	example	for	severe	packet	losses.
What	we	see	here	is	that	10.0.0.6	is	trying	to	browse	website
62.90.90.210.	During	this,	the	TCP	segments	of	1420	bytes	each	are	sent
to	the	web	server	and	we	see	that	between	packets	334	and	336	three
packets	are	missing,	and	between	packets	338	and	340	two	packets	are
missing.	In	both	cases,	Wireshark	notices:	TCP's	previous	segment	is	not
captured.
Delay	variations:	This	can	happen	due	to	packets	that	take	different	routes
from	the	source	to	destination.	To	check	this	use	Tracert,	and	look	for	route
changes	between	the	source	and	destination	(if	it	happens	on	the
organization	network)	you	can,	for	example,	configure	traps	on	the	routers
that	will	tell	you	when	this	happens.
Data	capture	problems:	It	can	be	that	packets	are	sent	and	received
properly,	but	Wireshark	will	not	have	captured	them.	It	can	be	because	of
various	reasons:

Because	of	very	heavy	traffic	Wireshark	might	lose	packets	in	high	bit

rates	(over	150-180	Mbps).	To	avoid	this	problem,	use	other	tools
(mostly	commercial).
In	case	your	laptop	is	not	strong	enough,	lack	of	memory	or	CPU
power	will	not	enable	Wireshark	to	work	fast	enough.	This	is	easy	to
find	out,	and	you	are	probably	aware	of	it.
When	port	buffers	on	a	LAN	switch	are	too	small,	packets	can	be
dropped.	Connect	to	the	switch	(as	with	console	or	telnet	connection)
and	use	the	switch	command	line	to	check	for	the	problem.
Capturing	data	on	a	wireless	network,	when	for	some	reason	you	don't
see	all	packets	that	are	sent.	See	Chapter	7,	Ethernet,	LAN	Switching,
and	Wireless	LAN.

How	it	works...
In	this	case,	things	are	simple.	The	TCP	sender	sends	the	packets	to	the	receiver.
These	packets	are	numbered	by	their	bytes.	When	a	packet	does	not	arrive	in
order,	it	is	a	problem	that	Wireshark	notices.	We	can	have	two	reasons	for	this:

A	real	problem:	In	this	case	you	will	see	retransmissions	and	duplicate
ACKs	that	are	TCP's	response	to	packets	that	are	received	out	of	order
A	capture	problem:	In	this	case	you	will	see	only	out-of-order	packets,	and
since	you	don't	see	any	response	to	the	suspected	lost	and	out-of-order
packets,	they	probably	are	not

TCP	Zero	Window,	Window	Full,
Window	Change,	and	other	Window
indicators
One	of	the	most	important	mechanisms	of	TCP	is	the	Sliding	Window
mechanism,	and	the	Flow	Control	mechanism	that	uses	it	in	order	to	control	the
amount	of	data	that	a	TCP	end	node	is	willing	to	accept	on	the	connection.

In	this	recipe	we	will	focus	on	these	types	of	problems,	and	how	to	discover	the
problem	and	solve	it.

Getting	ready
Connect	Wireshark	with	a	port	mirror	to	the	suspected	link	or	server,	and	start
capture.	Keep	track	of	every	window	message	you	will	see	in	the	capture
window.

How	to	do	it...
There	are	several	types	of	window	messages	that	you	should	be	aware	of:

TCP	Zero	Window,	Zero	Window	Probe,	and	Zero	Window
Violation

TCP	Zero	Window	occurs	when	a	receiver	advertises	a	receive	window	size	of
zero	(in	the	window	field	in	the	TCP	header).	This	tells	the	sender	to	stop
sending	data	because	the	receiver's	buffer	is	full.	This	indicates	a	problem	on	the
receiver	that	might	be:

A	weak	server	that	cannot	allocate	enough	memory	for	the	process
A	problem	in	the	application	that	does	not	receive	a	sufficient	buffer,	so	the
TCP	has	to	tell	the	sender	to	stop	sending	data
An	application	that	consumes	too	much	memory	so	the	operating	system
will	limit	the	application	resources

TCP	Zero	Window	Probe	is	a	message	that	is	sent	by	the	sender	in	order	to	see
if	the	receiver's	Zero	Window	condition	still	exists.	This	message	works	by
sending	the	next	byte	of	data	to	the	receiver.	If	the	receiver	answers	with
window	that	is	still	zero,	the	sender	doubles	his	timer	before	probing	again.

The	sender	ignores	the	Zero	Window	condition	of	the	receiver	and	sends
additional	bytes	of	data.	TCP	Zero	Window	Violation	can	indicate	a	TCP	error	or
bug	in	the	protocol	stack.

In	order	to	check	what	the	problem	is,	check	if	these	events	are	coming	from:

A	specific	end	device	(server	or	client)	that	will	indicate	a	problem	in	the
end	device.
A	problem	in	a	specific	application	that	will	indicate	a	general	application
problem.
A	problem	when	you	do	something	specific	in	the	application,	for	example,
open	a	specific	table,	send	a	file	to	the	printer,	create	a	report,	or	anything
else	on	the	application.	In	this	case,	it	is	of	course	an	application	problem.

TCP	Window	Update

TCP	sends	Window	Update	to	the	other	side	in	a	connection	in	order	to	indicate

that	it	changed	the	buffer	size,	and	is	ready	to	accept	higher	or	lower	data	rate
(buffer	size	determines	the	throughput	that	the	sender	is	allowed	to	send).	This
can	happen	in	the	case	of:

The	TCP	receiver	recovers	from	the	Zero	Window	condition,	and	asks	the
sender	to	start	sending	data	again.	In	this	case,	you	don't	have	to	do
anything	about	it,	just	check	for	the	problem	that	caused	Zero	Window	the
first	time.
The	TCP	receiver	changes	the	window's	size	frequently.	In	this	case	check
what	is	disturbing	the	receiver.	It	can	be	an	application	problem,	memory
problem,	or	any	other	performance	problems	on	the	end	devices.

If	you	see	this	kind	of	phenomena,	there	is	nothing	to	worry	about.	This	is	how
TCP	works.

TCP	Window	Full

This	message	is	an	indication	that	the	sent	packet	will	completely	fill	the
receiver	buffer	on	the	receiver.	This	will	happen	when	the	receiver	has	not	sent
any	ACK	confirming	the	acceptance	of	the	previous	data,	and	therefore,	this	will
be	the	last	packet	of	data	that	the	sender	will	send	before	accepting	an	ACK
from	the	receiver.

On	the	receiver	side,	the	moment	it	gets	this	packet,	it	will	send	a	Zero	Window
message	to	the	sender	that	will	stop	sending	the	data.

This	event	is	triggered	for	the	same	reasons	that	trigger	Zero	Window.	It	is
simply	an	indication	to	a	non-responsive	server	or	application.	A	typical	example
is	shown	in	the	following	screenshot:

	

In	the	previous	screenshot	we	see	that:

1.	 Packet	183816,	192.168.2.138	tells	192.168.1.58	that	the	sender	window
is	full.

2.	 In	the	next	packet,	192.168.1.58	sends	a	signal	to	192.168.2.138,	telling
him	to	stop	sending	data.	This	is	a	Zero	Window	signal.

3.	 Both	sides	continue	to	send	Zero	Window	and	Zero	Window	Probe.
4.	 The	last	packet	of	the	connection	is	an	RST	sent	by	192.168.2.138	in	order

to	break	the	connection.
5.	 In	some	cases	Zero	Window	condition	will	be	recovered	by	a	window-

change	message.	In	some	cases	it	will	be	closed	with	a	reset	(that	can	be
because	an	application	does	not	receive	any	data	because	of	Zero	Window).

How	it	works...
The	TCP	Sliding	Window	mechanism	works	as	follows:

1.	 After	the	connection	is	established,	the	sender	sends	data	to	the	receiver,
filling	the	receiver	window.

2.	 After	several	packets,	the	receiver	sends	an	ACK	to	the	sender,	confirming
the	acceptance	of	the	bytes	sent	by	it.	Sending	the	ACK	empties	the
receiver	window.

3.	 This	process	is	continuous	when	the	sender	is	filling	the	window,	and	the
receiving	party	empties	it	and	sends	confirmation	of	the	information.

4.	 Increasing	the	receiver	window	size	tells	the	sender	to	increase	the
throughput,	and	decreasing	it	tells	him	to	decrease	the	throughput.	It	works
according	to	the	following	WS/RTT	rule	(with	some	changes	according	to
the	TCP	version):	

There's	more…
You	can	also	use	the	TCP	throughput	graphs	and	the	IO	graphs	to	view	these
problems.	In	the	TCP	throughput	graphs,	use	the	TCP	trace	graph,	where	the
upper	line	indicates	the	window	size,	and	its	distance	from	the	lower	line
indicates	what	is	on	the	left-hand	side	of	the	window.	No	distance	between	them
indicates	a	Zero	Window.

	

A	fixed	distance	between	the	lines	(as	shown	in	the	preceding	screenshot)
indicates	a	good	operation	on	the	receiving	side.	When	the	lines	are	getting
closer,	it	indicates	that	the	sender	is	overwhelming	the	receiver.	As	long	as	lines
are	not	overlapping,	TCP	will	continue	to	send	data.

TCP	resets	and	why	they	happen
During	a	normal	operation,	TCP	will	open	a	connection	with	SYN	signals,	and
close	the	connection	with	FIN	signals.	One	of	the	characters	of	TCP	is	the
possibility	to	close	a	connection	faster	due	to	a	problem	or	just	for	better
efficiency.

In	this	recipe	we	will	describe	these	cases,	and	how	to	understand	exactly	what
happens,	and	if	it	is	a	regular	condition	or	something	went	wrong.

Getting	ready
Connect	Wireshark	with	a	port	mirror	to	the	suspected	link	or	server,	and	start
capture.	Keep	track	of	every	window	message	you	will	see	on	the	capture
window.	TCP	resets	can	be	sent	in	several	cases.	Some	point	to	the	proper
working	of	the	protocol,	and	some	suggest	a	failure	or	problem.	In	this	recipe,
we	will	get	to	the	reasons	for	it,	and	try	to	point	out	the	problems	and	how	to
solve	them.

How	to	do	it...
Reset	is	a	TCP	signal	that	is	sent	in	order	to	tell	the	receiver	to	break	the
connection.	Reset	is	sent	by	setting	the	RST	flag	to	a	value	of	1.

Cases	in	which	reset	is	not	a	problem

The	standard	way	of	closing	a	connection	in	TCP	is	by	FIN	and	FIN-ACK
signals.	The	problem	is	that	in	order	to	close	a	connection,	you	need	four
packets:	FIN/ACK	and	ACK	from	one	side,	and	the	same	from	the	other	side.	It
can	happen,	for	example,	when	you	open	a	standard	web	page,	tens	of
connections	(the	main	page,	news	bars,	commercials,	pictures	that	are	updated
periodically,	and	so	on)	can	be	opened,	and	in	order	to	close	all	of	them	you	will
need	sometime	hundreds	of	FIN	and	FIN-ACK	packets	standard	way.	In	order	to
prevent	it	from	happening,	the	web	server	will,	in	many	cases,	send	you	the
requested	data	and	then	break	the	connection	with	reset.	This	is	a	standard	thing
to	do,	and	it	depends	on	the	application.

Cases	in	which	reset	can	indicate	a	problem

There	are	some	cases	in	which	resets	can	indicate	a	problem	(not	necessarily	a
communication	problem):

A	reset	sent	by	a	firewall:	When	you	try	to	open	a	connection	to	a	remote
server,	and	don't	get	anything,	you	might	see	an	RST	signal	coming	back.
This	is	a	firewall	blocking	a	connection.	In	the	next	screenshot,	you	can	see
that	every	SYN	that	is	sent	is	replied	to	with	an	RST.

	
Reset	sent	due	to	a	problem	on	one	of	the	sides:	Here	you	can	have	many
reasons.	Some	of	them	are	as	follows:

One	of	the	reasons	is	the	five	consecutive	retransmissions	that	are	not
replied	to	by	an	ACK.	When	the	sender	does	not	get	any	reply	for	the
retransmissions,	it	will	send	a	reset	signal	to	the	other	side,	telling	it	to
break	the	connection.
Another	reason	is	a	connection	without	any	traffic	on	it	for	a	few
minutes	(how	many	minutes	is	the	operation	system	default).	The	side
that	opened	the	connection	will	usually	send	the	reset	(usually	but	not
always,	it	depends	on	the	implementation).

How	it	works...
Here	it	is	simple.	Reset	is	a	signal	that	is	used	in	order	to	break	a	connection.	It
is	important	to	remember	here	that	everything	depends	on	the	application.	If	the
programmer	chose	to	send	an	RST	on	a	specific	case,	this	is	what	you	will	see	on
the	capture	file.	For	every	reset	that	you	see,	try	to	figure	out	what	caused	it	and
you	will	understand	it	from	the	packets	the	before	reset	was	sent.

Chapter	10.	HTTP	and	DNS
In	this	chapter,	we	will	go	through	the	following	recipes:

Filtering	DNS	traffic
Analyzing	regular	DNS	operations
Analyzing	DNS	problems
Filtering	HTTP	traffic
Configuring	HTTP	preferences
Analyzing	HTTP	problems
Exporting	HTTP	objects
HTTP	flow	analysis	and	the	Follow	TCP	Stream	window
Analyzing	HTTPS	traffic	–	SSL/TLS	basics

Introduction
Domain	Name	System	(DNS)	is	a	protocol	that	is	used	for	resolving	names	to
the	IP	addresses.	It	is	used	over	the	Internet	when	you	browse	a	website,	and
then	the	DNS	resolves	the	web	server	name	to	an	IP	address.	It	is	also	used	in
enterprise	networks	when	looking	for	a	server	name	that	is	translated	to	an	IP
address.

Hyper	Text	Transfer	Protocol	(HTTP)	and	Secured	HTTP	(HTTPS)	are	both
used	for	browsing	the	Internet,	or	connecting	to	other	software	that	are	hosted
inside	your	organization	or	in	the	cloud.	HTTPS	is	used	when	we	secure	HTTP
with	SSL/TLS	in	order	to	hide	the	clear	text	data	exchange	from	hacking.	It	is
used	when	connecting	to	your	bank,	webmail	account	(for	example,	Gmail	or
Hotmail),	or	any	other	secured	application.

In	this	chapter,	we	will	discuss	these	protocols,	how	they	work,	and	how	to	use
Wireshark	in	order	to	find	common	errors	and	problems	in	them.

Filtering	DNS	traffic
DNS	is	a	protocol	responsible	for	resolving	names	to	the	IP	addresses.	In	this
recipe,	we	will	learn	how	to	filter	important	parameters	that	are	related	to	the
DNS	service.

Getting	ready
When	suspecting	a	network	problem,	port	mirror	the	suspected	server	or	install
Wireshark	on	it,	then,	start	capturing	the	data.

How	to	do	it...
There	are	some	common	filters	that	will	assist	you	in	troubleshooting	DNS
problems.	The	common	display	filters	are	given	as	follows:

The	basic	filter	is	simply	for	filtering	DNS	traffic.	The	filter	is	dns.
For	filtering	only	DNS	queries	we	have	dns.flags.response	==	0
For	filtering	only	DNS	responses	we	have	dns.flags.response	==	1

For	filtering	error	codes,	we	have	the	following	filters:
No	error	(rcode—reply	code),	we	have	dns.flags.rcode	==	0,
marked	in	the	following	screenshot
No	such	name,	we	have	dns.flags.rcode	==	3

For	search	problems,	we	have	the	following	filters:
When	looking	for	a	specific	URL:	This	will	be	used,	for	example,
when	you	are	not	sure	whether	your	PC	is	sending	the	DNS	query,	use
dns.qry.name	==	"URL	Name"

When	looking	for	a	query	that	contains	a	specific	URL:	For	this	case
we	have	dns.qry.name	contains	"URL	Name"

For	filtering	DNS	Opcodes	(standard	query	or	other	requests	or
notifications),	we	have	the	following	filters:

For	filtering	only	standard	queries:	dns.flags.opcode	==	0
For	filtering	only	inverse	queries:	dns.flags.opcode	==	1
For	filtering	server	status	requests:	dns.flags.opcode	==	2
For	filtering	zone	change	notifications:	dns.flags.opcode	==	4
For	filtering	dynamic	updates:	dns.flags.opcode	==	5

For	querying	the	query	types	(recursive/non-recursive):
For	recursive	query	we	have	dns.flags.recdesired	==	1
For	non-recursive	query	we	have	dns.flags.recdesired	==	0

All	other	display	filters	can	be	found	by	clicking	on	the	expression	button	on	the
right-hand	side	of	the	display	filter	window	at	the	top	of	the	Wireshark	window.

How	it	works...
Display	filters	are	described	in	depth	in	Chapter	3,	Using	Display	Filters.	As
described	in	Chapter	3,	Using	Display	Filters,	you	can	do	one	of	the	following
things	to	filter	DNS	parameters:

Click	on	the	expression	button	on	the	right	to	the	display	filter	window,	and
choose	the	required	filter	from	DNS
Go	to	the	packet	details,	right-click	on	the	required	field,	and	choose	Apply
a	filter	or	Prepare	a	filter
Simply	write	the	filter	string	in	the	filter	window	at	the	top	of	the	Wireshark
window

There's	more...
DNS	is	quite	a	complicated	protocol,	and	the	purpose	of	this	chapter	is	to
provide	methods	to	resolve	common	problems	with	this	protocol	and
implementation.	Not	all	filters	are	mentioned	here;	a	full	list	of	DNS	filters	can
be	found	at	http://www.wireshark.org/docs/dfref/d/dns.html.

http://www.wireshark.org/docs/dfref/d/dns.html

Analyzing	regular	DNS	operations
In	this	recipe,	we	will	see	how	to	find	out	if	DNS	is	working	properly	or	not.	We
will	see	some	scenarios	of	DNS	operations,	and	what	can	go	wrong.

Getting	ready
Open	Wireshark	and	start	capturing	data.	You	should	mirror	a	device	that	is
using	DNS,	or	the	DNS	server	itself.

How	to	do	it...
Connect	Wireshark	to	the	LAN	switch	attached	to	the	monitored	device,	and
configure	port	mirror	to	the	device	from	which	you	suspect	the	problem	is
coming.	Go	through	the	following	steps:

1.	 In	case	of	user	complains,	configure	the	port	mirror	for	monitoring	the	user
device.

2.	 In	case	of	a	general	problem	in	the	network,	configure	port	mirror	to	the
DNS	server:

When	the	DNS	server	is	configured	on	the	internal	server,	configure
port	mirror	on	the	server
When	the	DNS	server	is	configured	on	external	server,	configure	port
mirror	to	the	link	that	connects	you	to	the	Internet

How	it	works...
DNS	is	the	major	protocol	used	for	name	resolution,	and	it	is	used	when
browsing	the	Internet.	It	is	also	used	for	working	in	the	organization	network.
The	DNS	standards	describe	three	functionalities:

Namespace	which	is	what	DNS	names	look	like,	and	how	they	are	allocated
The	name	registration	process,	that	is,	how	we	register	DNS	names	and
how	they	are	forwarded	through	the	DNS	servers'	network
The	resolving	process,	that	is,	how	names	are	resolved	to	the	IP	addresses

In	this	recipe	we	will	focus	on	the	third	subject,	that	is,	what	happens	when	we
browse	the	Internet,	send	or	receive	e-mails,	or	access	internal	servers	in	our
organization.	The	basic	DNS	operation	is	shown	in	the	following	diagram:

DNS	operation

User	programs	(web	browser,	mail	client,	and	many	others)	interact	with	the
DNS	server	through	a	resolver,	which	is	also	a	part	of	the	operating	system.	The
resolver	interacts	with	external	name	server	that	provide	it	with	the	required	IPs
(the	name	server	can	be	local	or	remote;	it	is	external	to	the	resolver).	The	way
the	user	queries	the	DNS	server	is	OS	specific.	DNS	queries	and	responses	are
sent	and	received	between	the	resolver	and	the	name	server.

	

The	local	name	server	is	usually	located	in	the	organization	network,	and
interacts	with	the	DNS	server	of	your	ISP.	In	the	case	of	a	home	or	a	small	office
network,	your	DNS	server	can	be	configured	on	the	router	that	connects	you	to
the	Internet,	or	directly	to	the	DNS	server	of	your	ISP:

When	the	DNS	server	is	on	the	router,	you	query	the	DNS	on	the	router	that
queries	your	ISP	DNS
When	your	DNS	is	located	on	the	ISP	network,	you	query	the	DNS	server
directly

DNS	namespace

The	DNS	namespace	is	based	on	a	hierarchical	tree	structure,	as	presented	in	the
next	diagram.	The	structure	is	as	follows:

The	network	of	root	servers	(http://www.iana.org/domains/root/servers).
The	network	of	Top	Level	Domain	servers	(TLDs)
(http://www.iana.org/domains/root/db).
Each	top-level	domain	has	name	servers	similar	to	that	of	IANA
administers.	Top-level	domains	contain	second-level	domains.	TLDs	are
the	highest-level	servers,	for	example,	country	servers	as	illustrated	in	the
next	diagram.
Second	Level	Domains	(SLDs)	contain	the	domains	and	names	for
organizations	and	countries.	The	names	in	second-level	domains	are
administered	by	the	organization	or	country	specified.

	

There	are	some	important	definitions,	as	shown	in	following	diagram:

http://www.iana.org/domains/root/servers
http://www.iana.org/domains/root/db

Domain:	It	constitutes	all	branches	under	ndi-com.com,	in	this	case	a
second	level	domain
Zone:	It	is	a	contiguous	portion	of	a	DNS	domain	in	the	DNS	namespace,
whose	database	records	exist	and	are	managed	in	a	particular	DNS	database
file	stored	on	one	or	multiple	DNS	servers

	
The	resolving	process

There	are	two	reasons	for	using	DNS	servers:

The	first	reason	is	that	it	is	used	for	internal	communication	in	your
organization.	In	this	case,	you	have	a	DNS	server	in	your	organization,
which	resolves	the	IP	addresses	to	names	in	your	organization.
It	is	used	for	connecting	to	the	Internet,	browsing,	sending	mails,	and	so	on.

When	both	services	are	used,	you	will	send	the	DNS	query	to	your	organization
server,	which	will	send	the	query	to	the	Internet.	For	example,	when	you	want	to
get	to	a	local	server	in	your	organization,	you	will	send	a	DNS	query	to	the	local
DNS,	and	you	will	get	the	server	IP.	When	you	browse	a	website	on	the	Internet,
your	local	DNS	server	forwards	the	request	to	the	external	DNS,	for	example,
the	ISP	DNS.

Is	it	the	correct	DNS	server	you	have	configured?	Theoretically,	when	you
connect	to	the	Internet,	you	can	configure	any	DNS	server	in	the	world.	Usually,
the	best	DNS	server	to	use	is	the	nearest	one.	In	your	organization,	you	should
configure	your	local	DNS	as	first	priority,	and	then	the	DNS	servers	of	your	ISP.

There	are	various	utilities	to	check	the	DNS	response.	Some	of	them	are	as
follows:

Namebench	from	Google
(http://code.google.com/p/namebench/downloads/detail?name=namebench-
1.3.1-Windows.exe&can=2&q=)
DNS	Benchmark	from	GRC	(https://www.grc.com/dns/benchmark.htm)

In	the	test	result,	you	should	get	a	good	response	time	for	your	configured	DNS
servers.	If	not,	change	them.

http://code.google.com/p/namebench/downloads/detail?name=namebench-1.3.1-Windows.exe&can=2&q=
https://www.grc.com/dns/benchmark.htm

There's	more...
When	a	process	on	the	end	device	is	looking	for	the	IP	address	of	a	specific
name,	it	interacts	with	the	local	resolver	that	goes	out	to	the	DNS	servers.	When
the	DNS	server	does	not	find	the	entry	you	are	looking	for	in	its	database,	it	can
respond	in	two	ways—recursive	or	iterative:

Recursive	mode:	In	this	mode,	when	the	application	(for	example,	a	web
browser)	wants	to	resolve	the	name	of	the	website	www.packtpub.com,	it
sends	a	DNS	request	to	the	local	DNS	server	(marked	as	1	in	the	following
diagram).	The	local	DNS	server	sends	the	request	to	a	root	server	(marked
as	2	and	3	in	the	following	diagram),	then	to	the	TLD	(marked	as	3	and	4	in
the	following	diagram),	and	finally	to	the	authoritative	server	of
www.packtpub.com,	which	gives	us	the	required	address	(marked	as	6	and
7	in	the	following	diagram).	Then,	the	local	DNS	server	sends	us	the
required	address	(marked	as	8	in	the	following	diagram).	In	each	one	of	the
responses,	the	resolver	gets	the	DNS	to	query	in	the	next	step.

Iterative	mode:	In	this	mode,	a	DNS	client	can	receive	a	response	from	the
DNS	server	that	will	tell	the	client	where	to	look	for	the	requested	name.
When	the	application	(for	example,	a	web	browser)	wants	to	browse	the
website	www.packtpub.com,	it	sends	a	DNS	request	to	the	local	DNS
server	(marked	as	1	in	the	following	diagram).	The	local	server	forwards
the	request	to	a	root	DNS	server	(marked	as	2	in	the	following	diagram).	If

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com

it	doesn't	know	the	answer,	it	forwards	the	request	to	the	TLD	(marked	as	3
in	the	following	diagram)	and	the	authoritative	DNS	(marked	as	4	in	the
following	diagram).	Then,	the	answer	is	sent	all	the	way	back	to	the	client
(marked	as	5,	6,	7,	and	8	in	the	following	diagram):	

Analysing	DNS	problems
In	the	previous	recipe,	we	saw	how	to	identify	a	normal	operation	of	DNS.	In
this	recipe,	we	will	learn	how	to	discover	problematic	behavior	of	DNS,	and
how	to	figure	out	its	source.

Getting	ready
A	DNS	problem	can	result	in	bad	performance	while	browsing	the	Internet,	slow
network	while	working	inside	the	organization	network,	or	any	other
performance	issues.	We	will	see	how	to	isolate	these	problems	and	how	to	find
out	whether	it	is	a	DNS	issue	or	not.

How	to	do	it...
There	are	two	major	types	of	problems	in	DNS:

DNS	cannot	resolve	a	name
Slow	operation	of	DNS

In	both	cases,	connect	your	Wireshark	to	the	network	in	the	following	order
when	you	suspect	an	Internet	connectivity	problem:

1.	 First,	port	mirror	the	PC	of	the	customer	complaining	about	the	problem.	In
this	step,	you	will	see	specific	problems	on	the	PC.

2.	 Then,	port	mirror	your	DNS	server.	In	this	step,	you	will	be	able	to	find	the
general	problems	that	are	common	to	the	entire	organization	(or	at	least	to
the	part	of	it	that	has	a	problem).

DNS	cannot	resolve	a	name

How	will	you	know	that	this	is	the	problem?

1.	 You	try	but	cannot	browse	the	Internet,	send	e-mails,	or	perform	any	other
operations	on	the	Internet.

Assuming	your	connectivity	to	the	network	is	working	properly,	ping	the
website	you	are	trying	to	browse	(for	example,	issue	the	command:	ping
www.packtpub.com)	and	see	if	you	get	any	response.

2.	 If	you	get	a	response,	all	is	working	OK.
3.	 If	you	don't	get	any	response,	it	can	be	because	of	the	following	reasons:

The	website	you	are	trying	to	ping	blocks	the	ICMP	requests
The	DNS	server	you	are	trying	to	get	the	data	from	is	not	functioning

4.	 To	make	sure	that	this	is	a	DNS	problem,	start	Wireshark	and	configure	the
DNS	filter.	In	case	of	a	problem,	you	will	see	one	of	the	following:

When	a	website	does	not	exist
Cannot	reach	the	DNS	server

Tip

You	can	also	use	the	command	nslookup	in	the	command	line.	This
command	checks	the	IP	of	the	inserted	name.

5.	 When	the	website	does	not	exist,	you	will	see	(example	in	the	following
screenshot):

The	DNS	query	and	response,	both	with	code	0x971e	(the	same	code
in	query	and	response	indicates	that	this	is	the	response	to	the	query)
A	346	ms	delay	between	the	DNS	query	and	response,	which	means
that	the	response	came	from	an	overseas	server	(for	example,	browsing
from	Europe	when	the	DNS	server	is	in	Taiwan)
The	request	was	sent	and	was	replied	from	a.dns.tw	(that	is,	DNS
server	is	in	Taiwan),	which	means	that	the	DNS	system	works	properly
and	your	PC	queried	one	of	the	authoritative	DNS	servers	for	.tw
The	response	is	No	such	name,	which	means	that	there	is	no	such
server

	
6.	 When	the	DNS	server	does	not	respond,	you	will	see	one	of	the	following

screenshots:
The	DNS	refused	message:	In	this	case,	your	DNS	server	refuses	the
request.	This	is	illustrated	in	the	following	screenshot	(you	will	learn
why	in	the	How	it	works...	section):

	
The	DNS	consecutive	queries:	In	this	case,	the	DNS	server	simply
does	not	answer.	This	is	illustrated	in	the	following	screenshot:

	

When	you	right-click	on	one	of	the	packets	in	the	preceding	screenshot	and
choose	Follow	UDP	Stream,	you	will	see	that	the	DNS	resolver	on	your
PC	sends	several	queries	(with	increasing	time	intervals	between	them),	and
then	stops.	This	is	shown	in	the	next	screenshot:

	

DNS	slow	responses

How	will	you	know	that	this	is	the	problem?

1.	 When	you	are	browsing	the	Internet	and	getting	very	slow	responses,
perform	the	following	steps:
1.	 Port	mirror	the	connection	to	the	Internet,	and	check	if	you	have	any

bottleneck	on	the	way	to	the	Internet.	You	can	use	the	IO	graphs	for
this	purpose,	as	described	in	Chapter	5,	Using	Advanced	Statistics
Tools.

2.	 Verify	that	you	don't	have	a	significant	number	of	retransmissions	or
duplicate	ACK's	indicating	a	connection	problem.

3.	 Verify	that	you	don't	have	any	window-related	problem,	such	as	zero
window	or	window	full.

2.	 If	answers	are	no	for	the	preceding	checks,	it	might	be	a	DNS	problem.	You
can	have	DNS	problems	in	two	cases:

When	working	in	your	organization
When	connecting	to	the	Internet

3.	 These	issues	can	be	resolved	in	two	ways:
When	facing	problems	in	your	organization,	port	mirror	the	switch
port	that	is	connected	to	the	DNS	server
When	facing	problems	with	the	Internet,	port	mirror	the	switch	port
that	connects	your	organization	to	the	Internet

4.	 Watch	the	DNS	response	time	that	you	get.	There	are	several	ways	to	locate
the	problem,	and	they	are	given	as	follows:

The	simplest	way	is	to	right-click	on	a	packet	from	a	DNS	query
stream,	choose	Follow	UDP	Stream,	and	then	check	the	time	between
the	query	and	response.
Another	way	is	to	use	IO	graphs	for	this	purpose.	In	the	IO	Graphs
window,	choose	Advanced	in	the	Y	Axis	configuration	and	configure
the	filter	dns.time	with	AVG(*)	in	the	Graph	lines.	Refer	the
following	screenshot:

	

You	will	get	a	graph	of	the	DNS	response	times	throughout	the	capture
time.

In	this	graph,	you	will	see	that	most	of	the	response	times	fall	below
100mSec,	which	is	quite	reasonable.	We	have	two	peaks	that	indicate	a
probable	problem,	one	at	the	beginning	of	the	capture	with	300	ms,	and	one
at	the	end	of	the	capture	with	450	ms.

Tip

Reasonable	times	inside	the	organization	(in	a	local	site)	should	be	not
more	than	tens	of	milliseconds.	When	browsing	the	Internet,	a	good
response	time	should	be	less	than	100	ms,	while	up	to	200	ms	is	still
tolerant.

How	it	works...
There	are	six	basic	types	of	DNS	response	codes	defined	in	RFC	1035.
Additional	error	codes	(up	to	21)	were	defined	in	later	standards	(RFC	2136,	RFC
2671,	RFC	2845,	and	RFC	2930).	Error	codes	can	be	found	at
http://tools.ietf.org/html/rfc2929#section-2.3.

The	most	common	codes	are	shown	in	the	following	table:

Error
code Name What	is	it	(RFC

1035) Why	it	happens What	to	do

0 No	error
condition

No	error,	everything
works	fine.

This	signifies	that
everything	is	working.

Be	happy.

1 Format	error The	DNS	server
couldn't	interpret	the
query.

This	error	code	is	usually
shown	when	the	DNS	server
does	not	support	DNS
extensions,	for	example,
EDNS0	(RFC	2671).

In	most	cases,	there	is	nothing	to
do.	The	DNS	request	will	be	sent
again	without	the	extension.

If	the	problem	still	exists,	change
the	DNS	server.

2 Server
failure

The	DNS	server	was
not	able	to	process
the	query	due	to	a
problem	with	the
name	server.

This	error	code	signifies
that	there	is	a	problem	in	the
DNS	server.

Configure	another	DNS	server
and	check	again.

3 Name	error This	is	meaningful
only	for	responses
that	are	coming
from	authoritative
name	servers.

This	error	code	signifies
that	the	domain	name
requested	in	the	query	does
not	exist.

Check	the	domain	name.

4 Not
Implemented

The	DNS	server
does	not	support	the
requested	type	of
query.

5 Refused The	DNS	server
refuses	to	perform
the	specified

A	name	server	may	not	wish
to	provide	the	information
to	the	particular	requester.

This	occurs	due	to	connectivity
problems,	if	the	forward	DNS	is
not	configured,	or	if	there	is	a

http://tools.ietf.org/html/rfc2929#section-2.3

operation	due	to
policy	reasons.

A	name	server	may	not	wish
to	perform	a	particular
operation.

problem	in	one	of	the	DNS
servers	on	the	way.

There's	more...
What	DNS	server	should	I	configure?	I	have	been	asked	this	question	many
times.	My	answer	to	this	is	simple—a	server	that	is	physically	close	to	you	(that
is,	not	an	overseas	server),	and	one	that	you	know	is	efficient.	An	efficient
server,	that	is,	overseas	will	give	slow	responses	due	to	the	communication	lines,
and	a	nearby	non-efficient	server	will	also	give	you	slow	response	times.

	

In	the	preceding	graph,	we	see	a	measurement	taken	with	the	Google
Namebench	open	software	(freeware).	It	shows	the	following	details:

Average	DNS	response	time	of	80	ms	to	our	local	DNS	server	(you	can	see
it	is	local	from	the	unregistered	address	10.0.0.138)
Average	response	time	of	100	ms	to	the	DNS	server	of	my	ISP
Response	times	of	120	ms	and	above	to	the	servers	located	overseas

To	summarize	this,	it	is	OK	to	have	response	times	of	around	100	ms;	and	in
most	of	the	cases,	150-200	ms	will	also	be	good	enough.	Don't	worry	if	there	are
momentary	peaks—it	can	be	that	your	resolver	is	querying	authoritative	servers
on	the	other	side	of	the	globe.

When	you	open	a	web	page	that	holds	a	lot	of	content,	your	browser	can	send
even	tens	of	DNS	queries.	In	the	following	screenshot,	you	see	what	happens
when	I	open	the	browser	to	www.cisco.com.

http://www.cisco.com

	

It	starts	with	a	DNS	query	to	the	A	record	of	www.cisco.com	(marked	as	1	in	the
preceding	screenshot),	then	a	query	to	ap.ff.avast.com	(marked	as	2	in	the
preceding	screenshot),	which	is	the	web	shield	server	of	Avast	antivirus,	to
www.static-cisco.com	(marked	as	3	in	the	preceding	screenshot),
ciscosystems.tt.omtrdc.net	(marked	as	4	in	the	preceding	screenshot),	news
(marked	as	5	in	the	preceding	screenshot),	products	(marked	as	6	in	the
preceding	screenshot),	and	newsroom	(marked	as	7	in	the	preceding	screenshot)
sites.

When	we	look	at	the	response	time	graph	(shown	in	the	next	screenshot),	we	see
that	the	DNS	response	times	are	up	to	600	ms.	This	explains	why	it	took	a	few
seconds	to	open	the	entire	web	page	of	Cisco.

http://www.cisco.com

	

Filtering	HTTP	traffic
There	are	many	filters	that	can	be	configured	for	HTTP.	In	this	recipe,	I	will
concentrate	on	the	display	filters	that	are	mostly	used	in	this	context.

Getting	ready
Configure	port-mirror	as	described	in	previous	recipes,	and	take	a	quick	look	at
Chapter	2,	Using	Capture	Filters.

How	to	do	it...
To	configure	HTTP	filters,	you	can	write	the	filter	expression	directly	in	the
display	window	bar;	open	the	expression	window	and	choose	the	HTTP
parameters	by	right-clicking	on	the	required	parameter	in	the	packet	pane	(as
described	in	Chapter	3,	Using	Display	Filters).

There	are	various	filters	that	can	be	configured	on	HTTP:

Name-based	filters
Requests	to	a	specific	website:	http.host	==	"www.packtpub.com"
Requests	to	the	websites	containing	the	word	PacktPub:	http.host
contains	"packt.pub"

Requests	that	were	forwarded	from	PacktPub:	http.referer	==
"http://www.packtpub.com/"

Request	methods	filters
All	GET	requests:	http.request.method	==	GET
All	HTTP	requests:	http.request
All	HTTP	responses:	http.response
All	HTTP	requests	that	are	not	GET:	http.request	and	not
http.request.method	==	GET

Error	codes	filters
HTTP	error	responses	(code	4xx	for	client	errors,	code	5xx	for	server
errors):	http.response.code	>=	400
HTTP	client	error	responses:	http.response.code	>=	400	and
http.response.code	<=	499

HTTP	server	error	responses:	http.response.code	>=	500	and
http.response.code	<=	599

HTTP	response	code	404	(not	found):	http.response.code	==	404
Tip

When	you	configure	a	simple	filter	such	as	http.host	==	packtpub,	you	don't
need	to	close	it	in	the	""	characters.	If	you	need	a	more	complex	string	such	as
packtpub\r\n,	or	a	string	of	several	words,	then	you	will	need	to	close	it	in	"",
for	example,	"http.host	==	packtpub\r\n".

http://www.packtpub.com/
http://www.packtpub.com/

How	it	works...
Let	us	see	some	details	on	HTTP.

HTTP	methods

The	main	HTTP	requests	methods	were	published	in	RFCs	2616.	There	are
additional	HTTP	methods	that	were	standardized	over	the	years.	Additional
methods	were	added	later	by	updates	to	RFC	2616	(2817,	5785,	6266,	and	6585)
and	additional	standards	(RFC	2518,	3252,	5789).

These	are	the	basic	methods	as	described	in	RFC	2612:

OPTIONS:	This	is	used	for	client	request	to	determine	the	capabilities	of	a
web	server.
GET:	This	is	used	when	we	request	a	URL.
HEAD:	This	is	like	GET,	but	the	server	should	not	return	a	message	body	in
the	response.
POST:	This	is	used	to	send	data	to	the	server.	For	example,	when	using
webmail,	it	will	be	used	to	send	e-mail	commands.
DELETE:	This	is	used	to	request	the	server	to	delete	a	resource	identified
by	the	Request-URI.
PUT:	This	is	used	to	request	that	the	enclosed	entity	be	stored	under	the
Request-URI	attached	to	the	request.
TRACE:	This	is	used	to	request	a	remote,	application-layer	loopback	of	the
request	message.
CONNECT:	This	is	used	to	connect	to	a	proxy	device.

Status	codes

These	are	the	categories	of	message	codes	that	are	standardized	by	HTTP:

Category Category
name What	is	it	for

1xx Informational Provides	general	information,	without	any	indication	of	failure	or	success

2xx Success Indicates	that	the	action	requested	by	the	client	was	received,	accepted,	and
processed	successfully

3xx Redirection Indicates	that	further	action	should	be	taken	by	the	user	agent	to	fulfill	the
request

4xx Client	error Indicates	a	client	error

5xx Server	error Indicates	a	server	error

A	full	list	of	HTTP	status	codes	can	be	found	at
http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml.

http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml

There's	more...
In	some	cases,	you	will	see	a	line	called	Line-based	text	data:	text/html	under
the	HTTP	line	in	the	packet	details	pane.	It	is	shown	in	the	following	screenshot:

	

You	will	see	the	Line-based	text	data	right	beneath	to	the	HTTP	line	in	the
packet	details	pane	(marked	as	1	in	the	preceding	screenshot).	Below	this,	you
will	see	some	explanations	(marked	as	2	and	3	in	the	preceding	screenshot)	for
what	could	be	the	reason	for	the	error.

Configuring	HTTP	preferences
There	are	some	preferences	that	you	can	change	when	working	with	HTTP.	Let's
see	what	they	are.

Getting	ready
Start	Wireshark	and	go	to	the	next	section.

How	to	do	it...
1.	 Choose	Edit	|	Preferences.
2.	 Under	Protocols,	select	HTTP.	You	will	get	the	following	window:	

	
By	default,	the	upper	four	rows	are	checked.	These	are	options	that
reassemble	the	HTTP	headers	and	body	when	fragmentation	is	performed
on	the	lower	layers.
In	the	TCP	Ports	field,	you	will	get	a	list	of	the	port	numbers	that
Wireshark	will	dissect	as	HTTP.	In	this	list,	you	see	the	default	port	80,
ports	8080	and	8088	that	are	usually	used	for	proxies,	and	others.	In	case
you	have	an	application	working	with	HTTP	with	a	port	that	is	not	listed,
add	it	here.
The	same	with	HTTPS—the	default	is	443	(that	is	for	Secured	HTTP,	or
HTTP	over	SSL/TLS).	In	case	you	use	another	port,	add	it	here.

Custom	HTTP	headers	fields

Custom	HTTP	headers	fields	enable	us	to	create	a	new	HTTP	display	filters
under	the	http.header	filter.

Let's	look	at	the	example	in	the	following	screenshot:	

	

For	creating	a	new	HTTP	display	filter	under	the	http.header	filter,	perform	the
following	steps:

1.	 In	the	HTTP	preferences	window	(marked	as	1	in	the	following	screenshot),
click	on	the	Edit	button	in	Custom	HTTP	headers	fields.

	
2.	 Click	on	New	(marked	as	2	in	the	preceding	screenshot).
3.	 In	Header	name,	enter	the	name	of	the	filter	to	be	used	in	extension	to

http.header	(marked	as	3	in	the	preceding	screenshot).

For	example,	if	you	want	to	configure	a	filter	on	the	Age	parameter,	type	the
name	Age	in	the	Header	name	field	(case	sensitive!).

4.	 In	the	Field	desc	field,	type	any	description	that	will	remind	you	what	you
have	configured.

For	example,	type	Aging	time	of	…	(any	description	will	do,	it	is	just	a
note).

5.	 Click	on	OK.
6.	 In	the	Display	Filter	textbox,	you	will	be	able	to	use	the	http.header.Age

filter.

For	example,	you	will	be	able	to	configure	the	display	filter
http.header.Age	that	contains	88482	that	will	give	you	all	the	packets	with
the	Age	field	that	contains	the	requested	number
Tip

This	filter	configuration	is	mostly	used	when	you	are	using	proprietary
parameters	in	the	HTTP	header,	and	you	want	to	filter	accordingly.

You	can	configure	many	additional	filters	with	this	option.

How	it	works...
The	reassembly	feature	is	important	because	there	are	some	cases	in	which	IP
fragmentation	is	used,	and	therefore	the	TCP	message	is	also	segmented.
Marking	the	reassembly	options	simply	tells	the	Wireshark	to	reassemble	the
monitored	packets	(what	the	receiver	side	is	doing	and	therefore	is	able	to
understand	it).

There's	more...
Usually	Wireshark	shows	dissected	packets	with	port	80	as	HTTP	only	if	it	sees
a	valid	HTTP	header.	If	you	want	to	see	all	port	80	packets	as	HTTP,	perform	the
following	steps:

1.	 Go	to	Preferences,	and	choose	TCP	in	Protocols.
2.	 Uncheck/disable	Allow	dissector	to	reassemble	TCP	streams.

Analyzing	HTTP	problems
The	bottom	line	is,	of	course,	how	to	analyze	the	HTTP	problems.	This	is	what
this	recipe	is	all	about.	HTTP	problems	can	happen	because	of	a	slow	server	or
client,	TCP	performance	issues,	and	some	other	reasons	that	we	will	see	in	this
recipe.

Getting	ready
When	you	experience	bad	performance	while	browsing	the	Internet,	connect	the
Wireshark	with	port	mirror	to	the	PC	that	experiences	the	problem,	and	when	it
is	the	whole	network	that	suffers	from	bad	performance,	port	mirror	the
connection	to	the	Internet.

How	to	do	it...
There	can	be	various	reasons	for	a	slow	browsing	problem,	and	we'll	try	to
figure	it	out	step-by-step.	The	steps	are	given	as	follows:

1.	 First,	check	that	you	don't	simply	have	loaded	line	to	the	Internet,	high	error
rate	on	the	communications	line,	or	any	of	these	obvious	issues	that	cause
most	of	the	problems	(see	Chapter	4,	Using	Basic	Statistics	Tools	and
Chapter	5,	Using	Advanced	Statistics	Tools	for	further	details).

2.	 To	negate	a	TCP	issue	(as	explained	in	detail	in	Chapter	9,	UDP/TCP
Analysis),	check	the	following	details:

In	the	Expert	info	window,	you	don't	get	too	many	retransmissions
and	duplicate	ACKs	(up	to	0.5-0.8	percent	is	still	tolerable).
Make	sure	that	you	don't	get	resets	on	the	HTTP	connections.	It	might
be	due	to	firewalls	or	site	restrictions.

Make	sure	that	you	don't	get	the	following	DNS	problems:
Slow	response	time,	as	described	earlier	in	this	chapter
Names	are	not	found,	not	correct,	and	so	on

If	none	of	these	apply,	well,	let's	dig	in	to	HTTP.

Tip

Don't	forget	to	look	at	the	network	and	IT	environment	as	a	whole.	You	cannot
separate	TCP	from	HTTP,	or	the	DNS	problems	from	the	slow	browsing	of
applications.	It	can	be	that	you	have	a	very	slow	HTTP	server;	and	because	of	its
slow	responses,	you	will	get	TCP	retransmissions.	Or,	because	of	the	slow	DNS
server,	you	will	get	a	web	page	that	opens	after	many	seconds.	Just	go	step-	by-
step	and	isolate	the	problems.

When	you	open	a	web	page	for	the	first	time,	it	can	take	a	few	seconds.	In	this
case,	you	should	check	the	following	conditions:

1.	 Check	if	the	line	is	not	loaded.
2.	 Check	the	delay	on	the	line	(a	ping	to	the	website	will	do	the	job).
3.	 Look	for	error	codes.	Usually	you	will	see	the	reason	for	the	error	on	the

browser,	but	not	always.
4.	 Configure	the	filter	http.response	>=	400	and	see	how	many	errors	you

get.	In	the	following	sections,	we	see	several	examples	of	what	you	should
pay	attention	to.

Informational	codes

Code Status Explanation What	to
do

100 Continue Request	completed	successfully	and	the	session	can	continue. -

101 Switching
protocols

The	server	is	changing	to	a	different	HTTP	version.	It	will	be	followed
by	an	Upgrade	header.

-

Success	codes

Code Status Explanation What	to
do

200 OK Standard	OK	response. -

201 Created The	request	has	been	fulfilled	and	a	new	resource	has	been
created.

-

202 Accepted The	request	was	accepted	and	is	still	in	process. -

203 Non-authoritative
information

The	request	was	received	with	content	from	another	server,	and	it
was	understood.

-

204 No	content The	request	was	received	and	understood,	and	the	answer	that	is
sent	back	has	no	content.

-

205 Reset	content This	is	a	server	request	to	the	client	to	reset	the	data	that	was	sent
to	it.

-

206 Partial	content Response	for	a	partial	document	request. -

Redirect	codes

Code Status Explanation What	to	do

300 Multiple
choices

The	requested	address	refers	to	more	than	one	file.	It	can
happen,	for	example,	when	the	resource	has	been	removed,
and	the	response	provides	a	list	of	potential	locations	for	it.

-

301 Moved
permanently

The	requested	resource	has	been	moved	permanently.
Future	requests	should	be	forwarded	to	the	attached	URI.

-

302 Moved
temporarily

(found)

Page	has	been	moved	temporarily,	and	the	new	URL	is
available.	Usually,	you	will	be	automatically	forwarded.

Usually,	you	will	see	a
Found	code,	and	then
another	GET	to	the	URL
indicated

303 See	other The	response	to	the	request	can	be	found	in	a	different
URI.	It	should	be	retrieved	using	an	HTTP	GET	to	that
resource.

-

304 Not
modified

When	a	request	header	includes	an	if	modified	since
parameter,	this	code	will	be	returned	if	the	file	has	not
changed	since	that	date.

-

305 Use	proxy The	requested	resource	must	be	accessed	through	a	proxy. Check	what	proxy	is
required

Client	errors

Code Status Explanation What	to	do

400 Bad	request The	request	could	not	be	understood	by	the
server	due	to	a	syntax	problem.	The	request
should	be	modified	by	the	client	before
resending	to	it.

Check	the	website	address.	This	can
also	happen	due	to	a	site	error.

401 Authorization
required

The	client	is	denied	access	due	to	the	lack
of	authentication	codes.

Check	your	username	and	password.

402 Payment
required

Reserved	for	future	use.

403 Forbidden The	client	is	not	allowed	to	see	a	specific Check	the	credentials.	Also,	there	are

file.	This	can	be	due	to	the	server	access
limit.

fewer	chances	that	the	server	is	loaded.

404 Not	found The	requested	resource	could	not	be	found. This	can	be	because	the	resource	was
deleted,	or	it	never	existed	before.	It
can	also	be	due	to	URL	misspellings.

405 Method	not
allowed

The	method	you	are	using	to	access	the	file
is	not	supported	or	not	allowed	by	the
resource.

406 Not
acceptable

Content	generated	by	the	resource	is	not
acceptable	according	to	the	client	request.

Check/update	your	browser.

407 Proxy
authentication
required

Request	authentication	is	required	before	it
can	be	performed.

The	client	must	first	authenticate	itself
with	the	proxy.

408 Request
timed	out

It	took	the	server	longer	than	the	allowed
time	to	process	the	request.

Check	response	time	and	load	on	the
network.

409 Conflict The	request	submitted	by	the	client	cannot
be	completed	because	it	conflicts	with
some	established	rules.

Can	be	because	you	try	to	upload	a	file
that	is	older	that	the	existing	one	or
similar	problems.	Check	what	the	client
is	trying	to	do.

410 Gone The	URL	requested	by	the	client	is	no
longer	available	from	that	system.

Usually	this	is	a	server	problem.	It	can
be	due	to	a	file	that	was	deleted	or
location	was	forwarded	to	a	new
location.

411 Content
length
required

The	request	is	missing	its	Content-Length
header.

Compatibility	issue	on	a	website.
Change/update	your	browser.

412 Precondition
failed

The	client	has	not	set	up	a	configuration
that	is	required	for	the	file	to	be	delivered.

Compatibility	issue	on	a	website.
Change/update	your	browser.

413 Request
entity	too
long

The	requested	file	was	too	big	to	process. Server	limitation.

414 Request	URI
too	long

The	address	you	entered	was	overly	long
for	the	server.

Server	limitation.

415 Unsupported
media	type

The	file	type	of	the	request	is	not
supported.

Server	limitation.

A	simple	example	for	a	client	error	is	presented	in	the	following	screenshot.	To
get	to	this	window,	perform	the	following	steps:

1.	 Right-click	on	the	packet	with	the	error	code.
2.	 Choose	Follow	TCP	stream.	You	will	get	the	following	window:	

	
You	can	see	the	following	conditions:
I	tried	to	browse	the	URI	/poker-client/broadcast.htm	(marked	as	1	and
3	in	the	preceding	screenshot)
The	URI	was	forwarded	by	the	referrer:
http://www.888poker.com/poker-client/promotions.htm	(marked	as	2
in	the	preceding	screenshot)
The	status	code	was	404	Not	Found	(marked	as	4	in	the	preceding
screenshot)

Just	to	clarify	things,	I	was	not	playing	Poker,	I	was	working	on	a	networking
problem.

Server	errors

Code Status Explanation What	to	do

500 Internal
server	error

The	web	server	encountered	an	unexpected
condition	that	prevented	it	from	carrying	out	the
client	request	for	access	to	the	requested	URL.

Response	that	is	usually	caused
by	a	problem	in	your	Perl	code
when	a	CGI	program	is	run.

501 Not
implemented

The	request	cannot	be	executed	by	the	server. A	server	problem.

502 Bad	gateway The	server	you're	trying	to	reach	is	sending	back
errors.

A	server	problem.

503 Service
unavailable

The	service	or	file	that	is	being	requested	is	not
currently	available.

A	server	problem.

504 Gateway
timeout

The	gateway	has	timed	out.	This	message	is	like
the	408	timeout	error,	but	this	one	occurs	at	the
gateway	of	the	server.

Server	is	down	or	nonresponsive.

505 HTTP
version	not
supported

The	HTTP	protocol	version	that	you	want	to	use
for	communicating	with	the	server	is	not	supported
by	it.

Server	does	not	support	the
HTTP	version.

You	can	get	service	unavailable	(code	503)	status	due	to	various	reasons.	In	the
following	example	there	is	a	small	office	that	has	the	following	complaint:	they
can	browse	Facebook,	but	the	moment	they	click	on	a	link	on	this	site,	they	get
the	new	page	as	blocked.	In	the	following	screenshot,	you	can	see	that	the
problem	was	simply	a	firewall	that	blocked	it	(obviously).

	

How	it	works...
In	standard	HTTP	browsing,	you	should	see	a	very	simple	pattern	as	follows:

1.	 TCP	opens	the	connection	(three-way	handshake).
2.	 HTTP	sends	a	GET	command.
3.	 Data	is	downloaded	to	your	browser.

Tip

In	most	cases,	opening	a	web	page	will	open	multiple	connections—in	many
cases,	tens	of	them.	For	example,	when	you	open	a	newspage	(www.cnn.com,
www.foxnews.com,	www.bbc.co.uk),	it	opens	the	main	page,	news	bars,
commercials,	temperature	window,	connections	to	other	sites,	and	more.	Don't
be	surprised	if	a	single	page	will	open	nearly	a	hundred	connections,	or	even
more.

In	case	of	a	web	page	that	opens	multiple	connections	(as	most	web	pages	do),
each	connection	requires	a	DNS	query,	response,	TCP	SYN-SYN/ACK-ACK,
and	HTTP	GET;	only	then	the	data	will	start	to	appear	on	your	screen.

http://www.cnn.com
http://www.foxnews.com
http://www.bbc.co.uk

There's	more...
When	you	don't	see	anything	in	the	packet	details	pane,	right-click	on	a	packet
and	choose	Follow	TCP	stream.	This	will	give	you	a	detailed	window,	(as	in	the
preceding	screenshot)	which	provides	you	with	a	lot	of	data	for	the	connection.

Another	tool	that	is	widely	used	for	HTTP	is	Fiddler.	It	can	be	found	at
http://fiddler2.com/.	Fiddler	is	a	free	tool	that	is	planned	for	HTTP	debugging.	It
is	not	in	the	scope	of	this	book.

http://fiddler2.com/

Exporting	HTTP	objects
Exporting	HTTP	objects	is	a	simple	feature	for	exporting	HTTP	statistics—
websites	and	files	accessed	by	HTTP.

Getting	ready
To	export	HTTP	objects,	choose	File	|	Export	Objects	|	HTTP.

How	to	do	it...
To	export	HTTP	objects,	follow	these	steps:

1.	 You	can	use	this	feature	when	capture	is	running,	or	you	can	save	the
captured	file.	You	will	get	the	following	window:	

	
From	here	you	can	get	a	list	of	the	websites	that	were	accessed,	including	the

files	that	were	accessed	in	each	one	of	them.	You	can	see	the	website,	file	types,
size,	and	names.
You	can	use	the	Save	As	or	Save	All	buttons	for	saving	the	data	in	a	file.
In	the	Content	Type	column,	you	will	see	the	following	contents:
Text:	text/plain,	text/html,	text/javascript—if	it's	a	JavaScript,	check
what	it	is,	it	might	be	a	security	risk
Images:	image/jpeg,	image/gif,	and	other	types	of	images—you	can	open	it
with	a	viewer
Applications:	application/json,	application/javascript,	and	other	types	of
applications
Any	other	text	file	discovered	by	Wireshark

Tip

For	the	export	HTTP	objects	feature	to	work,	first	go	to	TCP	preferences	and
enable	TCP	packets	reassembly	(allow	subdissector	to	reassemble	TCP	streams).

You	will	get	a	directory	with	all	the	objects	captured	in	the	capture	file.	Objects
can	be	pictures	(for	example,	packet	1052	and	1057	in	the	preceding	screenshot),
text	(packets	1019,	1022,	and	others	in	the	preceding	screenshot),	and	others.

How	it	works...
This	feature	scans	HTTP	streams	in	the	currently	opened	capture	file	or	the
running	capture,	takes	reassembled	objects	such	as	HTML	documents,	image
files,	executable	files,	and	other	readable	formats,	and	lets	you	save	them	to	a
disk.	The	saved	objects	can	then	be	opened	with	the	proper	viewer,	or	they	can
be	executed	in	the	case	of	executable	files	just	by	clicking	on	them.	This	feature
can	be	helpful	for	various	purposes,	including	eavesdropping	and	saving	objects
for	backup	(for	example,	files	that	were	sent	through	e-mails).

There's	more...
You	have	several	pieces	of	software	that	perform	the	same	things	graphically,
some	of	them	are	as	follows:

Xplico	(http://www.xplico.org/)
NetworkMiner	(http://www.netresec.com/?page=NetworkMiner)

Tip

When	you	see	an	unknown	website	with	an	application	that	you	don't	know,	and
a	filename	that	looks	suspicious—Google	it;	it	might	be	a	risk	(we	will	get	back
to	this	in	Chapter	14,	Understanding	Network	Security).

http://www.xplico.org/
http://www.netresec.com/?page=NetworkMiner

HTTP	flow	analysis	and	the	Follow
TCP	Stream	window
The	Follow	TCP	Stream	feature	that	was	discussed	in	brief	earlier	in	the	book
is	a	very	helpful	feature	that	can	help	you	with	in-depth	understanding	of	the
TCP	flows	that	are	captured	when	you	monitor	the	network.	In	this	recipe,	we
will	see	some	of	its	advantages.

Getting	ready
Port	mirror	the	device	or	link	you	want	to	monitor	and	start	packet	capture.

How	to	do	it...
1.	 For	opening	the	Follow	TCP	Stream	window,	perform	the	following	steps:
2.	 Right-click	on	one	of	the	packets	in	the	stream	you	want	to	view.
3.	 The	stream	you	choose	is	filtered	by	the	Wireshark.	You	will	see	this	in	the

display	filter	bar	that	will	show	you	the	number	of	stream	in	the	capture.
You	will	get	the	following	window:	

You	can	see	the	stream	details,	for	example:
The	GET	method	(marked	as	1	in	the	preceding	screenshot)
The	requested	HOST	(marked	as	2	in	the	preceding	screenshot)
The	client	type,	Mozilla	Firefox	in	this	case,	(marked	as	3	in	the	preceding
screenshot)
The	referrer,	Cisco	in	this	case,	(marked	as	4	in	the	preceding	screenshot)
The	HTTP	OK	response	(marked	as	5	in	the	preceding	screenshot)
The	server	type	(marked	as	6	in	the	preceding	screenshot)

These	are	obvious	examples.	When	having	problems,	or	just	issues	to
investigate,	you	will	be	able	to	see	many	types	of	parameters	here	that	will
indicate	the	following	cases:

A	user	is	using	a	Kazaa	client	(as	shown	in	the	following	screenshot)	for

file	sharing.

In	the	following	screenshot,	you	can	see	a	software	bug.	A	quick	Google
search	shows	that	it	is	an	historical	one,	but	other	bugs	can	be	found	this
way.

You	can	also	check	for	the	following:
Error	and	bugs	messages
Viruses	and	worms—names	such	as	blast,	probe,	and	Xprobe,	especially

when	you	see	them	with	.exe	extension	should	ring	a	big	warning	bell
(more	details	about	this	issue	will	be	provided	in	Chapter	14,
Understanding	Network	Security)

How	it	works...
The	Follow	TCP	Stream	simply	analyzes	the	TCP	data	from	the	first	SYN-
SYN/ACK/ACK	handshake	to	the	end	of	the	connection,	which	is	indicated	by
RST	of	the	FIN	packets.	It	also	isolates	the	specific	stream,	helping	us	to	follow
the	errors	and	problems	in	it.

There's	more...
There	are	many	problems	that	can	be	found	and	allocated	using	the	Follow	TCP
Stream	feature,	and	it	will	be	discussed	further	in	the	next	chapters.	Use	this
feature	to	isolate	a	TCP	stream.

Analyzing	HTTPS	traffic	–	SSL/TLS
basics
HTTPS	is	a	secure	version	of	the	HTTP.	The	"S"	means	that	it	is	secured	by
Secure	Socket	Layer/Transport	Layer	Security	(SSL/TLS).	It	is	used	when
you	connect	to	your	bank	account,	webmail	service,	or	any	other	service	that
runs	over	HTTP	and	requires	security.

In	this	recipe,	we	will	see	how	it	works	and	what	can	fail	when	we	are	using
HTTPS	communications.

Getting	ready
Port	mirror	to	the	suspected	device	or	link	that	forwards	traffic	from	several
devices,	and	start	capture.	HTTPS	works	with	the	TCP	port	443,	and	this	is	what
we	should	watch.

How	to	do	it...
To	monitor	HTTPS	sessions,	perform	the	following	steps:

1.	 HTTPS	session	establishment	can	be	done	in	four	or	five	steps.	It	is
described	in	the	How	it	works...	section	of	this	recipe.

2.	 Watch	the	order	of	the	packet	in	the	session	establishment,	and	make	sure
the	messages	you	get	are	according	to	the	order	shown	in	the	following
figure	(in	brackets	you'll	see	what	should	be	shown	in	the	packet):	

	
There	are	some	common	errors	that	are	described	in	RFC	2246:
close_notify:	This	message	notifies	the	recipient	that	the	sender	has
finished	sending	messages	on	this	connection.	The	session	can	be	resumed
later.
unexpected_message:	This	alert	is	returned	if	an	inappropriate	message
was	received.	This	is	a	critical	error	that	can	indicate	a	bad	implementation
on	one	of	the	sides.
bad_record_mac:	This	alert	is	returned	if	a	record	is	received	with
incorrect	Message	Authentication	Code	(MAC).	This	is	a	critical	error	that

can	indicate	a	bad	implementation	on	one	of	the	sides.
decryption_failed:	This	alert	is	returned	if	a	TLS	Ciphertext	was	decrypted
in	the	wrong	way.	This	is	a	critical	message	that	can	indicate	a	bad
implementation	on	one	of	the	sides.
record_overflow:	This	alert	is	returned	if	a	TLS	Ciphertext	record	was
received	with	a	length	longer	than	the	allowed	length.	This	is	a	fatal	error,
and	it	usually	indicates	a	bad	implementation	on	one	of	the	sides.
decompression_failure:	This	message	indicates	that	a	decompression
function	received	a	wrong	input.	This	is	a	critical	error	that	can	indicate	a
bad	implementation	on	one	of	the	sides.
handshake_failure:	Reception	of	this	alert	message	indicates	a	negotiation
error	that	occurred	when	the	sender	was	unable	to	negotiate	the	set	of
security	parameters,	given	the	options	available.	This	is	a	critical	error	that
can	indicate	a	bad	implementation	on	one	of	the	sides.
bad_certificate:	This	is	a	certificate	error.	It	occurs	when	a	certificate	is
corrupt,	contains	signatures	that	were	not	verified	correctly,	or	any	other
error.
unsupported_certificate:	This	indicates	that	the	received	certificate	was
not	of	the	supported	type.
certificate_revoked:	This	indicates	that	a	certificate	was	canceled	by	its
signer.
certificate_expired:	This	indicates	an	invalid	certificate	or	a	certificate	that
has	expired.
certificate_unknown:	This	tells	that	a	certificate	was	not	accepted	due	to
an	unspecified	reason.
illegal_parameter:	This	tells	that	a	field	in	the	handshake	process	was	out
of	range	or	inconsistent	with	other	fields.	This	is	a	critical	error	that	can
indicate	a	bad	implementation	on	one	of	the	sides.
unknown_ca:	This	indicates	that	a	valid	certificate	was	received,	but	was
not	accepted	because	it	couldn't	be	matched	with	a	known,	trusted	CA.	This
is	a	critical	error,	and	should	be	checked	with	the	certificate	issuer.
access_denied:	This	tells	that	a	valid	certificate	was	received,	but	it	was	not
approved	by	the	access	control	of	the	receiver,	and	the	sender	decided	not	to
proceed	with	negotiation.
decode_error:	This	tells	that	a	message	was	too	long	and,	therefore,	could
not	be	decoded.	This	is	a	critical	error	that	can	indicate	a	bad
implementation	on	one	of	the	sides.

decrypt_error:	This	indicates	that	a	handshake	cryptographic	operation
failed,	including	the	ones	that	failed	due	to	signature	verification,	key
exchange,	or	validation	of	a	finished	message.
export_restriction:	This	tells	that	a	negotiation	which	is	not	compliant
with	export	restrictions	was	detected.
protocol_version:	This	tells	that	the	protocol	version	which	the	client	has
attempted	to	negotiate	is	not	supported.
insufficient_security:	This	is	returned	when	a	negotiation	has	failed
because	the	server	required	ciphers	with	higher	security	than	those
supported	by	the	client.
internal_error:	This	is	an	internal	error	not	related	to	the	peer	of	the
connection.
user_canceled:	This	tells	that	the	handshake	was	canceled	for	a	reason
other	than	a	protocol	failure.
no_renegotiation:	This	is	sent	by	the	client	or	the	server	in	response	to	a
hello	request	after	the	initial	handshaking.

In	each	one	of	the	failures	mentioned,	the	connection	will	not	be	established.

How	it	works...
SSL	and	TLS	are	protocols	that	secure	a	specific	application,	for	example,
HTTP,	SMTP,	Telnet,	and	others.	SSL	Versions	1,	2,	and	3	were	developed	by
Netscape	in	the	mid	90s	for	their	Navigator	browser,	while	TLS	is	a	standard
from	the	IETF	(RFC	2246,	RFC	4492,	RFC	5246,	RFC	6176,	and	others).	TLS	1.0
was	first	introduced	in	RFC	2246	in	January	1999	as	an	upgrade	of	the	SSL
Version	3.0	(third	paragraph	at	http://tools.ietf.org/html/rfc2246).

The	TLS	handshake	protocol	involves	the	following	procedures	for	establishing
a	TLS	connection:

1.	 Exchange	hello	messages	to	agree	on	the	algorithms	to	work	with,	and
exchange	random	values	for	the	key	generation.

2.	 Exchange	the	necessary	cryptographic	parameters	to	allow	the	client	and
the	server	to	agree	on	a	premaster	secret	key.

3.	 Exchange	certificates	and	cryptographic	information	to	allow	the	client	and
server	to	authenticate	each	other.

4.	 Generate	a	master	secret	key	from	the	premaster	secret	and	exchanged
random	values.

5.	 Allow	the	client	and	server	to	verify	that	their	peer	has	calculated	the	same
security	parameters	and	that	the	handshake	occurred	without	being
tampered	with	by	an	attacker.

These	procedures	are	performed	in	the	following	order:

1.	 Select	cryptographic	algorithms:
The	Client	Hello	message	(marked	as	1	in	the	following	screenshot)
The	Server	Hello	message	(marked	as	2	in	the	following	screenshot)

Authenticate	the	server	and	exchange	key	(marked	as	3	in	the	following
screenshot).
Authenticate	the	client	and	exchange	key	(marked	as	4	in	the	following

screenshot).
Complete	the	handshake	(marked	as	5	in	the	following	screenshot).

http://tools.ietf.org/html/rfc2246

	

Let's	see	how	it	works.	In	the	preceding	screenshot,	we	see	how	TCP	SSL/TLS
establishes	a	connection	(packets	157-158-159)	and	packet	160	starts	the	TLS
handshake.	Let	us	see	the	details:

1.	 In	packet	160,	the	client	sends	a	Client	Hello	message	that	starts	the
negotiation.

2.	 The	server	answers	with	a	Server	Hello	message.
3.	 The	server	sends	a	certificate	to	the	client.
4.	 The	client	takes	the	certificate	and	generates	a	premaster	key.
5.	 The	server	creates	the	master	key,	and	the	conversation	begins.	This	is	an

optional	message.

Tip

This	refers	to	a	mechanism	(defined	in	RFC	4507)	that	enables	the	TLS
server	to	resume	sessions	and	avoid	keeping	the	per-client	session	state.
The	TLS	server	encapsulates	the	session	state	into	a	ticket	and	forwards	it
to	the	client.	The	client	can	subsequently	resume	a	session	using	the
obtained	ticket.	This	happens,	for	example,	when	you	re-open	a	connection
to	your	webmail	account	(Gmail,	Hotmail,	and	so	on)	and	is	common	to
these	scenarios.

Communication	between	the	client	and	the	server	will	start	after	step	4	or	5.

Let's	look	at	each	one	of	them:

In	step	1,	packet	160	is	a	Client	Hello	message	which	is	the	first	packet	in	the
TLS	handshake.	Some	of	the	parameters	that	we	can	see	are	shown	in	the
following	screenshot:	

	
The	area	highlighted	as	1	shows	that	the	content	of	the	packet	is	a
handshake	(ssl.record.content_type	==	22).
The	area	highlighted	as	2	shows	that	the	packet	is	a	Client	Hello	message
sent	from	the	client	to	the	web	server.	This	message	starts	the	handshake.
The	area	highlighted	as	3	shows	the	highest	SSL	and	TLS	version
supported	by	the	client.
The	area	highlighted	as	4	shows	the	client	time	that	will	be	used	in	the	key
generation	process.
The	area	highlighted	as	5	shows	the	random	data	that	is	generated	by	the
client	for	use	in	the	key	generation	process.
The	area	highlighted	as	6	shows	the	ciphers	supported	by	the	client.	The
ciphers	are	listed	in	order	of	preference.
The	area	highlighted	as	7	shows	the	data	compression	methods	that	are
supported	by	the	client.

As	shown	in	the	following	screenshot,	Packet	162	is	a	Server	Hello	message,
which	includes	the	following	details:	

	
The	area	highlighted	as	1	shows	that	the	content	of	the	packet	is	a
handshake	(ssl.record.content_type	==	22).
The	area	highlighted	as	2	shows	the	TLS	version	that	will	be	used	in	this
session.
The	area	highlighted	as	3	shows	that	the	packet	is	a	Server	Hello	message
sent	from	the	server	to	the	client.
The	area	highlighted	as	4	shows	the	server	time	used	in	the	key	generation
process.
The	area	highlighted	as	5	shows	the	random	data	that	is	generated	by	the
server	for	use	in	the	key	generation	process.
The	area	highlighted	as	6	shows	the	cipher	suite	to	be	used	in	this
conversation.	It	is	chosen	from	the	list	of	ciphers	sent	by	the	client.
The	area	highlighted	as	7	shows	the	data	compression	method	that	will	be
used	for	the	session.

The	next	packet	is	the	response	from	the	server	issuing	a	certificate:	

	
The	area	highlighted	as	1	shows	that	the	server	sends	the	Certificate
command,	which	includes	the	server's	certificate.	By	clicking	on	the	(+)
sign	on	the	left	of	this	line	and	digging	into	the	details,	you	will	see	the
certificate	issuer,	validity	time,	algorithm,	and	other	data.
The	area	highlighted	as	2	shows	that	the	server	sends	the	Server	Key
Exchange	command	(usually	Diffie-Hellman),	including	the	required
parameters	(public	key,	signature,	and	so	on).
The	area	highlighted	as	3	shows	that	the	server	sends	the	Server	Hello
Done	command.	This	command	indicates	that	the	server	has	completed	this
phase	of	the	SSL	handshake.	The	next	step	is	the	client	authentication.

The	next	packet	(packet	165	in	this	example)	is	the	response	from	the	server,
issuing	a	certificate.

	
The	area	marked	as	1	shows	that	the	client	sends	the	Client	Key	Exchange
command.	This	command	contains	the	premaster	secret	that	was	created	by
the	client	and	was	then	encrypted	using	the	server's	public	key.	The
symmetric	encryption	keys	are	generated	by	the	client	and	the	server,	based
on	the	data	exchanged	in	the	client	and	server	hello	messages.
The	area	marked	as	2	shows	that	the	client	sends	the	Change	Cipher	Spec
notification	to	the	server.	This	is	done	in	order	to	indicate	that	the	client	will
start	using	the	new	session	keys	for	hashing	and	encryption.

The	last	step	is	when	the	server	sends	a	New	Session	Ticket	to	the	client,	and	it
will	look	like	the	example	in	the	following	screenshot:	

	

There's	more...
I've	been	asked	several	times	if	it	is	possible	to	decrypt	sessions	that	are
encrypted	with	SSL/TLS.	Well	it's	possible	if	you	have	the	private	key,	which	is
provided	to	you	by	the	server	you	connect	to;	and	to	get	it	is	not	an	easy	thing	to
do.

There	are	methods	to	hijack	this	key,	and	in	some	cases	they	will	work.	It	is	not
an	obvious	thing	to	do,	and	in	any	case	it	is	not	in	the	goal	of	this	book.	If	you
get	the	private	key,	you	simply	add	it	in	the	protocol	list	in	the	preferences
window	and	continue	from	there.	Additional	details	about	this	feature	can	be
obtained	from	http://wiki.wireshark.org/SSL,	as	well	as	from	many	other
websites	and	blogs.

http://wiki.wireshark.org/SSL

Chapter	11.	Analyzing	Enterprise
Applications'	Behavior
In	this	chapter,	we	will	cover	the	following	topics:

Finding	out	what	is	running	over	your	network
Analyzing	FTP	problems
Analyzing	e-mail	traffic	and	troubleshooting	e-mail	problems	–	POP,	IMAP,
and	SMTP
Analyzing	MS-TS	and	Citrix	communication	problems
Analyzing	problems	in	the	NetBIOS	protocols
Analyzing	database	traffic	and	common	problems

Introduction
One	of	the	important	things	that	you	can	use	Wireshark	for	is	application
analysis	and	troubleshooting.	When	the	application	slows	down,	it	can	be
because	of	the	LAN	(quite	uncommon	in	wired	LAN),	the	WAN	service
(common	due	to	insufficient	bandwidth	or	high	delay),	or	slow	servers	or	clients
(we	will	see	this	in	TCP	window	problems).	It	can	also	be	due	to	slow	or
problematic	applications.

The	purpose	of	this	chapter	is	to	get	in	to	the	details	of	how	applications	work,
and	provide	some	guidelines	and	recipes	for	isolating	and	solving	these
problems.	In	the	first	recipe,	we	will	learn	how	to	find	out	and	categorize
applications	that	work	over	our	network.	Then,	we	will	go	through	various	types
of	applications,	see	how	they	work,	how	networks	influence	their	behavior,	and
what	can	go	wrong.

In	this	chapter,	we	will	learn	how	to	use	Wireshark	in	order	to	resolve	and
troubleshoot	common	applications	that	are	used	in	an	enterprise	network.	These
are	FTP,	various	e-mail	protocols,	Microsoft	Terminal	Server	and	Citrix,
databases,	NetBIOS	protocols,	and	others.

Finding	out	what	is	running	over
your	network
The	first	thing	to	do	when	monitoring	a	new	network	is	to	find	out	what	is
running	over	it.	There	are	various	types	of	applications	and	network	protocols,
and	they	can	influence	and	interfere	with	each	other	when	all	of	them	are
running	over	the	network.

In	some	cases,	you	will	have	different	VLANs,	different	Virtual	Routing	and
Forwarding	(VRFs),	or	servers	that	are	connected	to	virtual	ports	in	a
Bladeserver.	Eventually	everything	is	running	on	the	same	infrastructure,	and
they	can	influence	each	other.

Tip

There	is	a	common	confusion	between	VRFs	and	VLANs.	Even	though	their
purpose	is	quite	the	same,	they	are	configured	in	different	places.	While	VLANs
are	configured	in	the	LAN	in	order	to	provide	network	separation	in	the	OSI
layers	1	and	2,	VRFs	are	multiple	instances	of	routing	tables	to	make	them	co-
exist	in	the	same	router.	This	is	a	layer	3	operation	that	separates	between
different	customer's	networks.	VRFs	are	used	in	Multi	Protocol	Label
Switching	(MPLS)	to	provide	layer	3	connectivity	to	different	customers	over
the	same	router's	network,	in	such	a	way	that	no	customer	can	see	any	other
customer's	network.

In	this	recipe,	we	will	see	how	to	get	to	the	details	of	what	is	running	over	the
network,	and	the	applications	that	can	slow	it	down.

Tip

The	term	Bladeserver	refers	to	a	server	enclosure,	which	is	a	chassis	of	server
shelves	on	the	front	and	LAN	switches	on	the	back.	There	are	several	different
acronyms	for	it;	for	example,	IBM	calls	them	Bladecenter	and	HP	calls	them
Bladesystem.

Getting	ready
When	you	get	into	a	new	network,	the	first	thing	to	do	is	connect	Wireshark	to
sniff	what	is	running	over	the	network.	Make	sure	you	follow	these	points:

When	you	are	required	to	monitor	a	server,	port	mirror	it	and	see	what	is
running	on	its	connection	to	the	network.
When	you	are	required	to	monitor	a	remote	office,	port	mirror	the	router
port	that	connects	you	to	the	WAN	connection.	Then,	check	what	is	running
over	it.
When	you	are	required	to	monitor	a	slow	connection	to	the	Internet,	port
mirror	it	to	see	what	is	going	on	there.

In	this	recipe,	we	will	see	how	to	use	the	Wireshark	tools	for	analyzing	what	is
running	and	what	can	cause	the	problems.

How	to	do	it...
For	analyzing	who	is	talking,	follow	these	steps:

1.	 Connect	Wireshark	using	one	of	the	options	mentioned	in	the	previous
section.

2.	 You	can	use	the	following	tools:
Navigate	to	Statistics	|	Protocol	Hierarchy	for	viewing	the	protocols
that	run	over	the	network	and	their	percentage	of	the	total	traffic
Navigate	to	Statistics	|	Conversations	to	see	who	is	talking	and	what
protocols	are	used

In	the	Protocol	Hierarchy	feature,	you	will	get	a	window	that	will	help	you
analyze	who	is	talking	over	the	network.	It	is	shown	in	the	following	screenshot:

In	the	screenshot	you	can	see	the	protocol	distribution:
1.	 Ethernet:	IP,	Logical-Link	Control	(LLC)	and	Configuration	Test	Protocol

(loopback)
2.	 Internet	Protocol	Version	4:	User	Datagram	Protocol	(UDP),	Transport

Control	Protocol	(TCP),	Protocol	Independent	Multicast	(PIM),	Internet
Group	Management	Protocol	(IGMP),	and	Generic	Routing	Encapsulation
Protocol	(GRE)

If	you	click	on	the	+	sign,	all	underlying	protocols	will	be	shown.
To	see	a	specific	protocol	throughput,	click	down	to	the	protocols	as	shown	in

the	following	screenshot.	You	will	see	the	application	average	throughput	during
the	capture	(HTTP	in	this	example):	

Clicking	on	the	+	sign	to	the	left	of	HTTP	will	open	a	list	of	protocols	that	run
over	HTTP	(XML,	MIME,	JavaScripts,	and	more)	and	their	average	throughput
during	the	capture	period.

There's	more...
In	some	cases	(especially	when	you	need	to	prepare	management	reports),	you
are	required	to	provide	a	graphical	picture	of	the	network	statistics.	There	are
various	sources	available	for	this,	for	example:

Etherape	(for	Linux):	http://etherape.sourceforge.net/
Compass	(for	Windows):	http://download.cnet.com/Compass-Free/3000-
2085_4-75447541.html?tag=mncol;1	(from	Wildpackets)

http://etherape.sourceforge.net/
http://download.cnet.com/Compass-Free/3000-2085_4-75447541.html?tag=mncol;1

Analyzing	FTP	problems
File	Transfer	Protocol	(FTP)	is	a	protocol	created	for	transferring	files	over
TCP/IP	across	a	network.	FTP	is	a	protocol	that	runs	over	TCP	ports	20	and	21
for	the	data	and	control	connections	(FTP	commands)	respectively.

FTP	has	two	modes	of	operation:

Active	mode	(ACTV):	In	this	mode,	the	client	initiates	a	control
connection	to	the	server,	and	the	server	initiates	a	data	connection	to	the
client
Passive	mode	(PASV):	In	this	mode,	the	client	initiates	the	control	and	data
connections	to	the	server

Both	types	of	connections	can	be	implemented,	and	they	will	be	explained	later
in	this	recipe	in	the	How	it	works...	section.

Getting	ready
When	working	with	FTP,	if	you	suspect	any	connectivity	or	slow	response
problems,	configure	port	mirror	to	one	of	the	following:

The	FTP	server	port
The	client	port
A	link	that	the	traffic	crosses

If	required,	configure	a	capture	or	display	filter.

How	to	do	it...
To	check	FTP	performance	problems,	follow	these	steps:

1.	 First,	check	for	any	Ethernet,	IP,	or	TCP	problems,	as	described	in	previous
chapters.	In	many	cases,	slow	responses	happen	due	to	networking
problems	and	not	necessarily	due	to	application	problems.

2.	 Check	for	TCP	retransmissions	and	duplicate	ACKs.	Check	if	they	are	on
the	entire	traffic	or	only	on	the	FTP	connection.

If	you	get	it	on	various	connections,	it	is	probably	due	to	a	slow	network
that	influences	the	entire	traffic.

If	you	get	it	only	on	FTP	connections	to	the	same	server	or	client,	it	can	be
due	to	a	slow	server	or	client.

3.	 When	you	are	copying	a	single	file	in	an	FTP	file	transfer,	you	should	get	a
straight	line	in	the	IO	graph	and	a	straight	gradient	in	the	TCP	stream	graph
(time-sequence).

4.	 In	the	following	screenshot,	we	can	see	what	a	bad	FTP	looks	like	in	the
TCP	stream	graph	(time-sequence):	

In	the	following	screenshot,	we	can	see	how	it	looks	in	the	IO	graph
(configured	with	filters):	

In	the	capture	file	shown	in	the	following	screenshot,	we	can	see	TCP	window
problems.	These	are	listed	as	follows:
1.	 The	server	15.216.111.13	sends	a	TCP	Window	Full	message	to	the

client,	indicating	that	the	server	send	window	is	full	(packet	5763).
2.	 The	client	10.0.0.2	sends	a	TCP	Zero	Window	message	to	the	server,

telling	the	server	to	stop	sending	data	(packet	5778).
3.	 The	server	keeps	sending	TCP	Zero	Window	Probe	messages	to	the	client,

asking	the	client	if	the	condition	is	still	zero	window	(that	tells	the	server
not	to	send	any	more	data).	The	client	answers	these	messages	with	TCP
Zero	Window	Probe	Ack,	indicating	that	this	is	still	the	case	(packets	5793
to	5931).

4.	 After	a	while,	the	client	sends	the	message	TCP	Window	Update	to	the
server,	telling	it	to	start	increasing	the	FTP	throughput	(packet	5939).

In	the	preceding	case,	it	was	simply	a	slow	client.	We	solved	the	problem	by
working	over	it	and	deleting	some	unnecessary	processes.

If	you	are	facing	connectivity	problems,	it	can	be	due	to	a	non-functioning
server,	firewall	that	blocks	the	connection	on	the	way,	or	software	installed	on
the	server	or	client	that	blocks	it.	In	this	case,	go	through	the	following	steps:

1.	 Was	the	TCP	connection	opened	properly	with	the	SYN/SYN-ACK/ACK
packets?	If	not,	it	can	be	due	to:

The	firewall	that	blocks	communications.	Check	with	the	system
administrator.
The	server	that	is	not	running.	Check	this	on	the	server—	in	the
process	table,	FTP	server	management,	and	so	on.
A	software	of	the	server	blocks	connectivity.	It	can	be	an	antivirus	that
has	an	additional	firewall	that	blocks	connections,	VPN	client,	or	any
other	security	or	protection	software.
Check	the	connectivity	on	the	client,	too.	It	can	be	that	it	is	blocked	by
a	VPN	client,	a	firewall	on	the	client,	and	so	on.

2.	 In	the	active	mode,	the	client	opens	connection	to	the	server	that	opens
another	connection.	Make	sure	that	the	firewalls	on	the	way	support	it,	or
use	passive	mode.

How	it	works...
There	are	two	modes	of	FTP:	active	and	passive.	In	the	active	mode,	the	server
opens	another	connection	to	the	client,	while	in	passive	mode,	it	is	the	client	that
opens	the	second	connection	to	the	server.	Let's	see	how	it	works.

In	passive	mode,	the	operations	are	as	shown	in	the	following	screenshot:

	
1.	 The	client	opens	a	control	connection	from	a	random	port	P	(1024	in	the

example)	to	the	server	port	21.
2.	 The	server	answers	back	from	port	21	to	the	client	port	1024.
3.	 Now,	the	client	opens	a	data	connection	from	the	port	P+1	(1025	in	the

example)	to	a	data	port	that	the	server	has	opened	and	notified	the	client
about	(port	2000	in	the	example).

4.	 The	server	answers	from	the	data	port	(2000	in	the	example)	to	the	client
port	that	initiated	the	connection,	that	is,	the	data	port	P+1	(1025	in	the

example).

In	the	active	mode,	the	operation	is	slightly	different:

1.	 The	client	opens	a	control	connection	from	a	random	port	P	(1024	in	the
example)	to	the	server	port	21.

2.	 The	server	answers	from	port	21	to	the	client	port	1024.
3.	 The	server	opens	the	data	connection	from	port	20	to	the	client	port	P+1

(1025	in	the	example).
4.	 The	client	answers	from	the	data	port	P+1	(1025	in	the	example)	to	the

server	port	20.

	

There's	more...
FTP	is	a	very	simple	application;	and	in	most	cases,	FTP	problems	have	very
simple	solutions.	Some	examples	are	as	follows:

Problem	1:	I've	monitored	an	international	connection	with	FTP	clients	on
one	side	of	the	network	and	an	FTP	server	on	the	other	side.	The	customer
complained	about	slow	performance	and	blamed	the	international	service
provider.	After	checking	with	the	service	provider,	they	said	the	connection
is	nearly	not	loaded	(20	percent	of	a	10	Mbps	line),	a	fact	that	I	confirmed
when	I	checked	the	line.	When	I	looked	at	the	TCP	issues	(retransmissions,
window	problems,	and	so	on),	there	were	none.	Just	to	check,	I	removed	the
FTP	server	and	installed	another	one	(there	are	many	free	ones),	and	it
started	to	work.	It	was	a	simple	problem	of	an	inefficient	FTP	server.
Problem	2:	A	customer	complained	that	when	connecting	to	an	FTP	server,
the	connection	was	refused	after	every	5	or	6	trials.	When	I	checked	it	with
Wireshark,	I	saw	that	the	FTP	connection	refused	messages	(and	I	already
knew	about	this	from	the	customer's	complaint),	so	it	looked	like	a	dead
end.	Just	to	check,	I	started	to	stop	the	services	running	on	the	server,	and
the	problem	came	out.	It	was	an	antivirus	software	that	was	interfering	with
this	specific	FTP	server.

The	bottom	line	is:	even	with	Wireshark	(and	other	software),	sometimes
common	sense	will	help	you	more.

Analyzing	e-mail	traffic	and
troubleshooting	e-mail	problems	–
POP,	IMAP,	and	SMTP
The	common	mail	protocols	for	mail	client	to	server	and	server	to	server
communications	are	Post	Office	Protocol	version	3	(POP3),	Simple	Mail
Transfer	Protocol	(SMTP)	and	Internet	Message	Access	Protocol	version	4
(IMAP4).

Another	common	method	for	accessing	e-mails	is	web	access	to	mail,	in	which
you	have	common	mail	servers	such	as	Gmail,	Yahoo!,	and	Hotmail.	Some
examples	include	Outlook	Web	Access	(OWA)	and	RPC	over	HTTPS	for	the
Outlook	web	client	from	Microsoft	and	others.

In	this	recipe,	we	will	talk	about	the	most	common	client-server	and	server-
server	protocols:	POP3	and	SMTP.	We	will	also	look	at	some	typical	problems
by	using	the	other	methods.

Getting	ready
When	users	are	complaining	about	mail	problems,	first	check	if	there	are	any
obvious	problems	such	as	wrong	username,	bad	password,	and	authentication
protocols	that	are	not	configured.	If	none,	connect	Wireshark	with	port	mirror	to
the	complaining	client;	and	if	there	are	many	of	them,	configure	port	mirror	to
the	common	server	or	the	communications	line	connecting	to	it	(when	there	is	a
remote	server).

How	to	do	it...
POP3	will	usually	be	used	for	client	to	server	communications,	while	SMTP	will
usually	be	used	for	server	to	server	communications.

POP3	communications

POP3	is	usually	used	for	mail	client	to	mail	server	communications.	When	a
client	cannot	access	the	mail	server,	perform	the	following	checks:

1.	 First,	check	if	the	correct	username	and	password	have	been	configured.
2.	 Then,	check	if	the	authentication	has	passed	correctly.	In	the	following

screenshot,	you	can	see	a	session	opened	with	a	username	that	starts	with
doronn@	(all	IDs	were	deleted)	and	a	password	that	starts	with	u6F.

3.	 To	see	the	TCP	stream	shown	in	the	following	screenshot,	right-click	on
one	of	the	packets	in	the	stream	and	choose	Follow	TCP	Stream	from	the
dropdown	menu:	

Any	error	messages	in	the	authentication	stage	will	prevent	the
communications	from	being	established.	You	can	see	an	example	of	this	in	the
following	screenshot	where	user	authentication	failed.	In	this	case,	we	see	that
when	the	client	gets	the	Logon	failure,	it	closes	the	TCP	connection.

During	the	mail	transfer,	be	aware	that	mail	clients	can	easily	fill	a	narrow-
band	communications	line.	You	can	check	this	by	simply	configuring	the	IO
graphs	with	a	filter	on	POP.
Always	check	for	common	TCP	indications:	retransmissions,	zero-window,

window-full,	and	others.	They	can	indicate	a	busy	communication	line,	slow
server,	and	other	problems	coming	from	the	communications	lines	or	end	nodes
and	servers.	These	problems	will	mostly	cause	slow	connectivity.

SMTP	communications

SMTP	is	commonly	used	for	the	following	purposes:

Server	to	server	communications,	in	which	SMTP	is	the	mail	protocol	that
runs	between	the	servers
In	some	clients,	POP3	or	IMAP4	are	configured	for	incoming	messages
(messages	from	the	server	to	the	client);	while	SMTP	is	configured	for
outgoing	messages	(messages	from	the	client	to	the	server)

When	you	suspect	slow	server-to-server	communications,	follow	these	steps	to
resolve	the	problems.

1.	 Check	if	the	servers	are	located	on	the	same	site:
If	they	are	located	on	the	same	site,	you	probably	have	slow	servers	or
another	application	problem.	In	most	of	the	cases,	the	LAN	will	not
cause	any	problems—especially	when	both	servers	are	in	the	same
data	centre.
If	they	are	not	located	on	the	same	site	(when	the	servers	are	located	in
a	remote	site	through	WAN	connections),	check	the	load	on	the	WAN
connections.	When	sending	large	mails,	they	can	easily	block	these
lines—especially	when	they	are	narrow	band	(several	Mbps).

First,	look	for	TCP	problems;	and	check	if	you	see	them	only	on	SMTP	or	on
all	other	applications.	For	example,	in	the	following	screenshot,	you	can	see

many	TCP	retransmissions:	

Check	if	they	are	because	of	a	slow	SMTP	server.	Is	it	a	mail	problem?	When
you	look	at	the	following	screenshot,	you	see	that	I've	used	the	TCP
Conversation	statistics.	After	checking	the	Limit	to	display	filter	checkbox
and	clicking	on	Packets	at	the	top	of	the	window	(to	get	the	list	from	the	higher
amount	of	packets),	we	can	see	that	only	793	packets	are	SMTP	from	the
retransmitted	packets.	There	are	9014	packets	retransmitted	between
172.16.30.247	and	172.16.30.2	on	port	445	(Microsoft	DS),	2319	packets	are
retransmitted	between	172.16.30.180	and	192.5.11.198	on	port	80	(HTTP),
and	so	on.

In	this	case,	SMTP	is	influenced	only	by	bad	communications.	It	is	not	an
SMTP	problem.
Check	for	SMTP	errors.	In	the	following	screenshot,	you	see	an	error	code

451,	which	is	also	called	the	local	error	in	processing	server	error.	Also,	a

list	of	errors	is	listed.

Tip

When	something	goes	wrong,	in	most	cases	the	server	or	the	client	will	tell	you
about	it.	You	just	have	to	look	at	the	messages	and	Google	them.	We	will	see
many	examples	of	this	later.

You	can	also	find	a	list	of	SMTP	status	codes	in	RFC	1893
(http://www.ietf.org/rfc/rfc1893.txt).

1.	 When	you	want	to	know	which	errors	have	been	sent	by	the	two	sides,
configure	a	filter	as	shown	in	the	following	screenshot:	

Here	you	can	see	various	events:
Code	421:	This	indicates	that	the	mail	service	is	probably	unavailable	(1).

http://www.ietf.org/rfc/rfc1893.txt

Code	452:	This	indicates	that	the	server	cannot	respond,	and	tells	you	to	try
again	later.	This	happens	due	to	load	on	the	server	or	a	server	problem	(2).
Code	451:	(code	250	is	shown	in	the	screenshot,	see	the	following	note)
This	indicates	the	user	over	quota	(3).
Code	452:	This	indicates	that	the	mailbox	size	limit	has	been	exceeded	(4).
Code	450:	(code	250	is	shown	in	the	screenshot,	see	the	following	note)
This	indicates	that	the	host	was	not	found	(5).

Tip

In	SMTP	(like	in	many	other	protocols),	you	can	get	several	error	codes	in
the	same	message.	What	you	see	in	the	packet	list	in	Wireshark	can	be	the
first	one,	or	a	partial	list	of	it.	To	see	the	full	list	of	errors	in	the	SMTP
message,	go	to	the	packet	details	and	open	the	specific	packet,	as	in	the
following	screenshot.

When	you	see	too	many	codes,	it	indicates	unavailability	of	the	server.	check
with	the	server	administrator.

Some	other	methods	and	problems

Some	other	common	methods	that	I	mentioned	earlier	are	web	mail	and	RPC
over	HTTP:

In	web	mail,	we	connect	to	the	server	with	HTTPS;	therefore	this	is	exactly
like	working	with	HTTPS,	as	described	in	Chapter	10,	HTTP	and	DNS.
After	logging	in	to	the	server,	if	any	problems	occur,	they	will	be	HTTPS
problems.
RPC	over	HTTPS	will	be	same.	Since	RPC	is	a	protocol	which	usually

loads	the	network,	it	is	considered	to	be	sensitive	to	high	delays	and	jitter.
Microsoft	came	up	with	a	solution	to	work	with	their	Outlook	client	over
HTTPS	and	not	with	the	standard	RPC.	Again,	since	communication	runs
over	HTTPS,	problems	will	be	HTTPS	problems.

How	it	works...
Mail	clients	will	mostly	use	POP3	for	communications	with	the	server.	In	some
cases,	they	will	use	SMTP	as	well.	IMAP4	is	used	when	server	manipulation	is
required,	for	example,	when	you	need	to	see	messages	that	exist	on	a	remote
server	without	downloading	them	to	the	client.	Server	to	server	communications
are	usually	implemented	by	SMTP.

Tip

The	difference	between	IMAP	and	POP	is	that	in	IMAP	the	mail	is	always	stored
on	the	server.	If	you	delete	it,	it	will	be	unavailable	from	any	other	machine.	In
POP,	deleting	a	downloaded	email	may	or	may	not	delete	that	e-mail	on	the
server.

In	general,	SMTP	status	codes	are	divided	into	three	categories,	which	are
structured	in	a	way	that	helps	you	understand	what	exactly	went	wrong.	The
method	and	details	of	SMTP	status	codes	is	discussed	in	the	following	section.

POP3

POP3	is	an	application	layer	protocol	used	by	mail	clients	to	retrieve	e-mail
messages	from	the	server.	A	typical	POP3	session	will	look	like	the	following
screenshot:	

	
1.	 The	client	opens	a	TCP	connection	to	the	server.
2.	 The	server	sends	an	OK	message	to	the	client	(OK	Messaging

Multiplexor).
3.	 The	user	sends	the	username	and	password.
4.	 The	protocol	operations	begin.	NOOP	(no	operation)	is	a	message	sent	to

keep	the	connection	open,	STAT	(status)	is	sent	from	the	client	to	the	server
to	query	the	message	status.	The	server	answers	with	the	number	of
messages	and	their	total	size	(in	packet	1042,	OK	0	0	means	no	messages
and	it	has	total	size	zero).

5.	 When	there	are	no	mail	messages	on	the	server,	the	client	sends	a	QUIT
message	(1048),	the	server	confirms	it	(packet	1136)	and	the	TCP
connection	is	closed	(packets	1137,	1138,	and	1227).

In	the	case	of	encrypted	connection,	it	will	look	nearly	the	same	(see	the
following	screenshot).	After	the	connection	establishment	(1),	there	are	several
POP	messages	(2),	TLS	connection	establishment	(3),	and	then	the	encrypted
application	data.

	
SMTP	and	SMTP	error	codes	(RFC3463)

The	structure	of	SMTP	status	codes	is	as	follows:

class	.	subject	.	detail

For	example,	when	you	see	status	code	450,	it	means	the	following:

Class	4	indicates	that	it	is	a	temporary	problem
Subject	5	indicates	that	it	is	a	mail	delivery	status
Detail	0	indicates	an	undefined	error	(RFC	3463,	Paragraph	3.6)

The	following	table	lists	the	various	classes:

Status
code Meaning Reason

2.x.xxx Success Operation	succeeded

4.x.xxx Persistent
transient
failure

A	temporary	condition	has	prevented	the	server	from	sending	the	message.	It	can	be
due	to	server	load	or	network	bottleneck.	Usually,	sending	the	message	again	will
succeed.

5.x.xxx Permanent
failure

A	permanent	problem	prevented	the	server	from	sending	the	message.	Usually
server	or	compatibility	errors.

The	following	table	lists	the	various	subjects:

Status	code What	is	it What	can	be	the	reason

x.0.xxx Other	or	undefined	status -

x.1.xxx Addressing	status -

x.2.xxx Mailbox	status -

x.3.xxx Mail	system	status -

x.4.xxx Network	and	routing	status -

x.5.xxx Mail	delivery	protocol	status -

x.6.xxx Message	content	or	media	status -

x.7.xxx Security	or	policy	status -

The	list	of	status	details	are	too	long	to	be	listed	here.	A	full	list	can	be	found	in
the	standard	pages	at	http://tools.ietf.org/html/rfc3463.

Some	common	status	codes	are	listed	in	the	following	table:

Status
code What	is	it What	can	be	the	reason

220 Service	is	ready Service	is	running	and	ready	to	perform	mail	operations.

221 Service	closing
transmission
channel

Usually	OK.	This	is	how	the	server	closes	the	service	when	it	is	not	required.

250 Requested	mail
action	is	OK

Message	is	delivered	successfully.

251 Not	a	local	user,
mail	will	be
forwarded

Everything	is	OK.

252 Cannot	verify
the	user

The	user	couldn't	be	verified	by	the	server.	The	mail	will	be	delivered.

421 Service	not
available

The	mail	transfer	service	is	not	available	and	cannot	serve	incoming	mail	due	to
a	transient	event.	This	can	be	due	to	a	server	problem	(service	that	is	not
running)	or	server	limitation.

422 Mail	size
problem

The	recipient	mailbox	has	passed	its	quota	or	has	a	limitation	on	incoming	mail.

431 Out	of	memory
or	disk	full

Server	disk	is	either	full,	or	out	of	memory.	Check	the	server.

432 Incoming	mail
queue	has	been
stopped

It	can	be	due	to	a	server	error	(a	service	that	stopped).

http://tools.ietf.org/html/rfc3463

441 The	receiving
server	is	not
responding

The	server	that	sends	the	message	indicates	that	the	destination	server	does	not
respond.

442 Bad	connection There	is	a	problem	with	the	connection	to	the	destination	server.

444 Unable	to	route The	server	was	unable	to	determine	the	next	hop	for	the	message.

445 Mail	system
congestion

The	mail	server	is	temporarily	congested.

447 Delivery	time
has	expired

The	message	was	considered	too	old	by	the	rejecting	system.	This	is	usually	due
to	queuing	or	transmission	problems.

450 Requested	action
not	taken

Message	could	not	be	transmitted.	This	is	usually	due	to	a	problem	with	the	mail
service	on	the	remote	server.

451 Invalid
command

This	indicates	an	unsupported	or	out	of	sequence	command.	The	action	was
aborted	by	the	receiving	server.	This	was	mostly	due	to	load	on	the	sending	or
the	receiving	server.

452 Requested	action
was	not	taken

Insufficient	storage	on	the	receiving	server.

500 Syntax	error The	command	sent	by	the	server	was	not	recognized	as	a	valid	SMTP	or
ESMTP	command.

512 DNS	error The	host	server,	which	is	the	destination	for	the	mail	that	was	sent,	could	not	be
located.

530 Authentication
problem

Authentication	is	required	from	the	receiving	server,	or	your	server	has	been
added	to	a	black	list	by	the	receiving	server.

542 Recipient
address	was
rejected

A	message	indicating	that	your	server	address	was	rejected	by	the	receiving
server.	This	is	usually	due	to	Anti-spam,	IDS/IPS	systems,	smart	firewalls	or
other	security	system.

There's	more...
E-mails	are	sometimes	referred	to	as	one	of	the	"silent	killers"	of	networks,
especially	in	small	enterprises	that	use	asymmetric	lines	to	the	Internet.	When
sending	text	messages,	they	will	not	consume	anything	from	the	network;	but
when	you	send	a	large	file	of	several	megabytes	or	even	tens	of	megabytes	over
a	narrow-band	uplink	to	the	ISP,	the	rest	of	the	users	in	your	office	will	suffer
from	network	slowdown	for	many	seconds,	even	minutes.	I've	seen	this	problem
in	many	small	offices.

Another	issue	with	mail	clients	is	that	in	some	cases	(configurable),	mail	clients
are	configured	to	download	all	new	data	from	the	server	when	they	start	to	work.
If	you	have	a	customer	that	complains	of	a	network	slowdown	at	the	time	when
all	employees	start	their	day	in	the	office,	it	might	be	due	to	the	tens	or	hundreds
of	clients	who	opened	their	mail	clients	simultaneously	and	the	mail	server	is
located	over	a	WAN.

Analyzing	MS-TS	and	Citrix
communications	problems
Microsoft	Terminal	Server	(MS-TS)	that	uses	Remote	Desktop	Protocol
(RDP)	and	Citrix	Metaframe	Independent	Computing	Architecture	(ICA)
protocols	are	widely	used	for	local	and	remote	connectivity	for	PCs	and	thin
clients.	The	important	thing	to	remember	about	these	types	of	applications	is	that
they	are	transferring	screen	changes	over	the	network.	If	there	are	only	a	few
changes,	they	will	require	low	bandwidth.	If	there	are	many	changes,	they	will
require	high	bandwidth.

Another	thing	is	that	the	traffic	in	these	applications	is	entirely	asymmetric.
Downstream	traffic	takes	from	tens	of	Kbps	up	to	several	Mbps,	while	the
upstream	traffic	will	be	at	most	several	Kbps.	When	working	with	these
applications,	don't	forget	to	design	your	network	according	to	this.

In	this	recipe,	we	will	see	some	typical	problems	of	these	applications	and	how
to	locate	them.	For	the	convenience	of	writing,	we	will	refer	to	Microsoft	TS;
and	every	time	we	will	write	MS-TS,	we	will	refer	to	all	applications	in	this
category,	for	example,	Citrix	Metaframe.

Getting	ready
When	suspecting	a	slow	performance	with	MS-TS,	first	check	with	the	user
what	the	problem	is.	Then,	connect	the	Wireshark	to	the	network,	with	port
mirror	to	the	complaining	client	or	to	the	server.

How	to	do	it...
For	locating	a	problem	when	MS-TS	is	involved,	start	with	going	to	the	users
and	asking	questions.	Follow	these	steps:

1.	 When	users	complain	about	a	slow	network,	ask	them	a	simple	question:
Do	they	see	the	slowness	in	the	data	presented	on	the	screen,	or	when	they
switch	between	windows?

2.	 If	they	say	that	the	switch	between	windows	is	very	fast,	it	is	not	an	MS-TS
problem.	MS-TS	problems	will	cause	slow	window	changes,	picture
freezes,	slow	scrolling	of	graphical	documents,	and	so	on.

3.	 If	they	say	that	they	are	trying	to	generate	a	report	(when	the	software	is
running	over	MS-TS)	but	the	report	is	generated	after	a	long	period	of	time,
this	is	a	database	problem	and	not	MS-TS	or	Citrix.

4.	 When	a	user	works	with	MS-TS	over	a	high-delay	communication	line	and
types	very	quickly,	they	might	experience	delays	with	the	characters.	This	is
because	MS-TS	is	transferring	window	changes,	and	with	high	delays	these
windows	changes	will	be	transferred	slowly.

5.	 When	measuring	the	communication	line	with	Wireshark:
Use	IO	graphs	for	monitoring	the	line
Use	filters	to	monitor	the	upstream	and	the	downstream	directions
Configure	bits	per	second	on	the	y-axis

You	will	get	the	following	screenshot:

	
In	the	preceding	screenshot,	you	can	see	a	typical	traffic	pattern	with	high

downstream	and	very	low	upstream	traffic.	Notice	that	the	Y-Axis	is	configured
to	Bits/Tick.	In	the	time	between	485	s	and	500	s,	you	see	that	the	throughput
got	to	the	maximum.	This	is	when	applications	will	slowdown	and	users	will
start	to	feel	screen	freezes,	menus	that	move	very	slowly,	and	so	on.

Tip

When	a	Citrix	ICA	client	connects	to	a	presentation	server,	it	uses	TCP	ports
2598	or	1494.

When	monitoring	MS-TS	servers,	don't	forget	that	the	clients	access	the	server
with	MS-TS	and	the	servers	access	the	application	with	another	client	that	is
installed	on	the	server.	The	performance	problem	can	come	from	the	MS-TS	or
from	the	application.
If	the	problem	is	an	MS-TS	problem,	it	is	necessary	to	figure	out	if	it	is	a

network	problem	or	a	system	problem:
Check	the	network	with	Wireshark	to	see	if	there	are	any	loads.	Loads	such
as	the	one	shown	in	the	previous	screenshot	can	be	solved	by	simply

increasing	the	communication	lines.
Check	the	server's	performance.	Applications	like	MS-TS	are	mostly
memory	consuming,	so	check	mostly	for	memory	(RAM)	issues.

How	it	works...
MS-TS,	Citrix	Metaframe,	and	applications	simply	transfer	window	changes
over	the	network.	From	your	client	(PC	with	software	client	or	thin	client),	you
connect	to	the	terminal	server;	and	the	terminal	server	runs	various	clients	that
are	used	to	connect	from	it	to	other	servers.	In	the	following	screenshot,	you	can
see	the	principle	of	terminal	server	operation:	

There's	more…
From	the	terminal	server	vendors,	you	will	hear	that	their	applications	improve
two	things.	They	will	say	that	it	improves	manageability	of	clients	because	you
don't	have	to	manage	PCs	and	software	for	every	user—you	simply	install
everything	on	the	server,	and	if	something	fails	you	fix	it	on	the	server.	They	will
also	say	that	traffic	over	the	network	will	be	reduced.

Well,	I	will	not	get	into	the	first	argument.	This	is	not	our	subject,	but	I	strongly
reject	the	second	one.	When	working	with	a	terminal	client,	your	traffic	entirely
depends	on	what	you	are	doing:

1.	 When	working	with	text/characters-based	applications,	for	example,	some
Enterprise	Resource	Planning	(ERP)	screens,	you	type	in	and	read	data.
When	working	with	the	terminal	client,	you	will	connect	to	the	terminal
server	that	will	connect	to	the	database	server.	Depending	on	the	database
application	you	are	working	with,	the	terminal	server	can	improve
performance	significantly	or	does	not	improve	it	at	all.	We	will	discuss	this
in	the	database	section.	Here,	you	can	expect	a	load	of	tens	to	hundreds
Kbps.

2.	 In	cases	where	you	are	working	with	regular	office	documents	such	as
Word,	PowerPoint,	and	so	on,	it	entirely	depends	on	what	you	are	doing.
Working	with	a	simple	Word	document	will	require	tens	to	hundreds	of
Kbps.	Working	with	PowerPoint	will	require	hundreds	Kbps	to	several
Mbps,	and	when	you	present	the	PowerPoint	file	with	full	screen	(function
F5)	the	throughput	can	jump	up	to	8	to	10	Mbps.

3.	 Browsing	the	Internet	will	take	between	hundreds	of	Kbps	to	several	Mbps,
depending	on	what	you	are	doing.	High	resolution	movies	over	terminal
server	to	the	Internet—well,	just	don't	do	it.

Before	implementing	any	terminal	environment,	test	it.	I	once	had	a	software
house	that	wanted	their	logo	(at	the	top-right	corner	of	the	user	window)	to	be
very	clear	and	striking.	They	refreshed	it	10	times	a	second,	which	caused	the	2
Mbps	communication	line	to	be	blocked.	You	never	know	what	you	don't	test.

Analyzing	problems	in	the	NetBIOS
protocols
Network	Basic	Input/Output	System	(NetBIOS)	is	a	set	of	protocols
developed	in	the	early	1980s	for	LAN	communications.	A	few	years	later,	it	was
adopted	by	Microsoft	for	their	networking	over	the	LAN,	and	then	it	was
migrated	for	working	over	TCP/IP	(NetBIOS	over	TCP/IP,	RFCs	1001,	and
1002).

In	today's	networks,	NetBIOS	provides	three	services:

Name	service	(port	137)	for	name	registration	and	name	to	IP	address
resolution.
Datagram	distribution	service	(port	138)	for	service	announcements	by
clients	and	servers.
Session	service	(port	139)	for	session	negotiation	between	hosts.	This	is
used	for	accessing	files,	open	directories	and	so	on.

In	this	chapter,	we	will	get	into	some	common	problems	with	the	NetBIOS	suite
of	protocols,	and	we	will	learn	how	to	try	and	solve	them.	Since	the	NetBIOS	set
of	protocols	is	quite	complicated,	and	there	are	hundreds	of	scenarios	of	things
that	might	go	wrong,	we	will	try	to	provide	some	guidelines	for	how	to	look	for
common	problems	and	what	might	go	wrong.

Getting	ready
NetBIOS	protocols	work	in	the	Windows	environments,	along	with	MAC	and
Linux	machines	communicating	with	Windows.	When	facing	problems	such	as
instability,	slow	response	times,	disconnections,	and	so	on	in	these	environments
NetBIOS	issues	can	be	one	of	the	reasons	for	it.	When	facing	these	problems,
the	tool	for	solving	them	is	Wireshark.	It	will	show	you	what	runs	over	the
network,	and	Windows	tools	will	show	you	what	runs	in	the	clients	and	servers.

How	to	do	it...
To	try	and	find	out	what	a	problem	could	be,	connect	your	laptop	with	the
Wireshark	to	the	network,	and	port	mirror	the	suspected	clients	or	server	as
described	below.	In	the	following	sections,	we	will	see	several	scenarios	for
several	problems.

There	are	many	predefined	filters	that	are	used	with	NetBIOS.	You	can	find
them	by	clicking	on	the	Expression	button,	which	is	on	the	right-hand	side	of
the	Display	Filters	window.

1.	 For	general	NetBIOS	commands,	they	start	with	netbios.
2.	 For	NetBIOS	name	service,	they	start	with	nbns.
3.	 For	NetBIOS	datagram	service,	they	start	with	nbds.
4.	 For	NetBIOS	session	service,	they	start	with	nbss.
5.	 For	SMB,	they	start	with	smb.

General	tests

First,	take	a	general	look	at	the	network.	Then,	look	for	suspicious	patterns:

1.	 Connect	Wireshark	to	the	network.	Each	one	of	the	ports	will	do	fine,	as
long	as	you	are	on	the	same	broadcast	domain	with	the	clients	that	are
having	the	problems.

2.	 Configure	the	display	filter	nbns.flags.response	==	0.	It	will	give	you
the	NBNS	requests.	You	will	see	many	broadcasts,	as	shown	in	the
following	screenshot:	

As	you	saw	in	the	previous	screenshot,	in	the	capture	file	you	will	see	the
following:

NBNS	registration	packets	(1):	In	the	examples,	there	are	registrations
with	the	names	WORKGROUP	and	ETTI.	NBNS	server	will	accept	or	reject	the
name	registration	by	issuing	a	positive	or	negative	Name	Registration
Response	to	the	requesting	node.	If	none	are	received,	the	requesting	node
will	assume	it	is	OK.
NBNS	Queries	(2,	3	and	4):	Queries	are	sent	for	the	name	specified.	If
there	is	an	NBNS	server	(this	is	the	domain	controller),	you	will	see	one	of
the	following	responses:
requested	name	does	not	exist	(code	3)
no	error	(code	0)

Make	sure	there	is	no	registration	or	any	other	requests	coming	from	addresses
that	start	with	169.254	(5).	These	are	Automatic	Private	IP	Addressing
(APIPA)	addresses.	This	actually	means	that	the	PC	is	configured	to	accept
addresses	automatically	(by	DHCP)	and	it	has	not	received	one.
There	are	many	announcement	packets	as	well.	These	will	be	broadcast	on

UDP	port	138.	Here,	you	will	see	that	every	station	announces	its	capabilities:
workstation,	server,	print	server,	and	so	on.	For	example,	you	can	see	here	that:

172.16.100.10	name	is	FILE-SRV,	and	it	functions	like	workstation,	server,
and	SQL	server	(1)
172.16.100.204	name	is	GOLF,	and	it	functions	like	workstation,	server,	and
a	print	queue	server	(2)

There	are	some	worms	and	viruses	that	are	using	the	NetBIOS	name	service	to
scan	the	network.	Look	for	unusual	patterns	like	massive	scanning,	high
broadcast	rate,	and	so	on.
Verify	that	you	don't	have	too	many	broadcasts.	Five	to	10

broadcast/minute/device	are	reasonable.	More	than	this	usually	means	problems.

Tip

There	are	hundreds	of	message	scenarios	you	can	see	here.	Use	the	Wireshark
Expert	system,	Google,	and	common	sense	to	discover	the	problem.

Specific	issues

Here	are	some	issues	and	problems	you	might	see	during	usual	operation:

1.	 Using	Server	Message	Block	(SMB),	which	is	the	protocol	that	is	used	for
browsing	directories,	copying	files,	and	other	operations	over	the	network,
you	might	see	some	error	codes.	The	full	list	of	error	codes	is	listed	in
Microsoft	MSDN:	http://msdn.microsoft.com/en-us/library/ee441884.aspx.

2.	 Code	0	means	STATUS_OK,	when	everything	works	fine	and	there	is	no
problem.	Any	other	code	should	be	examined.

3.	 In	the	following	example,	you	can	see	a	message	STATUS_ACCESS_DENIED.
This	is	one	of	many	error	codes	you	should	look	for.	In	the	example,	access
to	\\NAS01\HOMEDIR	on	a	server	with	an	IP	address	that	starts	with	203	(full
address	hidden	due	to	security	reasons)	was	denied.

4.	 When	you	try	to	see	the	home	directory	by	browsing	it,	Windows	will
usually	show	you	an	ACCESS	DENIED	message	or	something	similar.
The	problem	can	happen	when	an	application	is	trying	to	access	a	directory,
and	cannot	get	access	to	it.	In	this	case,	you	can	see	an	ACCESS	DENIED
message,	a	software	message	of	communication	problem,	or	any	other
message	the	programmers	have	made	for	you.	Using	Wireshark	in	this	case
will	get	you	to	the	exact	error	and	Google	will	show	you	the	reason	for	it.

http://msdn.microsoft.com/en-us/library/ee441884.aspx

5.	 In	the	next	example,	we	see	a	status	STATUS_MORE_PROCESSING_REQUIRED
(2)	that	happened	during	session	setup	(1)	on	\\NAS01\SAMIM	(3).

Looking	at	the	link	mentioned	earlier,	we	see	that	this	is	because	on
the	designated	named	pipe,	there	is	more	data	available	to	read.
A	short	Google	lookup	tells	us	that	it	might	indicate	a	credentials
problem.	Check	with	your	system	administrator.

6.	 To	see	all	SMB	error	messages,	type	the	filter	smb.nt_status	!=	0x0.	You
will	get	all	error	responses,	as	shown	in	the	following	screenshot:	

How	it	works...
As	we	saw	in	the	introduction	to	this	section,	NetBIOS	provides	three	services:
Net	BIOS	Name	Service	(NBNS),	NetBIOS	Datagram	Distribution	Service
(NBDS),	and	NetBIOS	Session	Service	(NBSS).

NBNS	is	the	service	that	registers	and	translates	names	to	IP	addresses.
Registration	happens	when	a	client	registers	its	name	in	the	domain	controller.
The	client	sends	a	registration	request,	and	then	gets	a	response	whether	the
registration	is	OK	or	the	name	is	registered	with	another	device.	Microsoft
environment	was	implemented	with	WINS	when	most	networks	did	not	use	it,
and	later	it	was	replaced	by	DNS.	It	works	over	UDP	port	137.

NBDS	is	used	for	service	announcements	by	clients	and	servers.	With	this
service,	devices	on	the	network	announce	their	names,	services	that	they	can
provide	to	other	devices	on	the	networks,	and	how	to	connect	to	these	services.	It
works	over	UDP	port	138.

NBSS	is	used	to	establish	sessions	between	hosts,	open	or	save	files,	and	execute
remote	files	and	other	sessions	over	the	network.	It	works	over	TCP	port	139.

There	are	additional	protocols	such	as	Server	Message	Block	(SMB)	that	run
over	NBSS	for	transaction	operations	and	over	NBDS	for	service	announcement,
SPOOLS	for	printer	requests,	and	several	others.	To	get	to	the	details	of
NetBIOS	is	beyond	the	scope	of	this	book.	In	the	case	that	you	are	required	to
troubleshoot	NetBIOS	protocols,	follow	the	instructions	in	this	section—pay
special	attention	to	error	messages	and	notes.

There's	more…
In	this	section,	I	would	like	to	show	some	examples	to	get	a	better	understanding
of	the	NetBIOS	protocols.

Example	1	–	application	freezing

In	the	following	screenshot,	we	see	the	reason	for	an	application	freeze:	

	

In	the	example,	we	make	the	following	observations:

1.	 A	client	with	IP	address	that	starts	with	203	is	trying	to	connect	to
\\NAS01\SAMIM	on	a	server	with	an	IP	address	10.1.70.95,	and	gets	back	a
STATUS_ACCESS_DENIED	error.

2.	 The	client	logs	off	and	the	server	confirms	it.
3.	 Since	the	applications	waits,	TCP	is	holding	the	connection	with	keep-alive

messages.
4.	 After	a	while,	the	client	sends	disconnect	requested	that	is	approved	by	the

server.
5.	 The	application	waits	and	TCP	maintains	the	connection	with	keep-alives.
6.	 TCP	closes	the	connection	with	RST	(Reset).

What	the	customer	saw	here	was	an	application	freeze.

Example	2	–	broadcast	storm	caused	by	SMB

In	one	of	my	client's	networks,	I	got	an	urgent	call	that	a	remote	office	was
disconnected	from	the	HQ.	Some	network	details	are	as	follows:

The	remote	office	addresses	are	on	subnet	172.30.121.0/24,	with	a	default
gateway	172.30.121.254.
The	HQ	addresses	are	on	subnet	172.30.0.0/24.	The	connections	between
the	remote	offices	and	the	centre	are	with	L3	IP-VPNs	over	MPLS	network.

To	solve	the	problem,	I	did	the	following:

1.	 I	tried	to	ping	the	servers	in	the	HQ.	I	got	no	response.
2.	 I	called	the	service	provider	that	provides	the	lines	to	the	centre,	and	they

said	that	on	their	monitoring	system	they	don't	see	any	load	on	the	line.
3.	 I	pinged	the	local	router,	172.30.121.254,	and	got	no	response.	The

meaning	is	that	PCs	on	the	LAN	couldn't	get	to	their	local	router,	which	is
the	default	gateway.

4.	 I	connected	a	Wireshark	with	port	mirror	to	the	router	port,	and	I	saw
something	like	the	following	screenshot:	

	
I	saw	that	a	huge	amount	of	packets	are	generated	within	microseconds	(1)	by

a	host	with	IP	address	172.30.121.1.	The	packets	are	broadcast	(3),	and	the
service	that	generated	them	is	Write	Mail	Slot	(5),	which	is	sent	by	the	SMB
Mailslot	protocol	(4).
To	get	the	picture	of	the	number	of	packets,	I	used	the	IO	Graphs	feature.	I	got

5000	packets	per	second,	that	generated	10	Mbps	that	block	the	poor	old	router
port	(changing	the	router	port	to	100	Mbps	or	1	Gbps	wouldn't	help.	It	would
have	been	blocked	too).

When	I	didn't	find	anything	about	it	on	Google	or	Microsoft,	I	started	to	stop
services	that	I	don't	know,	keeping	track	of	what	happened	with	the	broadcast.
Eventually,	the	service	that	caused	the	problem	was	called	LS3Bcast.exe.	I
stopped	it,	made	sure	it	didn't	come	back	and	that	was	it.

	

Analyzing	database	traffic	and
common	problems
Some	of	you	may	wonder	why	I	have	added	this	section	here.	After	all,
databases	are	considered	to	be	a	completely	different	branch	in	the	IT
environment.	There	are	databases	and	applications	on	one	side	and	the	network
and	infrastructure	on	the	other	side.	It	is	correct	since	we	are	not	supposed	to
debug	databases;	there	are	DBAs	for	this.	But	through	the	information	that	runs
over	the	network,	we	can	see	some	issues	that	can	help	the	DBAs	with	solving
the	problem.

In	most	cases,	the	IT	staff	will	come	to	us	first	because	people	blame	the
network	for	everything.	We	will	have	to	make	sure	that	the	problems	are	not
coming	from	the	network	and	that's	it.	In	a	minority	of	the	cases,	we	will	see
some	details	on	the	capture	file	that	can	help	the	DBAs	with	what	they	are	doing.

Getting	ready
When	the	IT	team	come	to	us	complaining	about	the	"slow	network",	there	are
some	things	to	do	just	to	verify	that	it	is	not	the	case.	Follow	the	instructions	in
the	following	section	to	make	sure	we	avoid	the	"slow	network"	issue.

How	to	do	it...
In	the	case	of	database	problems,	follow	these	steps:

1.	 When	you	get	complaints	about	the	"slow	network	responses"	start	asking
these	questions:

Is	the	problem	local	or	global?	Does	it	occur	only	in	the	remote
offices,	or	also	in	the	center?	When	the	problem	occurs	in	the	entire
network,	it	is	not	a	WAN	bandwidth	issue.
Does	it	happen	the	same	for	all	clients?	If	not,	there	might	be	a
specific	problem	that	happens	only	with	some	users	because	only	these
users	are	running	a	specific	application	that	causes	the	problem.
Is	the	communication	line	between	the	clients	and	the	server	loaded?
What	is	the	application	that	loads	them?
Do	all	applications	work	slowly,	or	is	it	only	the	application	that	works
with	the	specific	database?	Maybe	some	PCs	are	old	and	tired,	or	is	it
a	server	that	runs	out	of	resources?

When	we	are	done	with	the	questionnaire,	let's	start	our	work:
1.	 Open	Wireshark	and	start	capturing	packets.	You	can	configure	port	mirror

to	a	specific	PC,	to	the	server,	to	a	VLAN,	or	to	a	router	that	connects	to	a
remote	office	in	which	you	have	the	clients.

2.	 Look	at	TCP	events	(expert	info).	Do	they	happen	on	the	entire
communication	link,	on	specific	IP	address/addresses,	or	on	specific	TCP
port	number/numbers?	This	will	help	you	isolate	the	problem	and	verify
whether	it	is	on	a	specific	link,	server,	or	application.

Tip

When	measuring	traffic	on	a	connection	to	the	Internet,	you	will	get	many
retransmissions	and	duplicate	ACKs	to	websites,	mail	servers,	and	so	on.
This	is	the	Internet.	In	an	organization,	you	should	expect	0.1	to	0.5	percent
retransmissions.	When	connecting	to	the	Internet,	you	can	expect	much
higher	numbers.

If	you	see	problems	in	the	network,	solve	them	as	we	learned	in	previous
chapters.	But,	there	are	some	network	issues	that	can	influence	database
behavior.	In	the	following	example,	we	see	the	behavior	of	a	client	that	works
with	the	server	over	a	communication	line	with	a	roundtrip	delay	of	35	to	40	ms.

1.	 We	are	looking	at	the	TCP	stream	number	8	(1),	and	the	connection	started
with	TCP	SYN/SYN-ACK/ACK.	I've	set	this	as	a	reference	(2).	We	can	see
that	the	entire	connection	took	371	packets	(3).

2.	 The	connection	continues,	and	we	see	time	intervals	of	around	35	ms
between	DB	requests	and	responses.

3.	 Since	we	have	371	packets	travelling	back	and	forth,	371*35	ms	gives	us
around	13	seconds.	Add	to	this	some	retransmissions	that	might	happen	and
some	inefficiencies,	and	this	leads	to	a	user	waiting	for	10	to	15	seconds
and	more	for	a	database	query.

4.	 In	this	case,	you	should	consult	with	the	DBA	on	how	to	significantly
reduce	the	number	of	packets	that	run	over	the	network;	or	you	can	move	to
another	way	of	access,	for	example,	terminal	server	or	web	access.

Another	problem	that	can	happen	is	that	you	will	have	a	software	issue	that
will	reflect	in	the	capture	file.	If	you	have	a	look	at	the	following	screenshot,	you
will	see	that	there	are	five	retransmissions	(1),	and	then	a	new	connection	is
opened	from	the	client	side	(3).	It	looks	like	a	TCP	problem	but	it	occurs	only	in
a	specific	window	in	the	software.	It	is	simply	a	software	procedure	that	stopped
processing,	and	this	stopped	the	TCP	from	responding	to	the	client	(2).

How	it	works...
Well,	how	databases	work	was	always	a	miracle	to	me.	Our	task	is	to	find	how
they	influence	the	network,	and	this	is	what	we've	learned	in	this	section.

There's	more...
When	you	right-click	on	one	of	the	packets	in	the	database	client	to	the	server
session,	a	window	with	the	conversation	will	open.	It	can	be	helpful	to	the	DBA
to	see	what	is	running	over	the	network.

When	you	are	facing	delay	problems,	for	example,	when	working	over	cellular
lines	over	the	Internet	or	over	international	connections,	the	database	client	to
the	server	will	not	always	be	efficient	enough.	You	might	need	to	move	to	web
or	terminal	access	to	the	database.

An	important	issue	is	how	the	database	works.	If	the	client	is	accessing	the
database	server,	and	the	database	server	is	using	files	shared	from	another	server,
it	can	be	that	the	client-server	works	great;	but	the	problems	come	from	the
database	server	to	the	shared	files	on	the	file	server.	Make	sure	you	that	know	all
these	dependencies	before	starting	with	your	tests.

And	most	importantly,	make	sure	you	have	very	professional	DBAs	in	your
friends.	One	day	you	will	need	them.

Chapter	12.	SIP,	Multimedia,	and	IP
Telephony
In	this	chapter,	we	will	learn	how	to	use	Wireshark	in	order	to	resolve	and
troubleshoot	IP	telephony,	voice	and	video	calls,	video	streams,	and	other	types
of	multimedia	sessions.	In	this	chapter	we	have	the	following	recipes:

Using	Wireshark's	features	for	telephony	and	multimedia	analysis
Analyzing	SIP	connectivity
Analyzing	RTP/RTCP	connectivity
Troubleshooting	scenarios	for	video	and	surveillance	applications
Troubleshooting	scenarios	for	IPTV	applications
Troubleshooting	scenarios	for	video-conferencing	applications
Troubleshooting	RTSP

Introduction
Various	types	of	multimedia	applications	take	up	a	significant	part	of	modern
communication	networks.	Among	these	applications,	we	have	telephony,	video
conferencing,	surveillance	systems,	distance-learning	systems,	and	many	more.

In	multimedia	applications,	the	requirements	from	the	network	are	different	from
the	requirements	in	other	enterprise	applications.	While	applications	such	as
HTTP,	e-mail,	and	file	sharing	require	high	bandwidth,	a	telephone	call,	for
example,	requires	less	than	100	Kbps,	but	is	sensitive	to	delays,	and	very
sensitive	to	jitter	(delay	variations).	While	most	applications	require	high
downstream	to	clients	in	remote	offices,	surveillance	systems	require	the
upstream	direction	as	they	are	watched	from	monitors	in	the	HQ,	so	the	monitors
actually	download	the	video	from	the	remote	site.

In	this	chapter,	we	will	focus	on	these	voice,	video,	and	multimedia	applications,
how	they	behave	over	network	connections,	and	how	to	use	Wireshark	to
troubleshoot	problems	when	they	don't	work	properly.

In	this	chapter,	we	will	focus	on	Session	Initiation	Protocol	(SIP),	Real	Time
Protocol	/	Real-time	Transport	Control	Protocol	(RTP/RTCP),	Real	Time
Streaming	Protocol	(RTSP),	and	other	common	multimedia	protocols.

We	will	start	this	chapter	by	presenting	the	available	tools	that	Wireshark
provides	us	for	troubleshooting	voice	and	multimedia	sessions.	We	will	focus	on
how	to	resolve	SIP	problems	and	how	to	troubleshoot	RTP/RTCP	sessions,	then
we	will	learn	how	to	troubleshoot	video	systems,	including	video	conferencing
and	surveillance	systems.

Using	Wireshark's	features	for
telephony	and	multimedia	analysis
First,	let's	see	what	tools	are	provided	by	Wireshark	for	monitoring	voice,	video,
and	multimedia.

Getting	ready
While	facing	problems	with	voice	calls,	video-conference	calls,	or	other
multimedia	sessions,	connect	your	laptop	with	Wireshark	and	port	mirror	one	of
the	following	devices	as	shown	in	the	following	diagram:	

	

Follow	these	steps	to	use	Wireshark's	features	for	telephony	and	multimedia
analysis:

1.	 Monitor	the	local	or	remote	clients	(1)	in	cases	where	you	suspect	a	specific
client	problem.

2.	 Monitor	the	local	or	remote	IP	PBX	system	(2)	when	you	suspect	a	central
problem	that	influences	the	entire	IP	Telephony	network.

3.	 Monitor	the	connections	to	the	router	(3	and	4)	while	suspecting	an
interoffice	connectivity	problem.

4.	 Monitor	the	firewall	on	the	LAN	port	(5)	or	on	the	connection	to	the	service
provider	(6).	This	connection	will	usually	be	over	the	Internet,	but	can	also
be	on	a	direct	line	to	the	provider.

How	to	do	it...
In	the	Wireshark	window,	open	the	Telephony	menu,	as	shown	in	the	following
screenshot:	

For	telephony	networks,	use	the	following	menus:

1.	 To	view	RTP	information,	navigate	to	RTP	|	Show	All	Streams	as	shown
in	the	following	screenshot:	

The	following	window	will	open:	

In	the	RTP	Streams	window,	you	will	see	the	following	details:
The	source	IP	address	and	UDP	port
The	destination	IP	address	and	UDP	port
Synchronization	Source	(SSRC),	which	is	an	RTP	stream	identifier
RTP	payload	type	(usually	codec	type)
Stream	data,	which	is	the	total	amount	of	captured	packets,	packet	loss,
maximum	time	between	packets,	maximum,	and	mean	jitter
Pb?	that	indicates	a	general	problem	in	the	stream

In	the	lower	part	of	the	window,	you	have	the	following	buttons:
Unselect:	When	you	select	a	stream	by	clicking	on	its	line,	the	Unselect
button	will	cancel	the	selection.
Find	reverse:	On	a	voice	or	multimedia	call,	a	reverse	stream	is	the	stream
in	the	opposite	direction	(which	will	be	highlighted	in	light	gray).
Save	as:	This	button	can	be	used	to	save	a	stream	in	the	rtpdump	format.
For	information	about	the	format,	go	to
http://www.cs.columbia.edu/irt/software/rtptools/.
Mark	packets:	not	functioning.
Prepare	filter:	This	prepares	a	display	filter	in	the	display	filter	window.
Copy:	This	option	copies	the	RTP	streams	to	a	text	file.	For	doing	so,	click
on	Copy,	open	a	text	editor,	and	paste	the	content	to	the	text	file.
Analyze:	When	you	click	on	a	stream,	and	then	click	on	the	Analyze
button,	it	opens	the	RTP	Stream	Analyze	window.	The	same	window	can
be	opened	by	clicking	on	an	RTP	packet	and	navigating	to	Telephony	|
RTP	|	Stream	Analysis	from	the	menu.
Close:	Clicking	on	this	button	closes	the	window.

To	view	SIP	information,	navigate	to	Telephony	|	SIP.	Enter	ip	(or	udp	or
sip)	in	the	SIP	Packet	Counter	window	that	opens,	and	the	window	SIP
statistics	with	filter:	ip	will	open	as	shown	in	the	following	screenshot:	

http://www.cs.columbia.edu/irt/software/rtptools/

1.	 In	the	window,	you	will	get	the	following	SIP	statistics:
Number	of	packets	sent	with	SIP	response	codes	(numbered	as	1	in	the
preceding	screenshot)
Total	number	of	each	one	of	the	SIP	methods	(these	are	SIP
commands)	that	were	sent	(numbered	as	2	in	the	preceding	screenshot)
Minimum,	maximum,	and	average	session	setup	times	(numbered	as	3
in	the	preceding	screenshot)

For	RTSP	statistics,	navigate	to	Telephony	|	RTSP	|	Packet	Counter,	write
ip,	rtsp,	or	just	leave	it	blank	in	the	pop	up	that	comes	up,	and	then	click	on
Create	Stat	that	opens	a	window	as	shown	in	the	following	screenshot:	

For	watching	which	telephone	calls	were	captured,	navigate	to	Telephony	|
VoIP	Calls.	A	window	as	shown	in	the	following	screenshot	will	open:	

In	the	VoIP	calls,	you	see	the	following	parameters:
The	start	and	end	time	that	give	the	duration	of	the	call	(numbered	as	1	in
the	preceding	screenshot)
The	IP	address	from	where	the	session	had	started	(numbered	as	2	in	the
preceding	screenshot)
The	SIP	address	from	where	the	session	started	(numbered	as	3	in	the
preceding	screenshot)
The	SIP	address	for	whom	the	session	was	intended	(numbered	as	4	in	the

preceding	screenshot)
The	protocol	of	the	session	(usually	SIP),	the	number	of	protocol	packets,
and	the	session	status	(numbered	as	5	in	the	preceding	screenshot)

How	it	works...
For	transferring	voice,	video,	or	multimedia,	we	need	two	functions	to	be
performed.	The	first	one	is	to	carry	the	media	stream,	which	is	mostly	voice	or
video,	and	the	second	one	is	the	signaling,	which	is	to	establish	and	terminate	the
call,	to	invite	participants	to	the	call,	and	so	on.	Two	protocol	suites	were
proposed	over	the	years	for	the	signaling:

The	ITU-T	suite	of	protocols,	including	H.323	as	an	umbrella	protocol	for
the	suite,	H.225	for	registration	and	address	resolution,	H.245	for	control,
and	some	others.
The	IETF	suite	of	protocols	including	SIP	as	a	signaling	protocol	(RFC
3261	with	later	updates)	and	Session	Description	Protocol	(SDP)	that
describes	the	session	parameters	(RFC	4566).

The	ITU-T	set	of	protocols	phased	out	in	the	last	few	years,	and	the	majority	of
the	applications	today	are	using	the	IETF	set	of	protocols,	on	which	we	will
focus	in	this	chapter.	In	the	following	diagram	you	see	the	structure	of	the	IETF
protocol	suite.

For	the	stream	transfer,	both	suites	use	RTP	and	RTCP	(RFC	3550	with	later
updates).	RTP	is	used	for	the	media	transfer,	and	RTCP	for	controlling	the
quality	of	the	stream.

There	are	several	protocols	for	transferring	multimedia	sessions	over	an	IP-based
network,	as	shown	in	the	following	diagram:

	

SIP	is	used	for	signaling	the	structured	packets	that	are	sent	between	end	clients.
SDP	data	is	carried	by	SIP	messages	for	the	description	of	the	session.	RTSP	is
used	for	controlling	streams,	usually	video	transmissions	(typically	IPTV
streams).

RTP	is	used	for	carrying	the	media.	Above	RTP,	we	have	various	types	of
codec	for	voice	and	video	compression.

RTCP	is	used	for	controlling	the	quality	of	the	stream,	and	RSVP	is	a	protocol
for	establishing	the	quality	of	service	through	the	network.

All	these	protocols	are	carried	by	the	TCP/IP	protocol	suite,	as	shown	in	the
preceding	diagram.	Later,	you	will	find	in	this	chapter	a	detailed	description	for
most	of	them.

There's	more...
SIP	uses	fixed	port	numbers;	therefore,	Wireshark	will	always	refer	to	these
ports	as	an	SIP	session—port	5060	for	SIP	and	port	5061	for	SIP	over	TLS
(which	is	SIP	secured	with	TLS).	The	standard	allows	using	SIP	over	TCP	or
UDP,	but	in	the	majority	of	the	cases,	it	will	be	used	over	UDP.

RTP	and	RTCP,	on	the	other	hand,	do	not	use	standard	fixed	ports.	RTP	uses
even	port	numbers,	and	the	corresponding	RTCP	stream	uses	the	next	higher	odd
port	numbers.	For	example,	if	RTP	uses	port	5004	on	one	end,	and	port	2006	on
the	other,	RTCP	will	use	ports	5005	and	2007	respectively.	This	is	why
Wireshark,	by	default,	will	not	resolve	RTP,	RTCP,	and	such	others,	but	it	will
show	you	UDP	traffic	instead.

To	resolve	it,	you	can	do	the	following:

1.	 Right-click	on	a	packet	in	the	RTP	stream	(which	currently	looks	like	UDP)
and	click	on	Decode	as.	In	the	window	that	opens,	select	RTP.

2.	 You	can	go	to	Edit	|	Preferences,	and	from	the	protocol	list,	choose	RTP.
In	the	RTP	window,	select	Try	to	decode	RTP	outside	of	conversations,
and	in	most	cases,	RTP	will	be	decoded	automatically	in	this	manner.	You
can	do	the	same	for	RTCP.

Analyzing	SIP	connectivity
As	we	learned	in	the	previous	recipe,	SIP	(RFC	3261	and	various	extensions)	is
a	signaling	protocol	that	is	used	for	creating,	modifying,	and	terminating	user
sessions	between	one	or	more	participants.	While	sending	SIP	requests,	the
session	parameters	are	sent	via	SDP	(SDP,	RFC	4566)	which	enable	users	to
agree	on	a	set	of	compatible	media	types	between	them.	When	sessions	are
created,	the	voice	or	video	is	carried	by	RTP	and	optionally	controlled	by	RTCP
(RTCP	is	optional,	and	can	be	used	by	multimedia	applications,	but	it	is	not	a
mandatory	protocol).

SIP	defines	endpoints	as	User	Agents	(UAs),	and	the	process	of	creating	a
session	involves	UA	negotiation	in	order	to	agree	on	a	characterization	of	a
session	that	they	would	like	to	create.	For	additional	services	such	as	locating
session	participants,	registration,	call	forwarding,	and	others,	SIP	defines
network	hosts	called	servers	to	which	UAs	can	send	registrations,	invitations	to
sessions,	and	other	requests.

In	this	recipe,	we	will	discuss	the	signaling	part	of	the	protocol	suite,	which	is
SIP,	and	how	to	use	Wireshark	in	order	to	troubleshoot	signaling	problems,	while
in	the	next	recipe,	we	will	learn	about	RTP	and	RTCP.

Problems	in	voice	and	video	over	IP	can	be	categorized	in	to	two	groups:

Problems	of	call	establishment,	modification,	and	termination:	These
will	be	problems	such	as	instances	when	you	pick	up	the	phone	and	you
don't	hear	a	dial	tone,	you	hear	the	dial	tone	but	cannot	dial	a	number,	you
dial	a	number	but	the	other	side	doesn't	get	the	call,	and	so	on.	These	types
of	problems	are	usually	caused	by	signaling	issues.
Problems	of	quality:	These	are	problems	related	to	quality,	such	as	voice
quality,	disturbances	(like	noise)	during	the	call,	video	freezes,	and	so	on,
which	are	usually	caused	by	networking	problems,	RTP	problems,	or
various	types	of	media	issues.

In	this	recipe,	we	will	discuss	the	first	type,	and	in	the	next	recipe	the	second
type.

Tip

It	is	important	to	note	that	not	all	problems	in	this	area	are	networking	problems,
and	in	many	cases,	they	will	be	a	result	of	bad	configuration	of	the	equipment
(for	example,	telephony	switches	or	end	devices).

Getting	ready
While	facing	problems	of	the	first	type,	in	most	of	the	cases	you	are	having
signaling	problems.	Connect	the	Wireshark	to	the	network,	and	follow	the	steps
in	this	recipe	in	order	to	solve	it.

We	have	two	major	types	of	messages	in	SIP:	methods	and	responses.	Methods
are	commands	initiated	by	one	side	of	the	session,	and	responses	are	generated
as	a	reply.

While	troubleshooting	an	SIP	session,	keep	track	of	the	responses	and	what	they
say.	Only	the	major	types	are	brought	here.

How	to	do	it...
After	you've	connected	Wireshark	to	the	network,	follow	these	steps:

1.	 When	a	UA	desires	to	establish	a	multimedia	session,	it	sends	an	INVITE
method	to	the	remote	UA.	In	the	following	diagram,	you	can	see	an
example	for	a	basic	call	flow.

	
Tip

An	end	device	in	SIP	is	called	User	Agent	(UA).	A	user	agent	can	initiate
or	receive	a	call.	A	UA	can	be	an	IP	phone,	video	camera,	software	client,
or	any	device	or	software	that	participates	in	an	SIP	session.

2.	 In	the	following	screenshot,	you	see	an	example	for	a	telephone	call	flow:	

	

To	see	the	detailed	call	flow,	navigate	to	Statistics	|	Flow	Graph,	and	mark
the	following:

Displayed	packets
General	flow
Standard	source/destination	addresses

The	Graph	Analysis	window	is	shown	for	reference	as	follows:	

	
After	INVITE,	you	should	see	Trying,	Session	Progress,	Ringing,	or	a

combination	of	them	coming	from	the	other	side.
We	can	see	here	how	the	session	progresses	between	the	initiator	on

93.172.121.146	to	the	responder	on	192.168.3.2:
1.	 The	INVITE	method	is	sent	from	the	session	initiator;	this	will	always	be

the	first	packet	that	starts	the	conversation.
2.	 The	responder	answers	with	Trying	(code	100),	Session	progress	(code

183),	and	after	three	seconds	with	Ringing	(code	180).	Then	it	answers
with	OK	(code	200),	meaning	that	the	handset	was	picked	up.

Tip

Not	all	these	messages	should	be	there,	and	in	some	cases,	you	will	see	only
some	of	them,	and	it	is	still	okay.	Later	in	this	chapter,	we	will	see	how	to
find	out	whether	it	is	a	problem	or	just	standard	protocol	behavior.

3.	 The	initiator	sends	ACK,	and	the	session	is	established.

If	an	error	message	is	received	at	this	stage,	the	connection	will	not	be

established.

Tip

Don't	forget	that	SIP	works	over	UDP,	and	since	UDP	does	not	open	any
connection	to	the	other	side	before	sending	the	request,	it	can	be	possible	that	a
request	will	not	arrive	to	the	destination	simply	because	of	a	network-
reachability	problem.	For	this	reason,	when	you	don't	get	a	response,	it	can	be
that	INVITE	simply	didn't	get	to	the	destination	because	of	a	network	problem.

When	there	is	a	telephone	switch	between	the	user	clients,	the	session	will
look	like	the	one	shown	in	the	following	screenshot.	You	will	hear	the	term	IP
telephone	switch,	Call	manager,	IP	PBX,	and	others.	They	all	mean	a	telephony
switch	that	handles	the	signaling	between	devices.	The	SIP	terms	together	make
up	a	Proxy	that	we	will	talk	about	in	the	How	it	works...	section	of	this	recipe.

	
Here	you	see	that	the	switch	has	two	interfaces—the	first	one	on	the	internal

network	(10.179.236.162),	and	the	second	one	on	the	external	network
(212.179.236.162):
1.	 The	client	on	the	left,	10.219.62.150,	sends	an	INVITE	request	to	the

switch	(numbered	as	1	in	the	preceding	screenshot).
2.	 The	switch	replies	by	saying	that	it	is	Trying	(numbered	as	2	in	the

preceding	screenshot).
3.	 The	switch	sends	INVITE	to	the	client	on	the	right	(numbered	as	3	in	the

preceding	screenshot).
4.	 The	client	sends	Trying	(code	100),	and	then	the	session	progresses	(code

183)	to	the	switch	(numbered	as	4	in	the	preceding	screenshot).
5.	 After	a	while,	the	switch	sees	that	the	client	has	not	responded,	and	to

notify	the	initiator,	it	sends	them	code	488,	which	means	invalid	or	not
acceptable,	with	an	explanation	as	to	why	it	was	not	accepted	(numbered	as
5	in	the	preceding	screenshot).

6.	 The	switch	sends	a	Cancel	message	to	the	client	on	the	right	(numbered	as
6	in	the	preceding	screenshot).

To	allocate	problems	in	SIP,	do	the	following:
1.	 Draw	the	network	with	all	of	its	components.
2.	 Check	for	the	error	codes.
3.	 Figure	out	the	reason	for	the	errors.

SIP	error	codes	are	listed	in	the	following	table,	along	with	their	possible
reasons.	Unless	mentioned	otherwise,	codes	are	defined	in	RFC	3261.

1xx	codes	–	provisional/informational

The	1xx	codes	or	provisional/informational	codes	are	those	where	the	received
request	is	still	in	process,	and	the	receiver	notifies	the	sender	about	it.	They	are
described	in	detail	in	the	following	table:

Code Event
Name Reason

100 Trying The	request	has	been	received	and	accepted	by	the	server,	and	an	action	is	being	taken
for	this	call.

180 Ringing The	UA	that	received	the	call	is	alerting	the	end	user.	This	is	the	message	that	is	sent
back	to	the	client	while	doing	so.

181 Call
forward

The	call	is	being	forwarded	to	another	destination.

182 Queued The	called	party	is	temporarily	unavailable,	and	the	server	saves	the	message	for	later
delivery.

183 Session The	session	is	being	handled	by	the	receiving	server.	Additional	details	on	the	call

progress progress	can	be	conveyed	in	the	message	header.

2xx	codes	–	success

The	2xx	codes	or	the	success	codes	indicate	that	the	action	was	successfully
received,	understood,	and	accepted.	They	are	described	in	detail	in	the	following
table:

Code Event
Name Reason

200 Ok The	request	has	been	accepted,	processed,	and	it	succeeded.

202 Accepted The	request	has	been	accepted	for	processing,	but	the	processing	of	it	has	not	been
completed	(RFC	3265).

3xx	codes	–	redirection

The	3xx	codes	indicate	that	a	redirection	action	needs	to	be	taken	in	order	to
complete	the	request.	They	are	described	in	detail	in	the	following	table:

Code Event
Name Reason

300 Multiple
choices

The	address	in	the	request	was	resolved	to	several	choices,	and	the	accepting	server
can	forward	it	to	one	of	them.	The	UA	can	use	the	addresses	in	the	contact	header
field	for	automatic	redirection,	or	confirm	it	with	the	sender	before	redirecting	the
message.

301 Moved
permanently

The	user	could	not	be	located	at	the	address	in	the	Request-URI,	and	the	requesting
client	should	try	at	the	address	provided	in	the	contact	header	field.	The	sender	should
update	its	local	directories	with	the	change.

302 Moved
temporarily

The	requesting	client	should	retry	the	request	at	the	new	address/addresses	provided
in	the	contact	header	field.

305 Use	proxy The	requested	resource	must	be	accessed	through	the	proxy,	whose	address	is	given
by	the	contact	field.

380 Alternative The	call	was	not	successful,	so	the	recipient	sends	this	response	for	alternative

service services	to	be	made	available	on	the	receiver.	These	services	are	described	in	the
message	body.

4xx	codes	–	client	error

The	4xx	codes	or	client	error	indicate	that	the	request	contains	bad	syntax	or
cannot	be	fulfilled	in	this	server.	They	are	described	in	detail	in	the	following
table:

Code Event	Name Reason

400 Bad	request The	request	couldn't	be	processed	due	to	syntax	error.

401 Unauthorized The	request	that	was	received	requires	user	authentication.	Usually	the	client	will
ask	the	user	for	it.

402 Payment
required

This	is	reserved	for	future	use.

403 Forbidden The	server	has	understood	the	request,	but	is	refusing	to	perform	it.	The	client
should	not	try	it	again.

404 Not	found The	server	notifies	the	client	that	the	user	does	not	exist	in	the	domain	specified	in
the	Request	URI.

405 Method	not
allowed

A	method	sent	by	the	client	is	not	allowed	to	be	used	by	it.	The	response	will
include	an	allow	header	field	to	notify	the	sender	which	methods	he	is	allowed	to
use.

406 Not	acceptable The	resource	identified	by	the	request	is	only	capable	of	generating	response
entities	that	have	content	characteristics	not	acceptable	according	to	the	accept
header	field	sent	in	the	request.

407 Proxy
authentication
required

The	client	must	authenticate	with	a	proxy	server.

408 Request
timeout

The	server	couldn't	respond	during	the	expected	time.	The	client	may	send	the
request	again	after	a	while.

410 Gone The	requested	resource	is	no	longer	available	at	the	server,	and	the	forwarding
address	is	not	known.	This	condition	is	considered	to	be	permanent.

413 Request	entity
too	large

The	server	is	refusing	to	process	a	request	because	the	request	entity's	body	is
larger	than	what	the	server	is	able	or	willing	to	process.

414 Request-URI
too	long

The	server	is	refusing	to	service	the	request	because	the	Request	URI	is	longer
than	what	the	server	is	able	or	willing	to	interpret.

415 Unsupported
media	type

The	server	is	refusing	to	process	the	request	because	the	message	body	of	the
request	is	in	a	format	that	is	not	supported	by	the	server.

416 Unsupported
URI	scheme

Request	URI	is	unknown	to	the	server,	and	therefore,	the	server	cannot	process	the
request.

420 Bad	extension The	server	did	not	understand	the	protocol	extension	received	from	the	client.

421 Extension
required

The	UA	that	received	the	request	requires	a	particular	extension	in	order	to	process
it,	but	this	extension	is	not	listed	in	the	supported	header	field	of	the	request.

423 Interval	too
brief

The	server	is	rejecting	the	request	because	the	expiration	time	of	the	resource
refreshed	by	the	request	is	too	short.

424 Bad	location
information

This	response	code	indicates	a	rejection	of	the	request	due	to	its	location	contents.
This	indicates	malformed	or	not	satisfactory	location	information	(RFC6442).

428 Use	Identity
header

It	is	sent	when	a	verifier	receives	an	SIP	request	that	lacks	an	Identity	header	in
order	to	indicate	that	the	request	should	be	re-sent	with	an	Identity	header
(RFC4474).

429 Provide
referrer	identity

This	provides	referrer	identity	(RFC3892).

433 Anonymity
disallowed

This	indicates	that	the	server	refused	to	satisfy	the	request	because	the	requestor
was	anonymous	(RFC5079).

436 Bad	identity
info

This	response	is	used	when	there	is	bad	information	in	the	Identity-Info	header
(RFC4474).

437 Unsupported This	is	used	when	the	verifier	cannot	validate	the	certificate	referenced	by	the	URI

certificate in	the	Identity-Info	header	(RFC4474).

438 Invalid	identity
header

This	is	used	when	the	verifier	(the	receiver	UA)	receives	a	message	with	an
Identity	signature	that	does	not	correspond	to	the	digest-string	calculated	by	the
verifier	(RFC4474).

470 Consent
needed

This	is	the	response	to	a	request	that	contained	a	URI	list	in	which	at	least	one	URI
was	such	that	the	relay	had	no	access	permissions	(RFC5360).

480 Temporarily
unavailable

The	callee's	end	system	was	contacted	successfully,	but	the	callee	is	currently
unavailable.

481 Call/transaction
does	not	exist

The	receiving	UA	received	a	request	that	does	not	match	any	existing	transaction
or	dialog.

482 Loop	detected The	server	has	detected	a	loop.

483 Too	many	hops The	server	received	a	request	that	contains	a	Max-Forwards	header	field	that
equals	zero.

484 Address
incomplete

The	server	received	a	request	with	an	incomplete	Request-URI.

485 Ambiguous The	Request-URI	was	unclear.	The	response	may	contain	a	listing	of	possible
addresses	in	the	Contact	header	fields.

486 Busy	here The	callee's	end	system	was	contacted	successfully,	but	the	callee	is	currently
unable	or	unwilling	to	take	additional	calls	by	this	end	system.

487 Request
terminated

The	request	was	terminated	by	a	BYE	or	CANCEL	request.

488 Not	acceptable
here

Specific	resources	addressed	by	the	Request-URI	are	not	accepted.

491 Request
pending

The	receiving	UA	had	a	pending	request.

493 Undecipherable The	request	contains	an	encrypted	MIME	body,	which	cannot	be	decrypted	by	the
recipient.

5xx	codes	–	server	error

The	5xx	codes	or	server	error	codes	indicate	that	the	server	failed	to	fulfill	an
apparently	valid	request.	They	are	described	in	detail	in	the	following	table:

Code Event	Name Reason

500 Server
internal	error

An	unexpected	condition	prevented	the	server	from	fulfilling	the	request.

501 Not
implemented

The	functionality	that	requested	to	fulfill	the	request	is	not	supported	by	the	server.

502 Bad	gateway A	gateway	or	proxy	received	an	invalid	response	from	the	downstream	server	it
accessed	while	attempting	to	fulfill	the	request.

503 Service
unavailable

The	server	is	temporarily	unable	to	process	the	request	due	to	temporary	overloading
or	maintenance	of	the	server.

504 Server	time
out

The	server	processing	the	request	has	sent	the	request	to	another	server	in	order	to
process	it,	and	the	response	did	not	arrive	on	time.

505 Version	not
supported

The	server	does	not	support	the	SIP	protocol	version	that	is	used	in	the	request.

513 Message	too
large

The	server	was	unable	to	process	the	request	since	the	message	length	is	too	long.

6xx	codes	–	global	failure

The	6xx	codes	or	global	failure	codes	indicate	that	the	request	cannot	be	fulfilled
at	any	server.	They	are	described	in	detail	in	the	following	table:

Code Event	Name Reason

600 Busy
everywhere

The	recipient's	end	system	was	contacted	successfully,	but	the	user	is	busy	and
does	not	wish	to	take	the	call	at	this	moment.

603 Decline The	receiving	UA	was	successfully	contacted,	but	the	user	explicitly	does	not	wish
to	or	cannot	participate.

604 Does	not	exist
anywhere

The	server	has	authoritative	information	that	the	user	indicated	in	the	Request
URI,	which	does	not	exist	anywhere.

606 Not	acceptable The	US	was	contacted	successfully,	but	some	aspects	of	the	session	description
described	by	SDP	were	not	acceptable.

How	it	works...
SIP	is	an	application-layer	control	protocol	that	is	used	to	establish,	maintain,
and	terminate	calls	between	two	or	more	end	nodes.

SIP	defines	two	basic	classes	of	network	entities—clients	and	servers:

A	client	is	an	entity	(or	application)	that	sends	SIP	requests
A	server	is	an	entity	(or	application)	that	responds	to	those	requests

For	connectivity	to	other	network	types,	we	have	gateways.	A	gateway	connects
between	SIP	and	Public	Switched	Telephone	Networks	(PSTN),	or	SIP	and
H.323.

As	illustrated	in	the	following	diagram,	a	client	is	made	of	User	Agent	Client
(UAC)	and	User	Agent	Server	(UAS),	and	each	client	can	initiate	or	respond	to
requests.

	

SIP	servers	can	be	of	various	types:

Proxy	Server:	This	receives	SIP	requests	from	a	user	agent	or	another
proxy	and	forwards	or	proxies	the	request	to	another	location

Redirect	Server:	This	receives	requests	from	a	user	agent	or	proxy,	and
returns	a	redirection	response	(3xx),	indicating	where	the	request	should	be
present
Registrar:	This	receives	SIP	registration	requests	and	updates	the	user
agent	information	to	a	location	service	or	other	database

In	the	following	diagram,	you	see	how	they	all	fit	together:	

	

An	IP	phone	registers	to	the	registrar	(1).	The	registrar	checks	with	the
organization	server	(2),	and	if	it's	all	OK,	it	sends	an	SIP	request	to	the	provider's
proxy	(3).	The	provider's	proxy	checks	with	the	DNS	server	for	the	IP	address	of
the	requested	client's	domain	(4),	and	then	it	forwards	the	requests	to	the
destination	proxy	(5).	The	destination	proxy	sees	that	the	client	is	not	in	its	place
and	checks	with	the	location	server	for	its	location	(6).	When	found,	the	SIP
request	is	forwarded	to	the	destination	client	(7).	The	destination	client	confirms
the	acceptance	of	the	request	to	the	sender	(8).	When	all	is	okay,	an	RTP	session
is	opened	on	the	UDP	ports	described	in	SDP	when	opening	the	session	(9).

The	SIP	message	is	built	as	you	see	in	the	following	diagram:	

	

The	first	part	is	the	Request	line	in	which	we	have:

The	method;	INVITE	in	this	case
The	requested	URI

The	second	part	is	Message	Header,	in	which	we	have:

Call-ID:	This	provides	a	unique	ID	for	the	call
From:	This	indicates	the	initiator	of	the	call
To:	This	indicates	the	destination	of	the	call
CSeq:	This	contains	the	sequence	number,	which	contains	an	integer
followed	by	the	request	method.	Each	successive	request	during	the	call
will	have	a	higher	CSeq	number,	and	the	caller	and	called	parties	each
maintain	their	own	separate	CSeq	counts.
Via:	This	indicates	the	path	taken	by	the	request	so	far	and	indicates	the
path	that	should	be	followed	in	routing	responses.
Contact:	This	contains	one	or	more	SIP	URIs	that	provide	the	other	party
in	the	session	with	information	for	contacting	the	initiating	user

Allow:	This	indicates	which	methods	are	allowed
Supported:	This	indicates	whether	parameters	such	as	timers	are	supported
Max-Forwards:	This	is	the	maximum	number	of	hops	to	pass	to	the
destination
Content-Length:	This	is	the	byte	count	of	the	message	body
Message	Body:	This	contains	information	on	the	codecs	that	are	supported
by	the	sender;	for	example,	timers	supported

There's	more...
When	debugging	a	phone	call,	first	filter	the	call	with	the	Call-ID	parameter.	To
do	so,	you	can	do	one	of	the	following:

Look	for	the	Call-ID	parameter	in	the	Message	Header	field	in	the	SIP
header,	right-click	on	it,	and	select	Apply	as	Filter,	as	illustrated	in	the
following	screenshot
Use	the	VoIP	Calls	feature	from	the	Wireshark	menu	

	

When	debugging	an	SIP	trunk	that	is	signaling	between	IP	PBXs,	try	to	figure
out	whether	there	is	there	a	specific	call	that	doesn't	work	or	whether	all	calls
have	the	same	problem.

To	troubleshoot	VoIP	calls,	the	best	way	is	to	read	the	SIP	messages.	They	will
tell	you	what	to	do.

Analyzing	RTP/RTCP	connectivity
In	the	previous	recipe,	we	talked	about	signaling,	that	is,	SIP	and	RDP.	In	this
recipe,	we	will	see	how	to	use	the	voice	or	video	call	itself	and	see	what	might
go	wrong	with	it.

It	will	always	start	with	a	user	complaining	about	voice	or	video	quality,	low
speech	quality,	noises,	and	so	on.

Also,	don't	forget	that	it	might	look	like	everything	works	fine	in	Wireshark,	but
further	tuning	of	the	IP	PBX	should	be	done	say	to	increase	the	transmit	volume.

Getting	ready
When	facing	problems	on	a	specific	client,	connect	Wireshark	to	the	client	port
with	a	port	mirror.	When	facing	problems	with	all	clients	connected	to	the	same
link,	connect	Wireshark	to	the	link	with	a	port	mirror.

How	to	do	it...
To	locate	performance	problems,	follow	these	steps:

1.	 After	you	connect	Wireshark	with	a	port	mirror,	start	the	capture.
2.	 Make	sure	there	are	calls	running.
3.	 From	the	Telephony	menu,	navigate	to	RTP	|	Show	All	Streams.	This	will

show	you	all	RTP	streams	running	on	the	port	that	you	are	monitoring.
4.	 The	following	window	will	open:	

Parameters	that	are	important	to	watch	are	the	packets	lost,	Max	Delta	(ms),
Max	Jitter	(ms),	and	Mean	Jitter	(ms).

Tip

Delay	values	higher	than	300	ms	(RTT)	and	Jitter	values	higher	than	50	ms	are
considered	to	be	problematic	for	interactive	voice	and	video	over	IP.	Further
discussion	on	this	subject	is	in	the	How	it	works...	section	in	this	recipe.

In	the	case	of	delay,	follow	these	steps	to	locate	the	problem:

1.	 Use	a	simple	ping	test	to	check	the	delay	between	the	two	ends	of	the
network:
1.	 When	you	see	a	high	delay,	check	if	it	is	typical	to	the	communications

line	that	you	are	measuring	(see	a	list	of	typical	delays	in	the	There's
more...	section	in	this	recipe).

2.	 If	it	is	a	typical	delay,	you	don't	have	anything	to	do	here.	Check	with
the	phone	and	switch	providers	for	tuning	solutions	for	their
equipment.

3.	 If	you	have	a	longer	delay	than	expected,	ping	the	two	phones	from
your	laptop	and	check	where	the	delay	came	from.

4.	 When	you	locate	the	link	with	the	higher	delay,	ping	in	a	step-by-step

manner	along	the	link	to	see	where	the	delay	came	from.
5.	 In	parallel,	use	Wireshark	to	check	the	load	on	the	line.	The	delay	can

come	from	there,	and	in	most	of	these	cases,	you	will	have	Jitter
coming	with	it.

2.	 Delay	can	come	from	the	following	sources	as	well:
Congested	link:	Check	the	case	using	Wireshark.
Load	on	a	router:	Use	provider	tools,	SNMP	tools,	or	router	CLI	to
measure	load	on	these	devices	(use	the	provider	manuals).	It	can	be
CPU	load,	memory	load,	and	so	on.
Queuing	delay	on	routers	buffers:	Check	the	vendor	manuals.

In	the	case	of	Jitter,	follow	these	steps	to	locate	the	problem:

1.	 Use	the	same	methodology	as	in	the	delay	measurement	and	try	to	figure
out	where	the	Jitter	comes	from.

2.	 Jitter	can	come	from	several	sources:
Congested	line:	Check	the	line	with	a	ping	command	to	see	if	you
have	any	problems	here
Load	on	a	router	(CPU/memory):	Check	the	vendor	manuals	to	see
how	you	can	monitor	these	parameters

In	the	case	of	packet	loss,	follow	these	steps	to	locate	the	problem:

1.	 Check	using	the	ping	command	to	see	if	there	is	a	packet	loss	across	the
link.

2.	 If	so,	check	the	equipment	along	the	way	to	see	for	packet	losses.
3.	 You	can	also	click	on	a	specific	RTP	packet	in	the	packet	list	window	and

then	navigate	to	RTP	|	Stream	Analysis.	It	will	show	you	the	parameters
on	the	stream	that	the	packet	is	a	part	of.	The	following	window	will	open:	

4.	 In	the	window,	you	will	see	the	following	parameters	on	the	stream	that
you've	opened:

Packet:	This	parameter	denotes	the	number	of	packets	in	the	captured
file.
Sequence:	This	parameter	denotes	the	RTP	sequence	number.
Delta	(ms):	This	is	the	time	difference	between	the	current	and
previous	packet	in	the	stream.
Filtered	Jitter	(ms):	This	parameter	refers	to	the	difference	between
the	real	arrival	time	and	the	RTP	timestamp	parameter.	It	should	be	as
low	as	possible	and	preferably	zero.
Skew	(ms):	This	parameter	denotes	how	early	(or	late)	the	packet	is	in
relation	to	where	it	was	supposed	to	be.	For	example,	if	we	have	a
packet	rate	of	20	packets	per	second,	we	should	have	50	ms	between
packets,	and	if	a	packet	arrives	49	ms	after	the	previous	one,	it	will	be
a	skew	of	-1	ms.
IP	BW	(kbps):	This	parameter	refers	to	the	bandwidth	consumption	at
the	IP	level	that	is	with	all	headers	down	to	layer	3.
Marker:	This	parameter	denotes	whether	the	marker	is	SET	(SET=1,
UNSET=0).	A	marker	indicates	various	phenomena	such	as	end	of
silence	period	and	end	of	video	frame,	and	is	added	by	the	application.
Status:	This	parameter	lets	you	check	whether	the	status	is	OK.

5.	 From	the	Summary	Information	window,	we	can	see	a	maximum	Jitter	of

2.89	ms;	this	is	very	low,	so	we	should	not	expect	any	problems	here.
6.	 Clicking	on	the	Graph	button	in	the	middle	of	the	lower	part	of	the	RTP

Stream	Analysis	window	will	open	the	following	IO	Graph:	

7.	 In	this	case,	we	see	that	the	network	looks	great—the	Jitter	is	less	than
2.500	ms.

8.	 When	we	use	Wireshark	and	it	looks	like	all	the	parameters	measured	in	the
previous	points	are	OK,	the	problem	in	connectivity	is	a	probably
configuration	problem	in	the	equipment	itself.

9.	 You	might	see	some	problems	such	as	wrong	sequences	and	timestamps
(see	the	following	screenshot).	These	errors	usually	occur	due	to	Jitter	and
delay	problems.

How	it	works...
RTP	is	used	in	conjunction	with	RTCP	(both	were	first	standardized	in	RFC
3550).	RTP	is	used	to	carry	the	media	streams	(audio	and	video),	and	RTCP	is
used	to	monitor	transmission	statistics	and	quality	of	service.	While	establishing
a	session,	RTP	uses	even	port	numbers,	whereas	RTCP	uses	the	next
corresponding	odd	port	number	(higher	by	one).

RTP	provides	mechanisms	for	timing	recovery,	loss	detection	and	correction,
payload	and	source	identification,	and	media	synchronization.

RTCP	specifies	reports	that	are	exchanged	between	the	source	and	destination	of
the	session.	Reports	contain	statistics	such	as	the	number	of	RTP-PDUs	sent,	the
number	of	RTP-PDUs	lost,	inter-arrival	Jitter,	and	so	on.	These	reports	can	be
used	by	applications	to	modify	the	sender's	transmission	rates	and	for	diagnostic
purposes.

RTP	principles	of	operation

RTP	lies	over	UDP,	which	lies	over	IP.	In	the	following	diagram,	you	see	the
RTP	packet	structure:

	

The	fields	in	the	header	are	as	follows:

Version	(V):	This	field	indicates	the	RTP	version
Padding	(P):	This	field	indicates	that	the	packet	contains	one	or	more
additional	padding	bytes	at	the	end	that	are	not	part	of	the	payload
Extension	bit	(X):	This	field	indicates	a	fixed	header	that	follows	the
standard	header
CSRC	count	(CC):	This	field	contains	the	number	of	CSRC	fields	that
follow	the	fixed	header
Marker	(M):	This	field	is	used	to	indicate	application	events,	for	example
video	frame	boundaries
Payload	type:	This	field	identifies	the	format	of	the	RTP	payload	to	be
interpreted	by	the	receiving	application
Sequence	number:	This	field	is	incremented	by	one	for	each	RTP	packet
sent.	Used	by	the	receiver	to	detect	packet	losses

Timestamp:	This	field	reflects	the	sampling	rate	of	octets	in	the	RTP	data
stream
Synchronization	source	(SSRC):	This	field	is	the	stream	identifier	that	is
chosen	randomly,	so	that	no	two	synchronization	sources	within	the	same
RTP	session	will	have	the	same	SSRC	identifier
Contributing	source	identifiers	list	(CSRC):	This	field	identifies	the
contributing	sources	(that	is,	the	stream	source)	for	the	payload	contained	in
this	packet

In	the	following	diagram,	you	can	see	how	the	sequence	and	timestamps
mechanisms	work:

	

As	we	can	see	in	the	diagram,	the	sequence	numbers	are	increased	by	one	for
each	RTP	packet	transmitted,	while	timestamps	increase	by	the	time	covered	by
a	packet.	Packet	number	1,	for	example,	will	have	both	set	to	1;	packet	2	will
have	a	sequence	number	of	2	and	a	timestamp	of	12;	it	goes	on	in	this	manner
for	the	other	packets.	The	receiver	will	receive	the	sequence	numbers	that	tell
him	the	order	of	the	packets,	and	timestamps	that	tell	him	the	time	at	which	they
left	the	receiver.	The	receiver	will	use	both	to	play	back	the	received	data.

The	RTCP	principle	of	operation

RTCP	has	several	report	types,	in	which	the	sender	and	receiver	update	each
other	on	the	data	that	was	sent	and	received.	In	the	following	diagram,	you	can
see	an	example	of	this,	in	which	we	see	a	sender	report	that	tells	the	receiver
how	many	packets	and	octets	were	sent,	timestamp	information,	and	other
parameters	that	can	be	used	by	the	receiver.

	

There's	more...
Delay	can	come	from	several	sources:

Coding	delay:	This	is	the	delay	that	comes	from	the	digital	processing	of
the	voice	signals.
Handling	delay	(packetization):	This	delay	is	the	time	that	it	takes	to	build
packets	and	insert	voice	information	into	them.
Serialization	delay:	This	is	the	fixed	delay	that	occurs	when	sending
packets	over	the	communication	line.	This	delay	depends	on	packet	size
and	line	speed.
Typical	delays	(round	trip):	This	is	the	delay	that	you	can	expect	when
pinging	over	a	communication	line	(all	the	following	points	refer	to
unloaded	lines):

Over	a	LAN:	The	delay	is	less	than	1	ms.
Over	a	WAN	connection:	The	delay	is	1-2	ms	in	a	short-range
connection	(up	to	250-300	km	/	150-190	miles)	and	about	15-20	ms	in
long	range	connections	(for	example,	US	coast	to	coast).	In	older
networks	you	can	add	several	tens	of	milliseconds	to	these	numbers.
For	home	connections,	usually	xDSL	or	CaTV:	The	delay	is
somewhere	between	10	and	25	ms.
For	inter-continent	connections:	The	delay	is	somewhere	between
100	and	200	ms.
For	cellular	connections:	The	delay	ranges	from	300	ms	to	600	ms
for	old	2.5G	networks	(GPRS	or	CDMA	1X),	120	to	150	ms	for	3.0G
(UMTS	or	EVDO),	60	to	100	ms	for	HSDPA,	HSUPA,	and	HSPA+,
and	goes	down	to	20	to	50	ms	for	LTE	networks.
For	satellite	communications:	The	delay	is	500	to	600	ms.

Tip

The	delay	over	a	communication	line	is	the	sum	of	the	time	that	it
takes	the	light	signal	to	cross	the	distance	and	time	consumed	by
switching	or	routing	delays	on	the	service	provider	network.	While
technologies	since	the	early	2000s	(for	example,	MPLS	or	Carrier
Ethernet)	are	implemented	fast	switches	and	routers,	technologies
older	than	2000	(such	as	Frame	Relay	or	ATM)	have	slower	switching
times	and	therefore	will	have	higher	delays.

Troubleshooting	scenarios	for	video
and	surveillance	applications
In	the	last	10	to	12	years,	security	and	surveillance	systems	have	taken	on	a
larger	and	more	important	role	in	communications	networks.	The	problems	we
might	see	in	these	types	of	networks	will	usually	start	from	video	freezes	due	to
lack	of	bandwidth	but	can	also	be	much	more	complicated	as	will	be	discussed
in	this	recipe.	In	this	recipe	we	will	discuss	some	of	the	problems	with	these
systems	and	how	to	approach	and	solve	them.

Getting	ready
Usually,	you	will	be	called	to	solve	problems	that	users	experience	when
watching	security	cameras.	In	this	case,	you	can	port	mirror	the	specific	camera
(1),	the	communication	line	in	the	remote	site	(2),	and	a	camera	server	(3),	or
you	can	monitor	the	central	line	with	a	filter	to	the	remote	network	(4).

How	to	do	it...
To	identify	problems	in	this	network,	follow	these	steps:

1.	 First,	if	possible,	port	mirror	a	connection	between	the	viewer	and	a	locally
connected	camera	(over	the	LAN).	When	doing	so,	you	will	be	able	to	note
the	required	bandwidth	for	every	picture	resolution	you	try.

Tip

When	watching	a	video,	the	bandwidth	can	start	at	128	Kbps	for	a	very
basic	black-and-white	movie	at	a	low	resolution,	average	around	0.5	to	1.0
mbps	for	a	black-and-white	or	colored	video	stream	at	a	reasonable
resolution,	and	go	up	to	several	megabits	per	second	for	high	definition
streaming	(usually	at	6	to	8	mbps).

2.	 As	a	basic—make	sure	your	bandwidth	is	sufficient.
When	viewing	freezes,	use	IO	graphs	to	monitor	the	bandwidth.	Make
sure	you	have	enough	bandwidth	and	the	line	is	not	completely	loaded.
To	make	sure	you	are	watching	only	the	bandwidth	consumed	by	the
camera	or	camera	server,	configure	a	filter	to	its	IP	address.

Tip

Video	streaming	can	be	transferred	over	UDP	and	RTP	or	over	TCP.
UDP	is	mostly	used	for	interactive	applications,	while	TCP	is	mostly
used	for	watching	remote	cameras.

3.	 Make	sure	you	don't	have	any	packet	losses	or	significant	delays	or	Jitter.
For	packet	losses,	log	in	to	the	communications	equipment	or	use
SNMP
For	delay	and	Jitter,	you	can	use	the	ping	command	or	graphical
utilities	(many	of	them	are	free,	for	example,	from	Colasoft)

4.	 While	monitoring	a	remote	camera	feed,	if	you	have	short	freezes,	navigate
to	Statistics	|	TCP	Stream	Graph	|	Time	Sequence	(Stevens).	Make	sure
all	I	and	P	frames	are	received	at	constant	intervals.

	
5.	 The	problem	here	is	that	there	were	cameras	in	the	customer	sites	that

transmitted	the	video	to	a	central	server	and	the	central	server	transmits	it	to
the	monitors.	What	we	see	in	the	preceding	graph	is	the	server	delayed
some	of	the	p-frames	and	that	was	the	reason	for	the	short	freezes	in	that
case.	It	turned	out	to	be	a	software	problem	on	the	server.

6.	 When	trying	to	log	in	to	a	camera	server,	several	ports	may	be	in	use	and
you	may	not	get	the	picture;	or	it	may	so	happen	that	you	get	the	picture	but
something	else	does	not	appear.	To	verify	that	all	TCP	port	numbers	are
open,	you	can	do	this:

Look	at	the	firewall	(if	there	is	one	between	you	and	the	camera
server)	if	connections	were	blocked
In	Wireshark,	make	sure	you	don't	get	any	triple	SYN,	which	indicates
that	something	is	blocking	your	access	to	the	server

In	the	following	screenshot,	you	see	how	the	HTTP	session	(1)	is	running
between	the	internal	office	address	10.0.0.3	and	the	external	address	of	the	web
camera	82.82.182.182	(don't	use	these;	they	are	just	sample	values).	In	the	line
2614,	you	see	a	SYN	packet	is	sent	from	10.0.0.3	to	82.82.182.182;	this	packet
is	blocked	in	packet	2615	via	the	TCP	RST	(reset)	PDU	(2).	The	same	event

occurs	twice	more	(3	and	4).	The	fact	that	you	see	one	established	connection
does	not	mean	that	there	are	no	other	connections	being	attempted.

	
In	this	case,	the	HTTP	connection	had	connectivity	to	the	web	server.	To	log

in,	another	connection	was	opened.	Since	the	log	in	connection	was	blocked,	it
was	possible	to	see	the	camera	server	but	not	to	log	in	to	it	and	watch	the	video.

How	it	works...
Video	streams	are	made	of	I-frames	(Intra-coded	frames),	P-frames	(Predicted
frames),	and	B-frames	(Bi-predictive	frames).	I-frames	are	frames	that	contain
the	full	picture,	while	P-frames	contain	changes	from	the	previous	one.	There	are
also	B-frames,	which	also	use	prediction	mechanism	for	the	next	frame.

In	TCP,	each	video	frame,	I,	P,	or	B,	is	divided	between	several	TCP	packets;
therefore,	when	you	have	TCP	problems	(retransmissions	and	others)	it	can
directly	influence	the	video	stream.

There's	more...
The	quality	of	video	transmission	depends	on	the	codec	that	you	are	using,
number	of	frames	per	second	that	are	transmitted,	time	interval	between	frames,
and	more	parameters	that	can	be	configured	in	the	camera	or	on	the	camera
server.	Make	sure	you've	set	all	parameters	correctly	to	get	a	good	picture.

Troubleshooting	scenarios	for	IPTV
applications
IPTV	applications	have	become	more	and	more	popular	over	the	last	few	years,
while	more	and	more	TV	stations	are	moving	to	the	Internet.	E-learning
applications	are	also	more	popular	along	with	various	types	of	other
applications.

Basically,	IPTV	applications	use	TCP,	and	the	problems	you	will	face	are	mostly
TCP	problems,	such	as	retransmissions.	In	this	recipe	we	will	see	some
examples.

Getting	ready
When	getting	complaints	about	quality	of	video,	freezes,	and	so	on,	connect	the
instance	of	Wireshark	that	has	a	port	mirror	to	the	device	or	the	link	that
connects	you	to	the	network.

How	to	do	it...
Start	the	capture	and	go	through	these	steps:

1.	 Open	the	IO	graph	and	verify	that	you	have	buffering	type	of	traffic,	as
illustrated	in	the	following	screenshot:	

If	you	see	that	the	line	is	blocked	at	the	top,	check	your	bandwidth	to	the
Internet	and	tune	the	viewer	accordingly	(it's	usually	done	automatically).
Check	for	TCP	retransmissions,	duplicate	ACKs,	and	TCP	window	problems,

and	if	you	find	any,	go	through	it	to	find	what	is	disturbing	the	transmission.

How	it	works...
From	the	network	point	of	view,	IPTV	is	not	more	than	a	simple	application	that
runs	over	a	TCP	connection.

There's	more...
When	troubleshooting	problems	on	it,	go	through	the	regular	TCP
troubleshooting	procedures	described	in	Chapter	9,	UDP/TCP	Analysis.

Troubleshooting	scenarios	for	video
conferencing	applications
Video	conferencing	uses	the	same	protocols	as	standard	telephony,	but	there	is	a
difference:	while	in	telephony	we	have	one	stream	of	data	in	each	direction,	we
have	a	stream	of	data	and	a	stream	of	video	in	video	conferencing.	When	you
capture	data	on	the	end	device,	you	will	see	four	streams	of	data:	two	streams
that	you	send	to	the	other	side	and	two	streams	of	data	that	are	sent	back	to	you.

Another	difference	is	that	some	video	conference	applications	are	still	using	the
H.323	protocol	suite,	so	instead	of	troubleshooting	SIP	problems,	you	will	have
to	troubleshoot	H.225	and	H.245	connectivity	issues.	Due	to	the	fact	that	most
applications	use	SIP	and	the	IETF	protocol	stack,	we	will	focus	on	them	only.

Getting	ready
To	troubleshoot	a	problem	in	your	video	conference	system,	connect	the	instance
of	Wireshark	with	port	mirror	to	the	device	or	to	the	link	to	the	devices	that	are
functioning	badly.

How	to	do	it...
What	you	will	get	for	every	conference	will	be	as	in	the	following	screenshot:	

1.	 As	you	can	see	in	the	screenshot,	there	are	two	streams	of	data	in	each
direction.

2.	 On	one	of	them	(the	first	one),	we	see	massive	degradation	in	performance.
3.	 To	focus	on	it,	click	on	the	stream,	and	then	click	on	Analyze.
4.	 The	following	window	will	open:	

In	the	preceding	screenshot,	you	see	that	there	are	many	errors,	the	bandwidth
is	unstable,	and	there	are	many	error	statuses:

Incorrect	timestamp	(1)	and	wrong	sequence	number	(2)	are	caused	by	a
communication	line	with	high	Jitter
Payload	change	(3)	occurs	when	the	system	on	the	sender's	side	changes	the
codec	to	a	better	one	to	fit	into	the	channel

There	was	a	problem	here	simply	because	this	was	a	video	conference	call
over	an	unstable	cellular	connection.

Troubleshooting	RTSP
RTSP	is	an	application-layer	control	protocol	that	is	used	for	the	control	of	a
single	or	multiple	time-synchronized	streams	of	continuous	media	such	as	audio
and	video.	The	purpose	of	RTSP	is	to	provide	control	over	remote	media	servers.
It	is	used	when	we	click	on	Play,	Pause,	and	so	on,	and	can	be	used	also	to
invite	a	new	media	server	for	viewing	on	the	screen,	for	example,	for	a
conference.	While	RTSP	is	the	control	protocol,	the	streaming	itself	is	usually
carried	out	by	RTP—which	carries	the	data—and	RTCP	—used	for	the
monitoring	of	the	data	transfer.

The	RTSP	standard	(RFC2326)	does	not	define	any	transport	protocol,	but	most
implementations	use	TCP.	RTSP	is	commonly	used	while	watching	IPTV.	In	this
recipe	we	will	learn	how	to	monitor	and	troubleshoot	these	streams.

Getting	ready
RTSP	monitoring	should	be	used	in	cases	in	which	you	experience	transmission
disturbances;	for	example,	problems	with	the	media	player	control	or	cases	with
connectivity	problems	to	a	server.	RTSP	works	as	illustrated	in	the	following
diagram:

	

When	monitoring	a	stream,	we	can	have	problems	with	RTP/RTCP	(discussed
earlier	in	the	chapter),	HTTP	(discussed	in	Chapter	10,	HTTP	and	DNS),	or	even
TCP	problems	(discussed	in	Chapter	9,	UDP/TCP	Analysis).	In	this	recipe	we
will	talk	about	RTSP	(the	center	line	with	long	dashes	in	the	preceding	diagram).

The	web	server	and	the	media	servers	can	be	on	single	or	multiple	physical
servers,	or	on	different	virtual	machines.	The	functionality	in	any	case	is	as
presented.

How	to	do	it...
To	find	problems	with	RTSP,	connect	the	instance	of	Wireshark	with	port	mirror
to	the	client	experiencing	the	problems,	and	in	the	case	of	multiple	clients,
connect	it	to	a	mutual	link	or	to	the	server.

1.	 To	view	all	RTSP	traffic,	filter	the	packets	with	TCP	port	554;	the	filter	for
this	is	tcp.port==554.

Tip

The	filter	tcp.port	==	554	gives	us	all	traffic	over	this	port,	while	filter
rtsp	only	gives	us	packets	in	which	Wireshark	is	recognized	as	an	RTSP
header.

2.	 To	view	RTSP	requests	and	responses,	navigate	to	RTSP	|	Packet	Counter
from	the	Statistics	menu	as	described	earlier	in	this	chapter.	Error
responses	are	those	with	code	values	that	are	higher	than	400.

	

3.	 Look	for	RTSP	response	codes	that	are	4xx	or	higher.	To	do	so,	you	can
configure	the	display	filter	rtsp.status	>=	400.

How	it	works...
As	with	SIP	(which	is	used	for	signaling,	while	RTP	is	used	for	the	transport	of
the	media),	the	streams	controlled	by	RTSP	may	use	any	transport	protocol;	in
many	cases,	they	also	use	RTP.	The	protocol	is	intentionally	similar	in	syntax
and	operation	to	HTTP	and	uses	the	same	syntax.

The	most	common	RTSP	methods	(commands)	are	(C-Client,	S-Server):

Command Direction Function

OPTIONS C	to	S	or	S	to	C Determines	capabilities	of	server/client

DESCRIBE C	to	S Gets	description	of	media	stream

ANNOUNCE C	to	S	or	S	to	C Announces	a	new	session's	description

SETUP C	to	S Creates	a	media	session

PLAY C	to	S Starts	media	delivery

RECORD C	to	S Starts	media	recording

PAUSE C	to	S Pauses	media	delivery

REDIRECT S	to	C Redirects	to	another	server

TEARDOWN S	to	C Performs	immediate	teardown

The	response	categories	are:

Code	series Type Meaning

1xx Informational Request	received,	continue	with	processing

2xx Success The	action	was	successfully	received,	understood,	and	accepted

3xx Redirection Further	action	must	be	taken	in	order	to	complete	the	request

4xx Client	error The	request	contains	bad	syntax	or	cannot	be	fulfilled

5xx Server	error The	server	failed	to	fulfill	an	apparently	valid	request

There's	more...
In	the	following	screenshot	you	see	a	typical	RTSP	stream:	

	

The	typical	RTSP	stream	is	processed	in	the	following	order:

1.	 A	DESCRIBE	request	is	sent	to	the	server,	asking	to	retrieve	the
description	of	a	presentation	or	media	object	identified	by	the	request	URL
from	that	server,	and	the	server	replies	with	200	OK.

2.	 A	GET_PARAMETER	request	retrieves	the	parameter	value	of	a
presentation	or	stream	specified	in	the	URI.

3.	 A	SETUP	request	is	sent	to	open	the	audio	stream	and	is	confirmed	with
200	OK.

4.	 A	SETUP	request	is	sent	to	open	the	audio	stream	and	is	confirmed	with
200	OK.

5.	 A	PLAY	request	is	sent	to	the	server	to	start	playing	the	stream.
6.	 A	SET_PARAMETER	request	is	sent	to	the	server	to	set	a	parameter

value	for	a	presentation	or	stream	specified	by	the	URI.
7.	 The	stream	starts	to	play	with	RTP.

In	the	following	screenshot,	we	see	how	the	stream	is	broken	down:	

	

The	process	for	the	breakdown	of	the	stream	is	as	follows:

1.	 SET_PARAMETER	is	sent	to	the	server	to	set	a	parameter	value	for	a
presentation	or	stream	specified	by	the	URI.

2.	 A	second	SET_PARAMETER	request	is	sent	to	the	server.
3.	 The	TEARDOWN	command	is	sent	to	close	the	connection.

Chapter	13.	Troubleshooting
Bandwidth	and	Delay	Problems
In	this	chapter	we	have	the	following	recipes:

Measuring	total	bandwidth	on	a	communication	link
Measuring	bandwidth	and	throughput	per	user	and	per	application	over	a
network	connection
Monitoring	jitter	and	delay	using	Wireshark
Discovering	delay/jitter-related	application	problems

Introduction
When	measuring	communication	lines,	there	are	four	major	parameters	that	we
should	be	aware	of:	bandwidth,	delay,	jitter,	and	packet	loss.	While	there	are
applications	that	require	high	bandwidth,	there	are	other	applications	that	are
more	sensitive	to	delay	and	jitter.	Packet	loss	can	influence	all	types	of
applications,	but	there	are	applications	that	are	more	sensitive	to	it	and	some	that
are	less.

In	this	chapter	we	will	learn	how	to	measure	these	parameters,	how	to	check	for
network	problems	caused	by	it,	and	how	to	solve	them	when	possible.

Measuring	total	bandwidth	on	a
communication	link
In	this	recipe,	we	will	see	how	to	measure	the	total	bandwidth	over	a
communication	line.	The	first	thing	of	course	is	to	verify	the	communication	line
with	the	service	provider.	Check	whether	it	is	a	symmetric	or	an	asymmetric
line,	and	if	it	is	asymmetric,	check	what	the	bandwidth	is	in	both	directions.

Getting	ready
There	are	two	cases	that	you	might	need	to	test:

When	you	measure	a	communication	line	between	two	offices:	in	this	case
connect	your	laptop	(or	any	PC	on	the	network)	to	the	LAN,	and	verify
whether	you	have	a	server	or	another	PC	on	the	other	side	of	the	line
When	you	measure	a	communication	line	to	the	Internet,	make	sure	you
have	a	testing	server	on	the	Service	Provider	(SP)	side	or	on	the	Internet
Service	Provider	(ISP)	side

How	to	do	it...
To	check	the	bandwidth	on	a	communication	line,	follow	these	steps:

1.	 Ask	for	the	following	details:
1.	 Ask	the	SP	what	the	line	bandwidth	is.
2.	 If	it	is	a	line	to	the	Internet,	in	addition	to	the	preceding	step	ask	the

ISP	what	is	the	bandwidth	to	the	Internet.

Locate	a	server,	a	PC,	or	a	laptop	on	the	remote	location.

Tip

When	using	a	PC	or	laptop	for	the	test,	don't	forget	that	the	PC	itself	should	be
strong	enough	to	generate	the	traffic.	A	standard	Windows	7	is	able	to	generate
around	200	Mbps	per	TCP	connection,	and	when	opening	several	connections,
you	can	get	into	other	limitations	such	as	disk	performance	and	so	on.	Therefore,
it	is	recommended	to	try	the	transfer	first	on	a	LAN,	where	there	are	no
bandwidth	limits	(practically),	and	only	then	to	test	the	SP	or	the	ISP	lines.	If
you	are	using	FTP,	use	an	efficient	one	(FileZilla,	for	example).	The	best	way	of
course	is	to	use	test	equipment,	if	it's	available.	Dedicated	test	equipments	are
available	from	many	vendors	such	as	VeEX,	Fluke	Networks,	and	IXIA.

In	case	you	want	to	test	the	bandwidth	between	two	sites,	download	and
then	upload	a	big	file	between	nodes	numbered	as	1	and	2	or	between	nodes
numbered	as	1	and	3.	A	file	big	enough	should	load	the	line	for	a	significant
amount	of	time,	that	is,	a	minute	or	more.	For	example,	if	you	want	to	test	a
10	Mbps	(Megabits	per	second)	line,	use	a	file	of	at	least	10/8	=	1.25	MB
(Megabytes).
In	case	you	want	to	test	your	connection	to	the	Internet,	usually	you	can
perform	the	test	on	your	service	provider	(numbered	as	1	to	4	in	the
following	diagram),	and	then	to	your	Internet	service	provider	(numbered
as	1	to	5	in	the	following	diagram).

Tip

If	possible,	it	is	better	to	use	the	IP	or	UDP	test,	since	when	you	copy	a	file,
it	is	done	over	TCP,	so	you	can	get	into	TCP	issues	that	influence	the	test.
For	this	purpose,	use	Iperf	or	another	testing	tool	that	can	generate	IP	or

UDP	traffic.

In	the	following	illustration,	you	can	see	two	local	networks	connected	via	a
Service	Provider	(SP)	line.	The	site	on	the	left	is	connected	to	the	Internet
through	a	firewall.	The	connection	to	the	Internet	goes	through	the	Service
Provider	(SP,	Server	4)	to	the	Internet	Service	Provider	(ISP,	Server	5).

	

Follow	these	steps	to	measure	the	bandwidth	over	the	communication	lines:

1.	 Use	Wireshark	Statistics	|	IO	Graphs	for	the	test.

Tip

Don't	forget	that	Wireshark	has	its	own	limitations	when	working	with	high
bandwidth	lines.	In	this	case,	you	can	configure	it	to	use	multiples	files.
Personally,	I	prefer	to	use	other	tools	(Omnipeek,	for	example)	when

monitoring	lines	of	200-300	Mbps	and	higher.

2.	 When	testing	your	enterprise	network,	you	can	use	software	tools	such	as
Iperf	(http://sourceforge.net/projects/iperf/).

Following	are	the	steps	to	measure	network	bandwidth	with	IPerf:

1.	 Install	Iperf	on	both	ends	of	the	connection.
2.	 Configure	one	side	as	a	client,	and	the	other	side	as	a	server.
3.	 Start	the	test	and	use	I/O	Graphs	to	verify	that	you	have	a	stable	bandwidth.

Tip

When	downloading	or	uploading	a	file,	do	it	with	a	single	large	file	and	not
a	directory	of	multiple	files.	When	transferring	many	small-sized	files,	it
will	take	time	to	open	and	transfer	each	one	of	them,	so	the	test	will	not
give	good	results.

When	getting	less	bandwidth	than	expected,	perform	the	following	steps:

1.	 When	getting	a	value	up	to	around	5%	more	or	less	than	expected,	it	can	be
due	to	the	reasons	mentioned	in	the	There's	more...	section	in	this	recipe.
Check	the	configurations	and	the	technology	that	the	line	is	running	on
(SDH/SONet,	Carrier	Ethernet,	and	so	on)

2.	 If	you	test	the	line	with	file	copy,	and	in	the	IO	graphs	see	sawtooth,	there
might	be	errors	on	the	line.	Check	TCP	retransmissions,	and	then	check	for
errors	in	the	switch/router	port	connected	to	the	service	provider.

Tip

To	check	switch	or	router	port	statistics,	you	can	use	console	or	telnet	to
connect	to	it	and	use	the	switch	or	router	commands	(for	example,	show
interface	commands	in	Cisco).	You	can	also	use	SNMP	management
software	or	any	MIB	browser	and	browse	the	IfInErrors	and	InOutErrors
objects.

3.	 If	you	see	a	degradation	of	80	to	90	percent	of	what	you	had	expected	(for
example,	you	test	a	line	of	100	Mbps	and	get	10	to	20	Mbps);	in	most	of	the
cases,	it	is	a	duplex-mismatch	problem.	As	shown	in	the	How	it	works...

http://sourceforge.net/projects/iperf/

section	of	this	recipe.

It	isn't	common,	but	it	can	also	be	that	your	service	provider	has	a
configuration	problem.	Check	it	with	them.	If	none	of	the	preceding	cases
are	true,	it	can	be	that	this	is	the	reason.

How	it	works...
First,	there	are	two	different	definitions;	it	is	important	to	distinguish	between:

Bandwidth:	This	is	the	total	bits	per	second	that	can	be	transferred	over	a
communications	line
Throughput:	This	is	the	effective	application	bytes	per	second	that	is
transferred	between	the	two	ends	of	a	connection

To	check	the	bandwidth	of	a	communication	line,	you	can	ask	the	service
provider	for	the	line	details,	or	you	can	simply	transfer	some	traffic	over	it,	use
Wireshark	or	SNMP	tool,	and	see	what	you	get.

Most	of	the	cases	in	which	a	duplex	mismatch	problem	occurs	is	when	you
connect	using	Ethernet	on	one	side	with	100	Mbps	full	duplex,	and	the	other	side
configured	to	auto-negotiate.

	

As	you	see	in	the	diagram,	when	you	connect	a	device	(a	router	in	this	example)
to	a	switch,	when	both	sides	are	manually	configured,	for	example,	to	100	Mbps
Full	Duplex	(FDX),	the	intended	configuration	will	take	place	(numbered	1	in
the	preceding	diagram).

When	you	configure	both	sides	to	auto-negotiation	(numbered	4	in	the	preceding
diagram),	it	will	also	be	fine,	and	will	be	automatically	set	to	1	Gbps	(in	the	case
of	gigabit	adapters).

In	the	case	when	one	side	is	configured	to	100	FDX	and	the	other	side	to	auto
negotiate,	the	auto	negotiate	will	be	automatically	set	to	100	Mbps	Half-Duplex

(HDX).	In	this	case,	when	one	side	is	set	to	HD	and	the	other	to	FD,	many
packets	will	be	lost,	and	you	will	experience	significant	degradation	in
performance	(numbered	2	and	3	in	the	preceding	diagram).

There's	more...
When	we	buy	a	line	at	a	certain	bandwidth,	it	can	be	that	we'll	get	a	little	bit
more	or	less	of	what	we've	bought.	For	example,	when	we	buy	10	Mbps	line,
and	the	line	runs	over	the	Synchronous	Digital	Hierarchy	(SDH)	or
Synchronous	Optical	Network	(SONet)	line;	the	10	Mbps	is	made	of	5	VC-
12s,	which	is	5*2.176	Mbps,	so	the	total	bandwidth	will	be	10.88	Mbps.

On	the	other	hand	if,	for	example,	we	use	site-to-site	VPN	over	the	Internet,	and
the	line	is	10	Mbps,	even	if	we	have	a	very	good	Internet	connection	(for
example,	when	the	two	ends	are	connected	to	the	same	ISP),	the	encryption
mechanisms	of	the	VPN	itself	can	take	5	to	10	percent	of	the	line,	and	when
measuring	it,	you	will	get	somewhere	between	9.0	to	9.5	Mbps.	In	this	case,	for
example,	when	you	transfer	a	file	over	the	line,	you	will	see	that	the	line	is
loaded	with	10	Mbps	(that	is,	the	bandwidth),	while	what	is	left	for	the	file	copy
is	usually	between	9.0	to	9.5	Mbps	(that	is,	the	throughput).

Measuring	bandwidth	and
throughput	per	user	and	per
application	over	a	network
connection
In	many	cases,	we	need	to	know	not	only	the	total	bandwidth	of	a	connection,
(communication	line	or	on	a	server	port),	but	also	who	exactly	are	the
consumers,	that	is	from	which	IP	addresses	and	port	numbers	the	traffic	is
coming.	In	this	recipe,	we	will	see	how	to	measure	it.

In	order	to	see	this,	you	can	use	proprietary	tools	that	collect	the	data	from	the
switch	(RMON1,	RMON2,	sFlow)	or	router	(Cisco	Netflow	or	Juniper	Jflow),
or	to	use	Wireshark	with	port	mirror	to	the	communication	link,	and	this	is	what
we'll	learn	in	this	recipe.

Getting	ready
For	using	Wireshark	to	get	traffic	distribution,	connect	a	laptop	with	a	port
mirror	to	the	link	you	wish	to	monitor	and	start	packet	capture.	You	can	also	use
the	Tshark	command	from	the	CLI.

How	to	do	it...
For	basic	statistics	on	users	and	applications	that	are	using	the	communications
link,	perform	the	following	steps:

For	general	statistics:
1.	 From	the	Statistics	menu,	choose	Conversations.
2.	 In	the	Conversations	window,	you	see	the	statistics	on	the	total

number	of	packets	captured	until	now.
3.	 You	can	also	use	graphical	tools	such	as	Compass	(Chapter	11,
Analyzing	Enterprise	Applications,	Behavior).

For	flow	analysis,	use	IO	graphs	with	filters	on	IP	addresses	and/or	port
numbers:
1.	 From	the	Statistics	menu,	select	IO	Graphs.
2.	 In	the	IO	graphs	window	(Chapter	5,	Using	Advanced	Statistics	Tools),

configure	IP	and	port	numbers	and	display	filters	for	the	applications	that
you	wish	to	monitor.

For	continuous	monitoring,	use	Wireshark	with	multiple	files	with	ring	buffer,
or	use	tools	such	as	Netflow	or	Jflow	for	router	monitoring.

How	it	works...
With	Wireshark,	like	we	learned	in	Chapter	1,	Introducing	Wireshark,	we	capture
data	and	analyze	it.

In	Netflow,	Jflow,	and	applications	that	collect	data	from	the	router,	the	router
periodically	sends	the	collected	data	to	the	management	console	that	analyzes	it.

In	Remote	Monitoring	1	(RMON1)	and	Remote	Monitoring	2	(RMON2),
when	the	end	switch	supports	it,	you	access	the	data	with	the	SNMP	software
that	reads	from	the	RMON1/RMON2	MIB.	While	RMON1	provides	you	layer	1
to	2	statistics,	RMON2,	when	implemented	provides	you	layer	3	to	4	statistics.
The	main	standards	of	RMON	were	published	in	RFCs	2613,	2819,	3577,	and
4502.	In	various	applications	and	devices	such	as	firewalls,	Intrusion	Detection
Systems	(IDS),	Deep	Packet	Inspection	(DPI)	devices,	and	WAN	Accelerators,
you	will	get	the	data	from	the	monitored	device.

See	also
Additional	data	on	these	applications	can	be	found	at:

Cisco	Netflow:
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html

http://www.ietf.org/rfc/rfc3954.txt

For	Juniper	Jflow:

http://www.juniper.net/techpubs/software/erx/junose82/swconfig-ip-
services/html/ip-jflow-stats-config2.html

sFlow:

http://www.ietf.org/rfc/rfc3176.txt

Various	applications	can	be	located	in:

For	switch	monitoring:

http://www.sflow.org/index.php

http://tools.ietf.org/html/rfc3176

http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
http://www.ietf.org/rfc/rfc3954.txt
http://www.juniper.net/techpubs/software/erx/junose82/swconfig-ip-services/html/ip-jflow-stats-config2.html
http://www.ietf.org/rfc/rfc3176.txt
http://www.sflow.org/index.php
http://tools.ietf.org/html/rfc3176

Monitoring	jitter	and	delay	using
Wireshark
Jitter	and	delay	are	characteristics	that	can	significantly	influence	various
network	applications.	For	monitoring	jitter	and	delay	on	a	communication	line,
you	can	use	simple	or	graphical	Ping	tools	that	will	show	you	the	line
characteristics.	Wireshark	on	the	other	hand	does	not	measure	the	end-to-end
delay	but	the	influence	that	it	has	on	the	network	traffic,	that	is	inter-frame	delay
and	how	it	influences	applications.

In	this	recipe,	we	will	see	how	to	use	Wireshark	tools	for	monitoring	these
parameters,	and	in	the	next	recipe	we	will	see	how	to	discover	problems	caused
by	them.

Getting	ready
For	monitoring	delay	on	a	communication	line,	first	use	the	ping	command	to
get	the	feeling	of	the	line,	and	then	configure	port	mirror	to	the	port	you	want	to
monitor.

How	to	do	it...
To	monitor	inter-frame	delay:

1.	 From	Statistics,	select	IO	Graph.
2.	 For	monitoring	time	between	frames	in	a	specific	stream	of	data:

1.	 Click	on	a	packet	in	the	TCP	or	UDP	stream.
2.	 Click	on	Follow	TCP	Stream	or	Follow	UDP	stream.
3.	 Copy	the	displayed	filter	string	that	showed	up	(numbered	1	in	the

next	screenshot).

From	statistics	open	IO	Graph.
In	IO	Graph,	in	the	Y	Axis	part	(bottom-right	side	of	the	window),	select

Advanced...	(numbered	2	in	the	following	diagram).
Copy	the	TCP	stream	number	(numbered	1	in	the	following	diagram)	to	the

Filter	field	in	the	IO	Graph	(numbered	3	in	the	following	diagram).

Select	AVG(*)	(numbered	4	in	the	preceding	diagram).
Configure	the	filter	frame.time_delta_displayed	(numbered	5	in	the

preceding	diagram).
In	the	graph	(numbered	6	in	the	preceding	diagram),	you	see	the	time	between

frames	in	milliseconds.

By	navigating	to	Statistics	|	TCP	Stream	Graph	|	Round	Trip	Time	Graph,
you	will	get	the	same	results	as	shown	in	the	following	diagram:	

In	the	diagram,	we	see	that	the	Round	Trip	Time	(RTT)	varies	between
values	that	are	lower	than	10	ms	and	up	to	200-300	ms.
To	measure	delays	in	layer	4,	use	the	TCP	filter	tcp.analysis.ack_rtt	that

will	give	you	the	time	that	it	takes	to	acknowledge	every	received	packet.

How	it	works...
The	software	simply	captures	packets	over	the	line,	and	shows	you	the	time
difference	between	them.	It	is	important	to	notice	that	there	is	a	delay	or	jitter,
but	we	will	not	see	where	it	is	coming	from.

Delay	is	the	time	that	it	takes	a	packet	to	get	from	one	end	of	the	network	to	the
other.	It	is	usually	referred	to	as	RTT.	Delay	can	be	measured	with	simple	Ping
or	graphical	Ping	tools.	Delay	is	measured	in	seconds	–	milliseconds	(ms),
microseconds	(µs),	and	so	on.

Jitter	in	IP	networks	measure	the	variations	in	delay.	For	example,	if	we	have	an
average	delay	of	100	ms,	and	it	varies	between	80	ms	and	120	ms,	the	jitter	is	20
percent.

There's	more...
Graphical	Ping	tools	are	available	for	free	on	many	websites.	You	can	use,	for
example,	http://www.colasoft.com/download/products/download_ping_tool.php.

http://www.colasoft.com/download/products/download_ping_tool.php

Discovering	delay/jitter-related
application	problems
Jitter	and	delay	can	influence	various	types	of	applications.	In	applications	that
run	over	TCP,	high	delay	reduces	the	effective	throughput	that	can	be	sent	and
high	jitter	can	cause	packet	losses	and	retransmissions.	In	multimedia
applications	that	run	over	RTP,	which	runs	over	UDP,	high	jitter	and	delay	can
cause	severe	disturbances	in	the	voice	and	video	quality.

In	this	recipe,	we	will	get	into	the	details:	the	influence	of	behavior	on	TCP,	and
how	it	can	influence	the	application	behavior.	RTP	over	UDP	behavior	was
discussed	in	Chapter	12,	SIP,	Multimedia,	and	IP	Telephony.

Getting	ready
When	you	ping	a	remote	site	and	get	high	delays,	and	in	the	Wireshark	you	see
many	retransmissions,	it	can	be	because	of	high	network	or	applications	delay.
Connect	the	Wireshark	to	the	network	and	configure	port	mirror	to	the	link	that
you	test.

The	purpose	of	this	recipe	is	to	check	whether	the	TCP	retransmissions	and
duplicate	ACKs	are	due	to	delay	and	jitter	or	other	problems.

How	to	do	it...
When	experiencing	many	TCP	retransmissions,	perform	the	following	tests:

1.	 Check	whether	retransmissions	are	coming	from	the	same	application	or
from	the	same	IP	address.	In	this	case,	it	is	a	slow	application	or	a	slow
device	and	probably	not	a	network	delay	issue.

If	retransmissions	are	distributed	between	various	applications	and	devices,
it	can	be	because	of	unstable	line	that	causes	network	delays.

2.	 Configure	a	display	filter	tcp.analysis.retransmissions	(numbered	1	in
the	following	diagram).	A	list	of	all	retransmissions	in	the	packet	list	will
appear.

3.	 Down	the	packet	details	pane,	expand	the	TCP	Analysis	Flags,	and	you
will	get:

The	time	since	the	original	packet	is	retransmitted	(numbered	2	in	the
preceding	diagram).	In	this	case,	0.225003000	seconds.
The	packet	that	is	retransmitted	(numbered	3	in	the	preceding
diagram).	In	this	case,	packet	number	1779.

Usually	the	Retransmission	Time	Out	(RTO)	timer	will	be	around	0.2
seconds	for	local	connections,	and	up	to	0.3	to	0.4	seconds	for	international

connections.	Start	with	assuming	0.2	seconds.	Refer	to	the	How	it	works...
section	in	this	recipe	for	explanation	about	the	RTO	mechanism.
To	check	TCP	delay	over	a	connection,	use	IO	Graphs	with	the	following

filters,	as	presented	in	the	next	diagram:
tcp.stream	eq	<the	stream	number>	to	get	to	the	stream	number	right-
click	on	a	packet	and	select	Follow	TCP	stream.
frame.time_delta	to	see	the	time	difference	between	frames	in	the	TCP
stream.	This	parameter	actually	shows	inter-frame	delta	in	layer	2,	but	since
it	is	shown	only	for	the	stream,	it	will	show	us	inter-frame	deltas	in	a
specific	TCP	stream.

You	get	a	graph	that	shows	a	very	stable	connection,	with	delays	that	are	lower
than	20	ms,	except	for	the	two	increases	in	delay	in	time	250s	(250	seconds	since
the	beginning	of	the	capture),	that	causes	retransmissions.
When	we	add	the	tcp.analysis.ack_rtt	filter	on	the	same	connection,	we

see	the	delays	between	TCP	packets	and	ACKs.

In	the	following	diagram,	you	see	a	graph	which	is	an	example	for	delays	not
due	to	line	delay	issues:	

You	can	see	here	that	I've	configured:
The	Advance	option	in	the	Y	Axis
The	Filter	field:	tcp.stream	eq	0	(numbered	1	in	the	preceding	diagram)	to
present	a	single	stream
The	calculation	AVG(*)	to	see	the	average	(2)
You	can	also	configure	MAX(*)	and	the	filter	tcp.analysis.ack_rtt	to
see	the	time	to	acknowledge	every	TCP	sequence

What	we've	got	is	the	time	that	it	took	to	acknowledge	every	TCP	packet.
Now,	let's	configure	IO	Graphs	to	see	if	there	are	TCP	retransmissions,	and

why	they	happen:
Use	the	same	IO	Graph	with	Advance	in	Y	Axis,	and	configure	the	second
line.
The	Filter	field:	tcp.stream	eq	0	(numbered	1	in	the	preceding	diagram)	to
present	a	single	stream.
The	calculation	COUNT	FRAMES(*)	to	see	the	average.
The	filter	tcp.analysis.retransmissions	to	see	the	time	to	acknowledge
every	TCP	packet.

We	can	see	from	here	that	all	retransmissions	happened	when	there	was	a
significant	increase	in	the	delay,	so	it	is	a	delay	problem.	We	cannot	say	from
here	if	the	delay	is	from	the	network,	from	the	end	device	or	from	the
application,	so	for	isolating	the	problem	check	how	retransmissions	are
distributed	(see	Chapter	9,	UDP/TCP	Analysis).
Retransmissions	that	are	not	due	to	increase	in	RTT	are	probably	due	to	packet

losses.

How	it	works...
TCP	uses	the	retransmission	mechanism	to	ensure	data	delivery	in	the	absence	of
any	feedback	from	the	remote	data	receiver.	The	duration	of	this	timer	is	referred
to	as	Retransmission	Time	Out	(RTO).	This	mechanism	was	first	standardized
in	RFC1122	that	specified	that	the	RTO	should	be	calculated	as	outlined	in	the
Jacobson	V.	and	M.	Karels,	Congestion	Avoidance	and	Control,	article	from
1988.	An	update	to	this	RFC	came	out	in	RFC	2988	in	November	2000,	and
later	in	RFC	6298	Computing	TCP's	Retransmission	Timer,	June	2011.

There's	more...
For	delay	variations,	you	can	also	navigate	to	Statistics	|	TCP	Stream	Graph	|
Round	Trip	Time	Graph.

When	experiencing	high	delays,	it	also	influences	the	throughput	you	can	get
from	the	network.	This	is	what	is	called	as	the	bandwidth	delay	product	as
shown	in	the	following	figure:

	

From	here	we	can	see	that	the	higher	the	delay	is,	the	lower	the	throughput
becomes.	In	networks	with	high	delays,	for	example,	old	cellular	networks,
satellite	lines,	and	long	distance	international	lines,	we	have	several	methods	to
improve	the	application's	throughput.	Among	these	methods	are	applications	that
use	multiple	connections	per	application,	usage	of	the	TCP	increases	the	window
size	(comes	as	default	in	Window	Vista	and	the	higher	versions,	along	with
various	Linux	versions).

Chapter	14.	Understanding	Network
Security
In	this	chapter,	we	will	cover	the	following	recipes:

Discovering	unusual	traffic	patterns
Discovering	MAC-	and	ARP-based	attacks
Discovering	ICMP	and	TCP	SYN/Port	scans
Discovering	DoS	and	DDoS	attacks
Locating	smart	TCP	attacks
Discovering	brute-force	and	application	attacks

Introduction
Information	security	is	one	of	the	fascinating	areas	in	information	systems,	and
its	purpose	is	to	secure	the	organization's	systems	against	internal	and	external
attacks	that	can	come	in	various	patterns.	These	attacks	can	come	from	the
Internet	or	from	the	internal	network,	and	as	such,	they	all	come	through	the
network	and	therefore,	can	be	monitored	with	Wireshark	(and	other	tools	that
will	be	mentioned	later).

For	monitoring	the	network	against	malicious	traffic,	we	must	first	understand
what	constitutes	normal	traffic.	We	can	then	try	to	find	out	how	malicious	traffic
is	short	of	being	normal	traffic.	Among	unusual	traffic,	we	might	see	an	ARP,	IP,
or	TCP	scanning,	DNS	responses	without	queries,	unusual	TCP	flags,	unknown
IP	addresses	or	port	numbers	whose	purpose	is	not	known	to	us,	and	so	on.

It	is	also	important	to	understand	the	difference	between	security	problems	and
networking	problems,	and	distinguish	between	them.	For	example,	ICMP	scan
can	be	a	malicious	software	scanning	the	network	but	also	a	management
software	that	discovers	the	network,	while	TCP	SYN	scan	can	be	a	worm	but
also	a	software	bug.	We	will	elaborate	on	these	in	each	of	the	recipes.

In	this	chapter,	we	will	start	by	differentiating	between	normal	and	unusual
network	traffic	and	then	understand	the	various	types	of	attacks,	where	they
come	from	and	how	to	isolate	and	solve	them.

Discovering	unusual	traffic	patterns
In	this	recipe,	we	will	learn	what	are	usual	and	unusual	traffic	patterns	and	how
to	distinguish	between	them.

Getting	ready
The	first	thing	is	to	locate	Wireshark.	There	are	several	options	for	this	(see	the
following	diagram):

1.	 When	you	suspect	an	attack	that	comes	from	the	Internet,	locate	Wireshark
after	the	firewall	(1),	and	when	you	suspect	that	it	crosses	the	firewall,
locate	it	before	(2).

2.	 When	you	suspect	malicious	traffic	coming	from	a	remote	office,	port
mirror	the	traffic	coming	on	the	central	line	before	(3)	or	after	(4)	the	router.
In	this	case,	you	can	filter	the	suspicious	traffic	with	IP	networks	to	see
patterns	from	different	offices	in	order	to	isolate	the	problematic	office.

3.	 You	can	also	port	mirror	the	traffic	in	the	remote	office	before	(7)	or	after
(6)	the	routers.

4.	 When	a	PC	or	a	server	is	the	suspect,	port	mirror	its	port	on	the	switch	(5)
or	(8).

	

Now,	we	will	try	to	see	what	are	the	types	of	traffic	that	we	should	look	out	for,

what	are	the	types	of	traffic	that	are	normal,	and	what	traffic	should	be	followed.

Before	starting	with	the	tests,	make	sure	that	you	have	an	updated	topology	of
the	network	that	includes:

Servers'	IP	addresses	and	LANs'	IP	address	ranges
Routers,	switches,	and	other	communications	equipments'	IP	addresses	and
topology
Security	devices—firewalls,	Intrusion	Detection	Systems	/	Intrusion
Prevention	Systems	(IDSs/IPSs),	Web	Application	Firewalls	(WAF),
database	and	application	firewalls,	antivirus	systems,	and	any	other	device
that	has	an	IP	address	and	generates,	filters,	or	forwards	network	traffic
What	are	the	applications	that	work	over	the	network	including	TCP/UDP
port	numbers	and	IP	addresses	of	software

How	to	do	it...
When	you	monitor	internal	traffic	in	your	organization,	the	following	things
should	be	checked:

1.	 Traffic	that	is	generated	from	known	addresses	(in	the	organization):
Normal:	This	is	the	traffic	from	known	addresses	and	address	ranges
Suspicious:	This	is	the	traffic	from/to	addresses	that	you	don't	know

Applications	and	port	numbers:
Normal:	This	includes	standard	port	numbers,	80	(HTTP),	137/8/9
(NetBIOS),	3389	(RDP),	20/21	(FTP),	25,110	(Mail),	53	(DNS),	and	so	on.
Be	sure	of	the	applications	that	run	over	the	network,	and	verify	that	these
are	the	only	port	numbers	that	you	see.
Suspicious:	This	includes	unusual	port	numbers,	that	is,	port	numbers	that
do	not	belong	to	applications	that	run	on	server	(for	example,	RDP	packets
to	web	server).

TCP	patterns:
Normal:	TCP	SYN/SYN-ACK/ACK	that	indicates	a	connection	establishment,
single	reset	(RST)	that	indicates	a	fast	connection	tear-down,	FIN/FIN-ACK
packets	that	indicate	a	regular	tear-down	of	a	connection,	standard	packets,
and	acknowledgments
Suspicious:	Large	amount	of	SYN	packets	that	go	to	a	single	or	multiple
destinations	or	coming	from	multiple	sources	(usually	in	a	scan	pattern	that
will	be	described	later	in	this	chapter),	unusual	flags	combination	(RST/FIN,
URG),	and	so	on

Massive	traffic	to	a	single	or	multiple	sites	that	you	don't	know	about:
Normal:	Traffic	patterns	are	usually	not	of	fixed	bandwidth.	When	you
save	or	open	files,	browse	the	Internet,	send	or	receive	mails,	or	access	a
server	with	RDP,	you	see	ups	and	downs.
Suspicious	(in	some	cases):	Fixed	bandwidth	patterns	can	indicate	that
someone	is	connected	to	your	device,	but	it	can	also	indicate	that	someone
is	listening	to	the	radio	over	the	Internet	(100-150	Kbps),	watching	video
(in	some	cases),	and	so	on.	When	you	see	a	fixed	bandwidth	pattern	of
traffic,	check	what	it	is.	A	fixed	bandwidth	pattern	is	illustrated	in	the
following	screenshot:

Broadcasts:
Normal:	NetBIOS	broadcasts,	ARP	broadcasts	(not	too	many),	DHCP	(not
too	many),	application	broadcasts	(usually	once	every	several	seconds	and
more),	and	so	on
Suspicious:	Tens,	hundreds,	or	thousands	and	more	broadcasts	per	seconds
per	device

DNS	queries	and	responses:
Normal:	A	standard	query-response	pattern	up	to	several	tens	per	second
per	client,	occasionally
Suspicious:	Massive	amount	of	DNS	queries	and/or	responses,	responses
without	queries,	and	so	on

How	it	works...
Network	forensics	is	quite	similar	to	what	you	see	in	police	dramas	on
television.	Something	is	going	wrong;	so,	you	go	to	the	crime	scene	(this	is	your
network)	and	look	for	evidence	(these	are	the	traces	that	are	left	in	the	network).

What	you	look	for	are	the	things	that	do	not	match	the	crime	scene	(your
network),	things	that	are	left	behind	(unusual	traffic	patterns),	fingerprints,	and
DNA	(patterns	that	can	identify	the	attacker).

In	the	following	recipes,	we	will	get	to	the	details	of	various	types	of	attacks	and
abnormalities	that	can	indicate	that	a	crime	was	committed,	and	we	will	see	how
to	isolate	the	problems	and	solve	them.

Some	common	attacks	that	can	come	from	the	network	are:

Viruses:	These	are	small	programs	that	attack	your	computer	and	try	to
cause	damage.	Viruses	should	be	discovered	and	fixed	by	antivirus
software.
Worms:	These	are	usually	programs	that	attempt	to	replicate	themselves
across	the	network.	There	is	a	major	impact	on	resource	consumption,	for
example,	bandwidth	consumption	and	CPU	load.	The	important	thing	is
that	the	moment	you	fix	the	problem,	everything	will	go	back	to	normal.
Denial	of	Service	(DoS)	and	Distributed	DoS	(DDoS):	These	are	attacks
that	deny	access	to	network	resources.	These	types	of	attacks	are	usually
very	easy	to	discover	since	they	have	a	distinct	behavior	that	can	be	located
easily.
Man-in-the-middle	attacks:	These	are	attacks	in	which	the	attacker
intercepts	messages	and	then	retransmits	them.	In	this	way,	the	attacker	can
eavesdrop	on	the	traffic	or	change	it	before	it	gets	to	the	destination.
Scanning:	There	are	various	types	of	scans	ranging	from	simple	ICMP
scans	that	usually	are	a	form	of	DDoS,	TCP	scans	that	send,	for	example,
SYN	requests	on	various	port	numbers	in	order	to	try	and	open	connections
to	services	running	on	a	server,	and	also	application	scans	that	try	to
connect	to	applications	running	on	your	servers.
Application-layer	attacks:	These	are	attacks	that	target	applications	on
your	servers	by	intentionally	causing	a	fault	in	a	server's	operating	system
or	applications.

In	the	following	recipes,	we	will	see	each	of	them	(and	some	more).

There's	more...
An	important	indication	that	something	went	wrong	is	when	a	server,	a	PC,	a
communication	link,	or	any	other	entity	on	the	network	becomes	slow	without
any	logical	reason.	For	example:

When	a	server	becomes	slow,	check	for	hardware	and	software	issues,
check	for	network	problems,	but	also	check	if	someone	is	attacking	it
When	a	link	from	a	remote	office	to	the	center	becomes	slow,	it	can	be
because	of	the	load	(constant	or	sudden),	but	it	can	also	be	because	of	an
attack	that	blocks	it	(usually	DOS/DDoS)
When	a	PC	becomes	slow,	it	can	be	because	it	is	doing	something	that	you
know	about,	but	there	is	not	just	one	possibility,	check	for	the	things	you
don't	know

It	is	important	to	mention	here	that	there	are	various	systems	that	can	protect	us
from	attacks;	a	few	of	them	are	listed	as	follows:

Firewalls:	They	protect	unauthorized	traffic	from	getting	into	specific
areas.	Firewalls	can	be	located	on	the	connection	to	the	Internet,	before	the
organization	servers,	between	organization	areas,	and	even	as	personal
firewalls	on	every	PC.
Network	Access	Control	(NAC):	These	systems	allow	only	authorized
users	to	connect	to	the	network.	When	connecting	an	unauthorized	device
to	the	network,	you	will	see	that	the	link	on	the	device	will	be	turned	on	and
immediately	off,	and	the	unauthorized	device	will	be	blocked	on	the	MAC
layer.
IDS/IPS:	These	systems	can	identify	intrusion	patterns	and	block	them.
There	are	usually	two	lines	of	defense	here—one	at	the	ISP	network	and
one	at	the	customer	premises.	IDS/IPS	can	be	a	dedicated	device	located
between	the	firewall	and	the	Internet	or	an	additional	software	on	the
firewall.
Web	Application	Firewalls	(WAF),	Application	Firewalls,	Database
Firewalls,	and	other	application	protection	devices:	This	group	of
products	are	layer-7	protection	devices	that	look	inside	the	applications	and
forward	or	block	application	layer	attacks.
Web	Filters	and	Mail	Filters:	These	are	devices	that	scan	mail	and/or	web
content	and	forward	only	those	messages	and	traffic	that	are	allowed.

The	features	mentioned	above	can	come	as	different	devices,	software	on	Virtual
Machines	(VMs),	or	features	on	the	same	device.

See	also
In	this	recipe,	we	talked	about	some	security	components.	Some	examples	are:

Firewalls:	Checkpoint	(www.checkpoint.com),	Juniper	SSG	series
(http://www.juniper.net/us/en/products-services/security/ssg-series/),	Cisco
ASA	series
(http://www.cisco.com/en/US/products/ps5708/Products_Sub_Category_Home.html
and	many	others.
NAC:	In	this	category,	you	have,	for	example,	Forescout
(http://www.forescout.com/solutions/network-access-control/)	and
Enterasys	(http://www.enterasys.com/company/literature/nac-ds.pdf).
IDS/IPS:	In	this	category,	we	have,	for	example,	the	Juniper	IDP	device
series	(http://www.juniper.net/us/en/products-services/security/idp-series/)
and	the	Check	Point	software	blade	for	the	firewall
(http://www.checkpoint.com/products/ips-software-blade/).
WAF:	Here	we	have,	for	example,	Imperva
(http://www.imperva.com/products/wsc_web-application-firewall.html)	and
F5	(http://www.f5.com/glossary/web-application-firewall/).	Database
firewalls	are	available,	for	example,	from	Imperva
(http://www.imperva.com/products/dsc_database-firewall.html)	and	Oracle
(http://www.oracle.com/us/products/database/security/audit-vault-database-
firewall/overview/index.html).
Web	and	mail	filters:	Here	we	have,	for	example,	McAfee
(http://www.mcafee.com/au/products/email-and-web-security/index.aspx),
Blue	Coat	(http://www.bluecoat.com/security-policy-enforcement-center),
and	Websense	(http://www.websense.com/content/Home.aspx).

http://www.checkpoint.com
http://www.juniper.net/us/en/products-services/security/ssg-series/
http://www.cisco.com/en/US/products/ps5708/Products_Sub_Category_Home.html
http://www.forescout.com/solutions
http:///network-access-control/
http://www.enterasys.com/company/literature/nac-ds.pdf
http://www.juniper.net/us/en/products-serv
http://ices/security/idp-series/
http://www.checkpoint.com/products/ips-software-blade/
http://www.imperva.com/products/wsc_web
http://-application-firewall.html
http://www.f5.com/glossary/web-application-firewall/
http://www.imperva.com/products/dsc_database-f
http://irewall.html
http://www.oracle.com/us/products/database/security/audit-vault-database-fi
http://rewall/overview/index.html
http://www.mcafee.com/au/products/email-and-web-security/index.aspx
http://www.bluecoat.com/security-policy-enforcement-center
http://www.websense.com/content/Home.aspx

Discovering	MAC-	and	ARP-based
attacks
There	are	various	types	of	layer-2	MAC-based	attacks	and	layer-2/3	ARP	attacks
that	can	be	easily	discovered	by	Wireshark.	These	attacks	are	usually	caused	by
scanners	(described	in	the	next	recipe)	and	man-in-the-middle	attacks	(described
in	the	Analyzing	connectivity	problems	with	ARP	recipe	in	Chapter	8,	ARP	and
IP	Analysis).	In	this	recipe,	we	will	see	some	typical	attack	patterns	and	their
meanings.

Getting	ready
When	viewing	too	many	ARP	requests	on	a	network	or	when	seeing	non-
standard	MAC	addresses	in	the	network,	connect	Wireshark	with	port	mirror	to
their	source	and	start	the	capture.

How	to	do	it...
To	look	for	ARP/MAC-based	attacks,	follow	these	steps:

1.	 Connect	Wireshark	to	any	port	on	the	network.
2.	 Look	for	massive	ARP	broadcasts.	Since	ARP	requests	are	broadcasts,	they

will	be	distributed	in	the	entire	layer-2	network	(that	is,	on	a	single	VLAN).
In	the	following	screenshot,	you	can	see	a	typical	ARP-scan	pattern.	It's
important	to	note	that	this	ARP	scan	can	be	an	application	that	works	this
way,	for	example,	SNMP	software	that	discovers	the	network	and	router
that	uses	gratuitous	ARP.	It	is	a	problem	only	if	it	comes	from	an
unidentified	source.

3.	 There	are	also	some	suspicious	MAC	patterns.	You	can	identify	them	when
you	see:

Two	identical	MAC	addresses	with	different	IP	addresses.	It	can	be
two	IP	addresses	configured	on	the	same	network	adapter,	which	is
OK,	but	it	can	also	be	an	attack	pattern	in	which	someone	has	changed
its	MAC	address	to	the	MAC	address	of	a	server	(can	be	performed	in
every	adapter).
The	case	mentioned	above	can	also	indicate	a	man-in-the-middle
attack	as	mentioned	in	the	ARP	poisoning	and	man-in-the-middle
attacks	section	in	Chapter	8,	ARP	and	IP	Analysis.

How	it	works...
ARP	sends	broadcasts	to	the	network	asking	for	the	MAC	address	of	a	specific
IP	destination.	Anything	that	is	not	according	to	this	pattern	should	be
considered	malicious.

There's	more...
ARP	requests	can	also	come	from	the	SNMP	software	that	discovers	the	network
(auto-discovery	feature),	the	DHCP	server	that	sends	gratuitous	ARP,	and	so	on.
Whenever	you	see	ARP	scanning	something,	it	is	not	necessarily	a	problem;	the
question	is	who	sends	them.	You	can	find	more	information	on	the	ARP	process
in	Chapter	8,	ARP	and	IP	Analysis.

Discovering	ICMP	and	TCP
SYN/Port	scans
Scanning	is	the	process	of	sending	packets	to	network	devices	in	order	to	see
who	is	answering	the	ping	requests,	to	look	for	listening	TCP/UDP	ports,	and	to
find	which	types	of	resources	are	shared	on	the	network	including	system	and
application	resources.

Getting	ready
A	scanning	attack	is	usually	detected	by	users	complaining	about	slow	network
responses,	management	systems	that	discover	unusual	load	on	servers	or
communication	lines,	and	when	the	attack	is	implemented	also	by	Security
Information	and	Event	Management	Systems	(SIEM)	that	identifies
suspicious	usage	patterns.	In	these	cases,	locate	the	Wireshark	with	port	mirror
as	close	as	possible	to	the	area	that	you	suspect	is	infected,	and	start	capture.

How	to	do	it...
To	discover	the	problem,	follow	these	steps:

1.	 Start	Wireshark	with	capture	on	the	interface	that	is	close	to	the	problem:
If	the	line	to	the	Internet	becomes	slow,	port	mirror	the	line
If	a	server	becomes	slow,	port	mirror	the	server
If	remote	offices	become	slow,	port	mirror	the	lines	to	them

If	you	see	that	Wireshark	does	not	respond,	it	is	probably	because	you	have	a
very	strong	attack	that	generates	thousands	or	more	packets	per	second;	so,
Wireshark	(or	your	laptop)	cannot	process	them.	In	this	case,	stop	Wireshark
(with	Ctrl+Alt+Del	in	Windows	or	with	the	kill	command	in	Unix	if	necessary)
and	configure	it	to	capture	multiple	files	(described	in	the	Starting	the	capture	of
data	recipe	in	Chapter	1,	Introducing	Wireshark)
There	are	various	patterns	that	you	might	see,	all	of	them	with	the	same

behavior—	massive	scanning,	ICMP	or	TCP	in	most	of	the	cases,	but	also	other
types.	The	best	way	to	understand	all	is	to	see	them	with	some	examples.
In	the	following	diagram,	you	see	a	network	that	was	under	attack.	Users	from

all	the	remote	sites	complained	about	a	very	slow	network.	They	were	all
accessing	servers	on	the	center	on	the	left-hand	side	of	the	diagram.

What	I	got	when	I	connected	Wireshark	to	a	remote	site	(as	illustrated
below)	was	many	ICMP	requests	(3),	coming	from	the	LAN	192.168.110.0
(1)	to	random	destinations	(2).	Was	it	random?

Also,	look	at	the	time	between	packets.	If	scanned,	it	will	usually	be	very
short.
When	you	go	to	Statistics	|	Conversations,	you	will	see	something
interesting:	

When	we	sort	the	table	by	address	A	(1),	we	see	a	pattern	of	ICMP	requests
coming	from	various	addresses	on	the	network	192.168.110.0	(here,	we	see	a
very	small	part	of	it,	that	is,	192.168.110.12	scans	the	network).
This	worm	simply	scans	the	network	with	ICMP	requests.	The	moment

someone	answers,	the	worm	infects	him/her	also,	and	after	a	few	minutes,	all
communication	lines	are	blocked	with	ICMP	requests	going	out	of	the	remote
offices.

Tip

Conclusion

When	you	see	a	massive	number	of	pings	scanning	on	a	communication	channel
or	link,	that	is,	thousands	and	more	pings,	check	for	the	problem.	It	can	be	the
SNMP	software	discovering	the	network,	but	it	can	also	be	a	worm	that	will
flood	your	communications	line	or	server	links	(or	both).

Another	common	type	of	scan	is	the	TCP-SYN	scan.	In	this	case,	the	attacker
scans	random	TCP	ports	with	TCP-SYN	packets	waiting	for	someone	to	answer
with	SYN-ACK.	The	moment	it	happens,	there	are	two	options:

The	attacker	will	continue	to	send	SYN	packets	and	receive	the	SYN-
ACKs,	thus	leaving	many	half-open	connections	on	the	device	under	attack
The	attacker	will	answer	with	ACK,	thus	initiating	the	connection,	and

leave	it	open	as	in	DoS/DDoS	attacks	or	try	to	harm	the	device	under	attack
with	this	connection

The	TCP-SYN	scan	will	look	like	one	of	the	patterns	in	the	following
screenshots:

You	will	see	many	SYN	packets	without	any	response	from	the	node	under
attack.

You	will	see	many	SYN	packets	when	a	TCP	RST	packet	is	sent	as	a
response	to	each	one	of	them.	This	is	usually	when	you	have	a	firewall	on
the	device	that	is	under	attack	or	will	be	attacked.

You	can	also	have	consecutive	SYN	and	RST	packets.	When	there	is	a	port
number	that	is	opened,	you	will	see	the	complete	SYN/SYN-ACK/ACK
when	the	scanner	opens	connection	to	the	victim.	This	is	illustrated	in	the
following	screenshot:

Always	look	for	unusual	traffic	patterns.	Too	many	ICMP	requests,	for
example,	are	a	good	indication	for	scanning.	Look	for	multiple	ICMP	requests	to
clients,	ICMP	timestamp	request,	ICMP	in	ascending	or	descending	order,	and	so
on.	These	patterns	can	indicate	malicious	scanning.

When	you	suspect	a	scan,	click	on	the	title	of	the	destination	(address),	and
you	will	get	the	packet	list	sorted	by	the	destination	address.	In	this	way,	it
will	be	easier	to	see	the	scan	patterns.
In	the	following	screenshot,	you	see	an	example	of	this	scenario:

In	the	case	of	application	scanning,	you	can	have	various	types	of	scans:
NetBIOS	scans:	It	looks	for	massive	scanning	of	NetBIOS	ports
HTTP:	It	looks	for	SYN	requests	to	HTTP	port	80	with	HTTP	requests
later	on
SMTP:	It	looks	for	massive	scanning	on	the	TCP	port	25
SIP:	It	looks	for	massive	requests	on	port	5060

Other	types	of	applications	are	scanned	according	to	their	port	numbers

How	it	works...
The	majority	of	scanners	work	in	several	steps:	ARP	scanning,	ICMP,	and	then
TCP	or	UDP.	The	principle	is	simple:

If	the	scanner	is	on	the	LAN,	it	sends	an	ARP	broadcast	to	the	entire	LAN.
The	scanner	sends	ICMP	requests.	Some	of	the	ICMP	requests	will	be
answered.
When	someone	answers	the	ARP	or	ICMP	request,	it	goes	up	to	TCP	and
UDP	and	starts	scanning	the	layer-4	ports.	When	the	scanner	finds	out	that	a
port	is	open,	it	starts	with	application	scanning.
In	application	scanning,	the	scanner	sends	commands	to	the	applications,
trying	to	get	the	application	to	answer,	and	in	this	way,	try	to	break	into	it.

There's	more...
Most	of	the	modern	intrusion	detection/prevention	systems	(IDS/IPS)	in	the	last
several	years	know	how	to	deal	with	ICMP	scans,	TCP	SYN	scans,	and	various
types	of	scans	that	generate	massive	traffic	of	standard,	well-known	attack
patterns.	In	case	you	have	such	a	system	and	you	connect	to	the	Internet	with	an
ISP	that	has	their	systems,	you	are	probably	protected	from	these	simple	types	of
attacks.

These	systems	usually	work	in	two	ways:

NetFlow/Jflow-based	IDS/IPS	that	identifies	massive	traffic	coming	from
several	sources;	they	neutralize	it	by	blocking	it	or	changing	the	routing
tables	to	disable	these	packets	from	getting	to	the	ISP	network
Content-based	IDS/IPS	that	looks	at	the	traffic	patterns	and	accordingly
decides	whether	to	forward	it	or	not

Attacks	coming	from	the	internal	network	are	not	filtered	by	the	external
devices,	and	therefore,	are	even	more	common.	There	are	more	sophisticated
types	of	attacks	that	will	be	discussed	in	the	Locating	smart	TCP	attacks	recipe
later	in	this	chapter.

The	way	to	prevent	attacks	coming	from	the	Internet	is	to	connect	through	an
ISP	with	efficient	IDS/IPS	systems	along	with	using	one	of	your	own.	The	way
to	prevent	attacks	coming	from	the	internal	network	is	to	implement
organizational	security	policy	along	with	appropriate	protection	software	such	as
antivirus	and	personal	firewalls.

See	also
In	the	previous	section,	I've	mentioned	the	issue	of	organizational	security
policy,	that	is,	how	to	implement	a	set	of	rules	for	securing	your	organization.
Further	information	on	this	subject	is	widely	available	on	the	Internet.	Some
interesting	websites	that	cover	this	area	are:

http://www.cert.org/work/organizational_security.html
http://www.praxiom.com/iso-17799-4.htm
http://www.sans.org/reading-room/whitepapers/policyissues/1331.php
http://www.sans.org/security-resources/policies/

http://www.cert.org/work/organizational_security.html
http://www.praxiom.com/iso-17799-4.htm
http://www.sans.org/reading-room/whitepapers/policyissues/1331.php
http://www.sans.org/security-resources/policies/

Discovering	DoS	and	DDoS	attacks
Denial	of	Service	(DoS)	and	Distributed	Denial	of	Service	(DDoS)	are	attacks
that	intend	to	deny	users	from	accessing	network	services.	Services	that	can	be
denied	to	users	can	be:

Communication	lines:	This	will	usually	be	done	by	generating	traffic	that
floods	and	blocks	the	communications	line
Applications	and	services	(web	services,	mail	services,	and	so	on):	This
will	usually	be	done	by	loading	a	server	to	a	point	at	which	it	will	not	be
able	to	serve	clients'	requests

DoS/DDoS	attacks	can	be	a	result	of	scanning	that	we	talked	about	in	the
previous	recipe.	The	difference	is	that	DoS/DDoS	is	a	scan	that	slows	down	a
server	or	a	network	in	a	way	that	denies	user	access.

In	this	recipe,	we	will	see	some	common	DoS/DDoS	patterns,	and	learn	how	to
identify	and	block	them.

Getting	ready
DoS/DDoS	are	usually	discovered	when	one	of	the	network	resources,	that	is,
communications	lines	or	servers	becomes	very	slow	and	is	also	not	functioning.

When	you	identify	such	a	resource,	connect	Wireshark	with	port	mirror	to	this
device	and	start	packet	capture.	In	this	recipe,	we	will	go	through	some	common
DoS/DDoS	attacks	and	their	signatures.

How	to	do	it...
Connect	Wireshark	to	the	network	with	port	mirror	to	the	port	of	the	resource
that	you	suspect	is	exposed	to	DoS/DDoS.	Usually,	it	will	be	a	server	that
becomes	very	slow,	a	communication	line	that	becomes	very	loaded,	or	any
other	resource	that	stops	functioning	or	becomes	very	slow.

1.	 When	a	communication	line	becomes	very	slow,	for	example,	a	connection
to	the	Internet,	connect	Wireshark	with	port	mirror	to	this	line.
1.	 Try	to	locate	where	the	traffic	comes	from.
2.	 I've	port	mirrored	the	server,	and	this	is	what	I	got:

3.	 We	see	source	addresses	in	the	ascending	order,	generating	traffic	to
the	Internet	address	94.23.71.12.

Tip

When	you	look	at	the	time	column	that	is	configured	with	"time	since
the	previously	displayed	packet",	you	see	that	there	are	11-12	micro-
seconds	between	frames.	When	you	see	TCP-SYN	coming	at	this	rate,
something	is	wrong.	Check	what	it	is!

4.	 Since	the	source	addresses	are	unknown,	I've	checked	their	MAC
address.	What	I	got	was:

5.	 The	problem	was	that	all	source	addresses	came	from	a	single	MAC
address;	so	I	checked	their	MAC	addresses,	and	all	IP	addresses	came
from	a	single	MAC	address,	the	MAC	address	of	the	server.

Tip

Conclusion

Check	for	SYN	scans,	and	verify	which	IP	and	MAC	addresses	they
are	coming	from.	It	can	be	that	a	worm	is	generating	source	addresses
that	are	not	the	addresses	of	the	host.

2.	 Another	example	can	be	a	simple	SYN	scan	that	comes	from	a	single
attacker,	as	seen	in	the	next	illustration.	Look	for	SYN	and	watch	the	port
numbers	that	they	are	scanning.	You	might	see:

No	response
Reset	packet
SYN-ACK	response

3.	 There	can	be	various	consequences	to	this	type	of	attack:
In	case	of	no	response	or	reset	response,	the	attacked	server	is
functioning	well.	In	case	the	server	answers	with	a	SYN-ACK
response,	it	might	be	a	risk	to	the	server.
The	risk	is	that	if	too	many	connections	will	be	opened	(SYN/SYN-
ACK/ACK)	or	half	opened	(SYN/SYN-ACK),	the	server	might	get
slow	due	to	these	connections.
You	can	see	a	typical	TCP	SYN	attack	in	the	following	illustration.	A
SYN	attack	becomes	DoS/DDoS	when	it	blocks	a	communication	line

or	loads	a	server	to	the	point	that	it	stops	functioning.

How	it	works...
Denial	of	Service	is	an	attack	that	denies	the	use	of	a	network	service.	The	way
to	do	this	is	by	causing	the	device	under	attack	to	allocate	hardware	resources
(CPU,	memory,	and	so	on)	to	the	attacker	so	that	nothing	is	left	for	the	users.

Denial	of	Service	is	when	there	is	an	attack	on	a	network	resource.	Distributed
DoS	is	when	the	attack	is	coming	from	multiple	sources.

There's	more...
DoS/DDoS	attacks	are	sometimes	hard	to	discover	since	they	can	simulate	a	real
situation.	For	example:

1.	 Ping	scans	that	can	also	come	for	management	systems.
2.	 HTTP	GET	requests	that	are	the	normal	requests	that	are	accepted	by	web

servers.
3.	 SNMP	GET	requests.

These	and	many	others	should	be	monitored	for	their	quantity	and	sources	in
order	to	discover	a	problem.	In	the	following	screenshot,	we	see	what	we	get
when	we	follow	a	specific	TCP	stream.

	

Locating	smart	TCP	attacks
Another	type	of	attack	is	when	you	send	unknown	TCP	packets,	hoping	that	the
device	under	attack	will	not	know	what	to	do	with	them	and	hopefully	pass	them
through.	These	types	of	attacks	are	well	known,	and	blocked	by	most	of	the
modern	firewalls	that	are	implemented	in	networks	today;	but	still,	I	will	tell	you
about	them	in	brief.

Getting	ready
What	I	usually	do	when	I	get	to	a	new	network	is	connect	my	laptop	to	the
network	and	see	what	is	running	over	it.	First,	I	just	connect	it	to	several
switches	and	see	the	broadcasts.	Then	I	configure	port	mirror	to	critical	servers
and	communications	lines	and	look	at	what	is	running	over	it.

To	look	for	unusual	traffic,	port	mirror	communications	links	and	central	servers,
and	check	for	unusual	traffic	patterns.

How	to	do	it...
The	traffic	patterns	you	should	look	for	are:

ACK	scanning:	Multiple	ACKs	are	sent	usually	to	multiple	ports	in	order	to
break	the	existing	TCP	connections.

Unusual	flags	combinations:	This	refers	to	anything	with	a	URG	flag,	FIN
and	RST,	SYN-FIN,	and	so	on.	Unusual	flags	combinations	are	not	the
usual	SYN,	FIN	or	RST,	with	or	without	ACK.	In	the	following	screenshot,
you	see	an	example	of	this	scenario.	The	operations	FIN/PSH/URG	are
together	called	Xmas	scan.

TCP	scans	with	all	flags	set	to	"0".	This	scan	is	called	Null	scan.

Massive	FIN-ACK	scanning:	Large	amount	of	packets	with	FIN	and	ACK
flags	set	to	"1"	are	sent	to	multiple	ports	in	order	to	cause	them	to	be	closed
or	just	to	flood	the	network.

How	it	works...
There	are	many	types	of	TCP	scans	based	on	the	assumption	that	when	we	send
target	RST	or	FIN	flags	(with	or	without	an	ACK)	that	scan	various	port
numbers,	we	will	cause	the	target	to	close	connections,	and	when	we	send
unusual	combinations	of	flags	to	it,	it	will	make	the	target	busy.	This	will	cause
it	to	slow	down	and	drop	the	existing	connections.

Most	of	these	scans	are	well	known	and	well	protected	against	firewalls	and
intrusion	detection/preventions	systems.

There's	more...
You	can	also	configure	pre-defined	filters	to	catch	these	types	of	attacks,	but	the
best	thing	to	do	while	suspecting	such	an	event	is	to	go	through	the	captured	data
and	look	for	unusual	data	patterns.

See	also
For	scan	types,	go	to	the	Nmap.org	web	page:

http://nmap.org/book/man-port-scanning-techniques.html

http://Nmap.org
http://nmap.org/book/man-port-scanning-techniques.html%20

Discovering	brute-force	and
application	attacks
The	next	step	in	network	attack	is	to	understand	the	various	types	of	brute-force
attacks.	A	brute-force	attack	is	a	trial-and-error	method	used	to	obtain
information	from	the	victim,	for	example,	trying	to	find	organizational	servers,
user	directories,	and	crack	passwords.

Getting	ready
Brute-force	attacks	usually	will	not	produce	non-standard	loads	on	the	network,
and	the	way	they	are	discovered	is	usually	by	IDS	systems	or	when	there	is	a
suspicion	that	someone	is	trying	to	hack	into	the	network.	In	this	recipe,	we	will
learn	how	to	identify	typical	brute-force	attacks.

How	to	do	it...
When	you	suspect	a	brute-force	on	the	network,	follow	these	steps	to	locate	it.

1.	 Connect	Wireshark	with	port	mirror	to	the	port	in	the	server	that	you
suspect	is	under	attack.

2.	 For	DNS	brute-force	attacks,	look	for	DNS	queries	that	are	asking	for
common	names	under	your	domain.	For	example,	in	the	following
illustration,	you	can	see	a	scan	for	ISP	servers.	We	can	see	DNS	queries	to
common	names	such	as	dns	(1)	and	dns2—a	record	for	IPv4	(2)	and	a
record	for	IPv6	(3),	and	intranet—a	record	for	IPv4	(4)	and	a	record	for
IPv6	(5).
1.	 In	the	case	of	dns.icomm.co	(1),	we	got	a	reply;	in	all	other	cases,	we

did	not.
2.	 Many	queries	with	no	response	can	indicate	a	DNS	brute	attack,	but

also	indicate	someone	who	is	looking	for	a	server	that	does	not	exist.
Look	at	the	source	address	to	see	where	it	is	coming	from.

3.	 Another	brute-force	attack	to	watch	out	for	is	HTTP	trying	to	find	resources
on	the	server.
1.	 To	look	for	HTTP	scanning,	look	for	the	scanner's	signature	in	the

packet	details,	as	seen	in	the	following	screenshot.

2.	 Also,	look	for	too	many	HTTP	error	messages.	Some	examples	are
illustrated	in	the	following	screenshot.	Choose	Statistics	|	HTTP	|
Packet	Counter	|	PC.	If	you	get	too	many	error	messages,	check	for
their	source.

How	it	works...
Brute-force	attacks	are	trial	and	error	attacks	that	send	requests	to	the
destination,	hoping	that	some	of	them	will	be	answered.	Since	most	of	these
requests	will	be	denied	(if	you've	configured	your	servers	properly),	a	large
amount	of	Not	Found	messages,	forbidden	messages,	and	other	error	codes	can
be	some	of	the	syndromes	for	such	an	attack.

There's	more...
For	discovering	HTTP	error	codes,	configure	the	display	filter
http.response.code	>=	400.	The	same	applies	to	SIP	and	any	protocol	that
uses	HTTP-like	codes.	To	find	known	scanners,	you	can	simply	use	the	Edit	|
Find	packet	feature	and	look	for	common	scanner	names.	In	the	following
screenshot,	you	can	see	an	example	for	Nmap,	which	is	one	of	the	common
ones.	We	chose	the	string	nmap.org	(1)	in	Packet	bytes	(2).

And	this	is	what	we	got:	

Another	important	issue	is	brute	force	attack,	that	is,	when	the	attacker	tries	to
guess	the	password	in	order	to	break	into	a	server.

In	the	following	screenshot,	you'll	see	what	happens	when	an	attacker	tries	to
break	into	a	well-protected	FTP	server.

1.	 Since	it	is	FTP,	the	first	trial	is	with	username	anonymous	(1),	a	password
chosen	by	the	attacker	(2),	login	is,	of	course,	approved	(3),	and	the	attacker
gets	in	(4).

2.	 In	the	following	screenshot,	you	see	what	happens	when	the	attacker	tries
other	usernames	that	are	not	authorized.

3.	 Here,	you	can	see	that	the	attacker	is	trying	to	login	with	the	usernames
root	(1),	admin	(2)	and	administrator	(3).

4.	 The	attacker	is	blocked,	and	the	server	sends	a	TCP	Zero-Window

message	and	even	answers	by	saying	you	could	at	least	say	goodbye.

Appendix	A.	Links,	Tools,	and
Reading
In	this	appendix	I	would	like	to	refer	to	some	useful	links	from	which	you	can
get	further	information	about	Wireshark:	learning	sources,	additional	software,
and	so	on.

Useful	Wireshark	links
The	main	Wireshark	link	is	of	course	http://www.wireshark.org.	Here	you	can
find:

The	downloads	page	at	http://www.wireshark.org/download.html.
The	learning	page	at	http://www.wireshark.org/docs/.
And	what	is	called	the	Enhancement	area	at
http://www.riverbed.com/products-solutions/products/performance-
management/wireshark-enhancement-products/.	This	is	a	link	to	Riverbed,
who	acquired	CACE	Technologies,	the	primary	sponsor	of	Wireshark,	and
became	the	main	sponsor;	they	now	develop	and	sell	commercial	add-ons.
As	open	source	software,	Wireshark	development	resources	are	located
under	http://www.wireshark.org/docs/wsdg_html_chunked/	or
http://www.wireshark.org/develop.html

Also	some	other	useful	links	are:

The	Wireshark	graphical	user	interface	was	created	using	GTK+,	or	the
GIMP	toolkit,	an	open	source	kit	that	can	be	found	on	the	GTK+	project
web	page	at	http://www.gtk.org/
For	WinPCap	(the	Windows	capture	driver),	go	to	www.winpcap.org,	and
for	remote	monitoring	go	to
http://www.winpcap.org/docs/docs_40_2/html/group__remote.html#Config

http://www.wireshark.org
http://www.wireshark.org/download.html
http://www.wireshark.org/docs/
http://www.riverbed.com/products-solutions/products/performance-management/wireshark-enhancement-products/
http://www.wireshark.org/docs/wsdg_html_chunked/
http://www.wireshark.org/develop.html
http://www.gtk.org/
http://%20www.winpcap.org
http://www.winpcap.org/docs/docs_40_2/html/group__remote.html#Config

tcpdump
tcpdump	is	free	Unix-based	software	that	runs	under	the	Unix/Linux	command
line.	Some	of	the	useful	resources	for	it	are:

The	tcpdump	website:	http://www.tcpdump.org/
The	Windows	version	of	tcpdump	(Windump):
http://www.winpcap.org/windump/default.htm
A	friendly	tutorial:	http://danielmiessler.com/study/tcpdump/
The	official	man	page:	http://www.tcpdump.org/tcpdump_man.html

Wireshark	can	open	tcpdump	files,	so	when	you	capture	packets	with	tcpdump,
you	can	later	open	it	with	Wireshark	or	any	other	graphical	tool.

http://www.tcpdump.org/
http://www.winpcap.org/windump/default.htm
http://danielmiessler.com/study/tcpdump/
http://www.tcpdump.org/tcpdump_man.html

Some	additional	tools
Although	Wireshark	is	by	far	the	most	common	network	analysis	tool	on	the
market,	there	are	also	many	other	network	troubleshooting	tools	that	I	use	a	lot.
Before	getting	into	the	details,	I	would	like	to	go	back	some	years	to	one	of	the
funniest	network	problems	I've	ever	had.	The	case	itself	was	very	simple,	but	it
comes	with	an	important	lesson.	It	had	to	do	with	a	network	in	a	warehouse	of	a
big	hospital.	The	warehouse	workers	were	equipped	with	wireless	terminals,
taking	medication	as	needed	and	conveying	it	to	the	various	departments	of	the
hospital.	The	problem	was	that	all	the	terminals	worked	very	slowly.	They	called
an	integration	company	to	help	them	with	the	problem,	and	these	guys	came	in
with	every	piece	of	troubleshooting	equipment	ever	made.	They	came	with
Wireshark,	Sniffer,	wireless	analyzers,	spectrum	analyzers,	and	many	other
boxes.	I	went	there,	and	when	I	saw	what	they	were	doing,	I	told	them	that	they
forgot	to	bring	one	important	thing,	their	heads.	If	they	had	used	them,	they
would	have	discovered	that	the	problem	was	a	bad	RJ45	cable	from	the
warehouse	to	the	hospital's	main	network	50	meters	from	there.

The	conclusion	is	very	simple	of	course.	Tools	are	just	tools.	Without	the
knowledge	of	networking	and	where	to	use	them,	they	will	not	help	you.	In	this
section	I	would	like	to	bring	in	some	additional	tools,	and	where	to	use	them.

Note

What	I	bring	here,	along	with	other	examples	in	the	book,	are	devices	and
software	tools	that	I've	worked	with	over	the	years.	Some	of	them	are	freeware
and	some	are	commercial	products.	It	is	important	to	note	that	their	descriptions
come	from	my	own	experience.	I	don't	have	a	commercial	or	any	other	interest
in	any	of	them.

SNMP	tools
The	first	sets	of	tools	that	I	usually	use	to	solve	a	problem	are	SNMP	tools.
There	are	tools	with	strong	mapping	capabilities,	there	are	some	with	good
statistical	capabilities,	and	there	are	some	with	good	logging	and	events
capabilities.

First,	in	order	to	just	monitor	SNMP	counters,	you	can	use	simple	free	MIB
browsers	and	graphical	tools	such	as:

Vendor Software
name Where	to	download Notes License

Manage
engine

MibBrowser http://www.manageengine.com/products/mibbrowser-
free-tool/

Very	friendly
with	minimal
configuration.

Free

Open
source

MRTG http://oss.oetiker.ch/mrtg/ Requires	time
and
knowledge	to
install	and
configure.
Good	for
long-term
statistics.
Commonly
used	by	ISPs
as	a	console
for	their
customers.

Free	with
up	to	10
sensors
(*1);
Commercial
from	11
sensors

SolarWinds Network
device
monitor

http://www.solarwinds.com/products/freetools/network-
device-monitor/

Solarwinds	is
one	of	the
leaders	in
network
management
tools,	and
along	with
the
commercial
stuff,	you	can
find	many
free	tools.

Free

http://www.manageengine.com/products/mibbrowser-free-tool/
http://oss.oetiker.ch/mrtg/
http://www.solarwinds.com/products/freetools/network-device-monitor/

SolarWinds
Engineering
toolset

Engineer's
Toolset

http://www.solarwinds.com/engineers-toolset.aspx Various	tools
for	network
monitoring,
discovery,
SNMP,
configuration,
basic
scanners	and
more.

Free	with
limited
capabilities;
Commercial
with	full
capabilities

http://www.solarwinds.com/engineers-toolset.aspx

SNMP	platforms
SNMP	platform	are	pieces	of	software	that	provide	a	central	console	that	shows
a	map	of	the	network,	collects	information	and	presents	statistical	reports,	and
collects	SNMP	events	and	presents	them	by	severity	and	other	parameters.

Some	of	the	common	tools	in	this	category	are:

Vendor Software
name Where	to	download Notes

Castlerock
Computing

SNMPc http://www.castlerock.com/ This	is	one
of	the
friendliest
SNMP	tools
that	I	have
worked	with
for	more
than	a
decade.	The
SNMP
management
platform	is
very	easy	to
use	and	is
great	for
network
debugging.

SolarWinds Assorted http://www.solarwinds.com/network-management-software.aspx SolarWinds
has	various
tools	that
provide
monitoring,
mapping,
configuration
management
and	other
network
management
capabilities.
These	are
some	of	the
best	options
available	but

http://www.castlerock.com/
http://www.solarwinds.com/network-management-software.aspx

are
expensive.

Manageengine Assorted http://www.manageengine.com/network-performance-
management.html

Various	tools
that	provide
monitoring,
mapping,
configuration
management
and	other
network
management
capabilities.
One	of	the
best	but
expensive.

HP IMC,
NNM,	and
so	on

http://h17007.www1.hp.com/us/en/networking/solutions/network-
management/index.aspx#.UkgqGT8YhyI

This	is	a
great
platform.	HP
made	it
much
friendlier
than
previous
Network
Node
Manager
(NNM)
software.	It
is	definitely
worth
checking	out.

OpenNMS OpenNMS http://www.opennms.org/ It	is	open
source	but
requires
know-how	of
how	to
configure	it.

Nagious Nagious http://www.nagios.org/ It	is	open
source	but
requires	a
knowledge
to	configure
it.

http://www.manageengine.com/network-performance-management.html
http://h17007.www1.hp.com/us/en/networking/solutions/network-management/index.aspx#.UkgqGT8YhyI
http://www.opennms.org/
http://www.nagios.org/

There	are	many	others	tools,	such	as:

The	open	source	Cacti	(http://www.cacti.net/)
Zabbix	(http://www.zabbix.com/)
MRTG	(http://oss.oetiker.ch/mrtg/)
Some	others	(some	under	the	GNU	public	license).

There	are	the	"heavyweight"	suites,	such	as:

The	HP	OpenView	suite	of	management	applications
(http://www8.hp.com/us/en/software-solutions/software.html?
compURI=1174702#tab=TAB1)
CA	Unicenter	(http://www.ca.com/us/network-performance-
management.aspx)

There	are	also	other	medium-sized	platforms,	various	tools	from	Plixer
(http://www.plixer.com/),	and	many	others.

For	network	monitoring	and	troubleshooting	you	will	need	the	very	basic	tools,
while	as	a	platform	you	will	need	a	more	sophisticated	one.	You	can	find	a	nice
comparison	of	management	platform	on
http://en.wikipedia.org/wiki/Comparison_of_network_monitoring_systems.

http://www.cacti.net/
http://www.zabbix.com/
http://oss.oetiker.ch/mrtg/
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1174702#tab=TAB1
http://www.ca.com/us/network-performance-management.aspx
http://www.plixer.com/
http://en.wikipedia.org/wiki/Comparison_of_network_monitoring_systems

The	NetFlow,	JFlow,	and	SFlow	analyzers
NetFlow	from	Cisco	(www.cisco.com/go/netflow)	and	JFlow	from	Juniper
(http://www.juniper.net/techpubs/software/erx/junose82/swconfig-ip-
services/html/ip-jflow-stats-config2.html)	provide	a	method	for	collecting
TCP/IP	traffic	flow	statistics	on	your	routing	devices.

SFlow	(http://en.wikipedia.org/wiki/Sflow	and	http://www.sflow.org/index.php)
is	an	industry	standard	technology	for	monitoring	high-speed	switched	networks.

The	differences	between	them	are:

NetFlow	applies	to	Cisco	routers	and	L3	switches.	In	layer-3	switches
make	sure	that	they	support	NetFlow	(depends	on	software	version	and
hardware).	In	some	cases,	you	will	need	additional	software/hardware	for
this.	It	was	standardized	by	RFC3954	(http://www.ietf.org/rfc/rfc3954.txt).
JFlow	applies	to	Juniper	routers	and	L3	switches.
SFlow	is	a	standard	for	monitoring	LAN	switches	and	was	standardized	by
RFC3176	(http://tools.ietf.org/html/rfc3176).
IPFIX	(RFCs	5101	and	5102)	is	a	standard	developed	from	NetFlow	v9,
and	standardized	by	the	IETF.

All	Flow/IPFIX	technologies	are	based	on	the	communications	device	that
collects	the	flow	data	from	the	interfaces	and	sends	them	to	the	management
station.	They	require	a	simple	configuration	on	the	router	or	switch	and	software
to	collect	the	data	and	present	it.

This	software	can	be	used	for	monitoring	which	users	are	causing	a	load	on	the
network	(displayed	according	to	IP	addresses	or	DNS	names),	on	which
applications	(HTTP,	SMTP,	and	so	on,	displayed	according	to	their	port
numbers),	web	pages	(displayed	according	to	their	IP	addresses,	translated	to
DNS	names),	and	other	such	criteria.	While	Wireshark	is	usually	used	for	this
purpose	in	short-term	monitoring	(the	Conversations	feature),	these	tools	can	be
used	for	long-term	monitoring	as	well.

Some	common	software	options	include:

http://www.plixer.com/Scrutinizer-Netflow-Sflow/scrutinizer-flow-
analyzer.html	from	Plixer

http://www.cisco.com/go/netflow
http://www.juniper.net/techpubs/software/erx/junose82/swconfig-ip-services/html/ip-jflow-stats-config2.html
http://en.wikipedia.org/wiki/Sflow
http://www.sflow.org/index.php
http://www.ietf.org/rfc/rfc3954.txt
http://tools.ietf.org/html/rfc3176
http://www.plixer.com/Scrutinizer-Netflow-Sflow/scrutinizer-flow-analyzer.html

http://www.sevone.com/technologies/NetFlow-analysis	from	SevOne

There	are	freeware	tools,	and	there	are	commercial	tools	with	free	limited
capabilities	versions	(usually	limited	by	the	number	of	interfaces	they	can
monitor);	in	commercial	SNMP	platforms,	you	usually	have	a	free	license	for
two	to	five	interfaces.

http://www.sevone.com/technologies/NetFlow-analysis

HTTP	debuggers
HTTP	debuggers	are	tools	that	provide	statistical	and	detailed	data	about	HTTP.
Here	are	some	tools	for	this:

Vendor Software
name Where	to	download Notes

Eric
Lawrence
and
Telerik

Fiddler http://fiddler2.com/ The	most	common	freeware	HTTP	debugging	tool,
this	works	as	a	separate	software	that	captures
packets	and	analyzes	them	(such	as	Wireshark).

Simtec
Limited

HTTPWatch http://www.httpwatch.com/ This	is	available	in	basic	limited	and	commercial
editions.	Available	as	an	add-on	to	Firefox	or
Internet	Explorer.	Files	can	be	opened	with	HTTP
Watch	Studio.	Available	also	for	iPhone	iOS.

What	you	will	get	with	these	tools	is	HTTP	statistical	and	performance
information,	for	example,	how	much	time	it	took	to	open	a	web	page,	the
reasons	for	delays,	and	error	summaries.

http://fiddler2.com/
http://www.httpwatch.com/

Syslog
Syslog	(https://tools.ietf.org/html/rfc5424)	is	a	protocol	for	message	logging.
There	are	many	parameters	on	communication	devices	that	can	be	configured,	so
in	cases	where	a	problem	occurs,	a	message	will	be	sent	to	the	Syslog	server.
These	are	usually	hardware-	and-	software-	based	problems	that	are	not	always
covered	by	SNMP.

A	great	Syslog	server	(that	receives	the	messages	and	presents	them)	can	be
found	at	http://www.kiwisyslog.com/free-edition.aspx.	There	are	many	other
tools,	and	they	are	available	for	free	in	many	management	platforms.

https://tools.ietf.org/html/rfc5424
http://www.kiwisyslog.com/free-edition.aspx

Other	stuff
Some	other	tools	you	might	need	to	get	for	working	with	networks	are:

A	neat	tool,	Xplico,	for	extracting	application	data	contained	in	capture
files:	http://www.xplico.org/about	(freeware)
Nmap	security	scanner:	http://nmap.org/
Netcat	(nc)	for	Linux:	http://nc110.sourceforge.net/

http://www.xplico.org/about
http://nmap.org/
http://nc110.sourceforge.net/

Network	analysers
While	Wireshark	is	by	far	the	most	common	network	analysis	tool,	there	are	also
some	other	tools	that	can	be	used	in	times	of	trouble.	Some	of	them	are:

Riverbed	Cascade	suite	of	tools:	This	is	developed	by	the	Wireshark	guys
and	provides	a	graphical	analysis	of	Wireshark	files.	It	can	be	found	at
http://www.riverbed.com/products-solutions/products/performance-
management/
WildPackets	OmniPeak:	I've	used	this	in	some	cases	for	heavily	loaded
networks,	which	my	laptop	with	Wireshark	couldn't	handle.	It	has	great
statistics	tools	and	works	well	under	heavy	loads.	It	can	be	found	at
http://www.wildpackets.com/products/omnipeek_network_analyzer.

There	are	probably	more,	but	these	are	the	two	I've	worked	with	and	both	do	a
great	job.

There	is	a	simple	analysis	tool	in	some	Cisco	devices	that	comes	as	a	part	of	the
IOS.	Cisco	calls	it	Mini	Protocol	Analyzer,	and	you	can	find	it	at
https://www.cisco.com/en/US/docs/routers/7600/ios/12.2SR/configuration/guide/mpa.html

http://www.riverbed.com/products-solutions/products/performance-management/
http://www.wildpackets.com/products/omnipeek_network_analyzer
https://www.cisco.com/en/US/docs/routers/7600/ios/12.2SR/configuration/guide/mpa.html

Interesting	websites
Here	are	some	interesting	websites	that	I	use	a	lot:

First	and	most	useful	is	http://www.cisco.com,	from	where	you	can	learn
the	technologies	along	with	how	to	configure	them	in	Cisco
Many	Wireshark	files,	exercises,	and	challenges	can	be	found	at
http://www.honeynet.org/
A	summary	table	of	Wireshark	filters	can	be	found	at
http://packetlife.net/media/library/13/Wireshark_Display_Filters.pdf
Captured	and	filed	examples	can	be	found	at
http://wiki.wireshark.org/SampleCaptures
Another	interesting	Wireshark	filter	page	is
http://www.packetlevel.ch/html/tcpdumpf.html
Some	Perl	stuff	can	be	found	at	http://perldoc.perl.org/perlre.html,	and	Perl
regular	expressions	can	be	found	at
http://perldoc.perl.org/perlre.html#Regular-Expressions	and
http://www.regular-expressions.info/perl.html

http://www.cisco.com
http://www.honeynet.org/
http://packetlife.net/media/library/13/Wireshark_Display_Filters.pdf
http://wiki.wireshark.org/SampleCaptures
http://www.packetlevel.ch/html/tcpdumpf.html
http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlre.html#Regular-Expressions
http://www.regular-expressions.info/perl.html

Books
Here	is	a	list	of	some	of	the	books	I've	used	over	the	years:

To	understand	TCP/IP	basics:	TCP/IP	Illustrated,	Volume	1:	The	Protocols
(Second	Edition)	(by	Addison-Wesley	Professional	Computing	Series)
A	comprehensive,	illustrated	internet	protocol	reference,	free	on	the
Internet:	The	TCP/IP	Guide	(http://www.tcpipguide.com/)
Many	books	from	Cisco	press	are	worth	reading,	both	the	technology	and
certifications	books:	http://www.ciscopress.com/
Cisco	design	guides:	Just	Google	the	subject	you're	looking	for

http://www.tcpipguide.com/
http://www.ciscopress.com/

Part	3.	Module	3
Mastering	Wireshark

Analyze	data	network	like	a	professional	by	mastering	Wireshark	-	From	0
to	1337

Chapter	1.	Welcome	to	the	World	of
Packet	Analysis	with	Wireshark
This	chapter	provides	you	an	introduction	to	the	basics	of	the	TCP/IP	model	and
familiarizes	you	with	the	GUI	of	Wireshark	along	with	a	sample	packet	capture.
You	will	be	introduced	to	the	following	topics:

What	is	Wireshark?
How	does	it	work?
A	brief	overview	of	the	TCP/IP	model
An	introduction	to	packet	analysis
Why	use	Wireshark?
Understanding	the	GUI	of	Wireshark
The	first	packet	capture

Introduction	to	Wireshark
Wireshark	is	one	of	the	most	advanced	packet	capturing	software,	which	makes
the	life	of	system/network	administrators	easy	and	proves	its	usefulness	among
the	groups	of	security	evangelists.	Wireshark	is	also	called	a	protocol	analyzer,
which	helps	IT	professionals	in	debugging	network-level	problems.	This	tool	can
be	of	great	use	to	optimize	network	performance.

Wireshark	runs	around	dissecting	network-level	packets	and	showing	packet
details	to	concerned	users	as	per	their	requirement.	If	you	are	one	of	those	who
deals	with	packet-level	networking	everyday,	then	Wireshark	is	for	you	and	can
be	used	for	multiple	troubleshooting	purposes.

A	brief	overview	of	the	TCP/IP	model
Next,	it's	time	to	discuss	the	most	important	topic	in	the	world	of	networking.	In
order	to	understand	how	all	these	things	stick	together,	we	need	to	understand
the	basics	of	the	TCP/IP	model.	Even	the	world	of	computers	needs	a	set	of	rules
and	regulations	to	communicate,	and	this	is	taken	care	by	the	networking
protocols,	which	govern	the	transmission	of	packets/segments/frames	over	a
dedicated	channel	between	hosts.

The	TCP/IP	model	was	originally	known	as	the	DoD	model,	and	the	project	was
regulated	by	United	States	Department	of	Defense.	The	TCP/IP	model	takes	care
of	every	aspect	of	every	packet's	life	cycle,	namely,	how	a	packet	is	generated,
how	a	single	packet	gets	attached	with	a	required	set	of	information	(PDU),	how
a	packet	is	transmitted,	how	it	comes	to	life,	how	it	is	routed	through	to
intermediary	nodes	to	the	destination,	how	it	is	integrated	back	with	other
packets	to	get	the	whole	information	out,	and	so	on.

If	you	have	any	confusion	regarding	the	basics	of	networking	protocols,	I	would
recommend	that	you	do	a	quick	revision	before	proceeding	ahead,	as	this	book
requires	familiarity	with	the	TCP/UDP	protocols.	By	the	time	you	come	back,
you	will	be	able	to	visualize	and	answer	all	of	these	questions	on	your	own.

The	layers	in	the	TCP/IP	model
The	TCP/IP	model	comprises	four	layers,	as	shown	in	the	following	diagram.
Each	layer	uses	a	different	set	of	protocols	allocated	to	it.	Every	protocol	has
specific	designated	roles,	and	all	of	them	are	designed	in	such	a	way	that	they
comply	with	industry	standards.

	

The	first	layer	is	the	Application	Layer	that	directly	interacts	with	users	and
other	network-level	protocols;	it	is	primarily	concerned	with	the	representation
of	the	data	in	an	understandable	format	to	the	user.	The	Application	layer	also
keeps	track	of	user	web	sessions,	which	users	are	connected,	and	uses	a	set	of
protocols,	which	helps	the	application	layer	interface	to	the	other	layers	in	the
TCP/IP	model.	Some	popular	protocols	that	we	will	cover	in	this	book	are	as
follows:

The	Hyper	Text	Transfer	Protocol	(HTTP)
The	File	Transfer	Protocol	(FTP)
The	Simple	Network	Management	Protocol	(SNMP)

The	Simple	Mail	Transfer	Protocol	(SMTP)

The	second	layer	is	the	Transport	Layer.	The	sole	purpose	of	this	layer	is	to
create	sockets	over	which	the	two	hosts	can	communicate	(you	might	already
know	about	the	importance	of	network	sockets)	which	is	essential	to	create	an
individual	connection	between	two	devices.

There	can	be	more	than	one	connection	between	two	hosts	at	the	same	instance.
IP	addresses	and	port	numbers	together	make	this	possible.	An	IP	address	is
required	when	we	talk	about	WAN-based	communication	(in	LAN-based
communication,	the	actual	data	transfer	happens	over	MAC	addresses),	and
these	days,	a	single	system	can	communicate	with	more	than	one	device	over
multiple	channels	which	is	possible	with	the	help	of	port	numbers.	Apart	from
the	restricted	range	of	port	numbers,	every	system	is	free	to	designate	a	random
port	for	their	communication.

This	layer	also	serves	as	a	backbone	to	the	communication	between	two	hosts.
The	most	common	protocols	that	work	in	this	layer	are	TCP	and	UDP,	which	are
explained	as	follows:

TCP:	This	is	a	connection-oriented	protocol,	often	called	a	reliable
protocol.	Here,	firstly,	a	dedicated	channel	is	created	between	two	hosts	and
then	data	is	transferred.	Then,	the	sender	sends	equally	partitioned	chunks,
over	the	dedicated	channel,	and	then,	the	receiver	sends	the
acknowledgement	for	every	chunk	received.	Most	commonly,	the	sender
waits	for	a	particular	time	after	which	it	sends	the	same	chunk	again	for
assurance.	For	example,	if	you	are	downloading	something,	TCP	is	the	one
that	takes	care	and	makes	sure	that	every	bit	is	transferred	successfully.
UDP:	This	is	a	connection-less	protocol	and	is	often	termed	an	unreliable
form	of	communication.	It	is	simple	though	because	there	is	no	dedicated
channel	created,	and	the	sender	is	just	concerned	with	sending	chunks	of
data	to	the	destination,	whether	it	is	received	or	not.	This	form	of
communication	actually	does	not	hamper	the	communication	quality;	the
sole	purpose	of	transferring	the	bits	from	a	sender	to	receiver	is	fulfilled.
For	example,	if	you	are	playing	a	LAN-based	game,	the	loss	of	a	few	bytes
is	not	going	to	disrupt	your	gaming	experience,	and	as	a	result,	the	user
experience	is	not	harmed.

The	third	layer	is	the	Internet	Layer,	which	is	concerned	with	the	back	and
forth	movement	of	data.	The	primary	protocol	that	works	is	the	IP	(Internet
Protocol)	protocol,	and	it	is	the	most	important	protocol	of	this	layer.	The	IP
provides	the	routing	functionality	due	to	which	a	certain	packet	can	get	to	it's
destination.	Other	protocols	included	in	this	layer	are	ICMP	and	IGMP.

The	last	layer	is	the	Link	Layer	(often	termed	as	the	Network	Interface	Layer)
that	is	close	to	the	network	hardware.	There	are	no	protocols	specified	in	this
layer	by	TCP/IP;	however,	several	protocols	are	implemented,	such	as	Address
Resolution	Protocol	(ARP)	and	Point	to	Point	(PPP).	This	layer	is	concerned
with	how	a	bit	of	information	travels	inside	the	real	wires.	It	establishes	and
terminates	the	connection	and	also	converts	signals	from	analog	to	digital	and
vice	versa.	Devices	such	as	bridges	and	switches	operate	in	this	layer.

The	combination	of	an	IP	address	and	a	MAC	address	for	both	the	client	and
server	is	the	core	of	the	communication	process,	where	the	IP	address	is	assigned
to	the	device	by	the	gateway	or	assigned	statically,	and	the	MAC	address	comes
from	the	Network	Interface	Card	(NIC),	which	should	be	present	in	every
device	that	communicates	with	other	hosts.	As	data	progresses	from	the
Application	layer	to	the	Link	Layer,	several	bits	of	information	are	attached	to
the	data	bits	in	the	form	of	headers	or	footers,	which	allow	different	layers	of	the
TCP/IP	model	to	coordinate	with	each	other.	The	process	of	adding	these	extra
bits	is	called	data	encapsulation,	and	in	this	process,	a	Protocol	data	unit	(PDU)
is	created	at	the	end	of	the	networking	model.

It	consists	of	the	information	being	sent	along	with	the	different	protocol
information	that	gets	attached	as	part	of	the	header	or	footer.	By	the	time	PDU
reaches	the	bottom-most	layer,	it	is	embedded	with	all	the	required	information
required	for	the	real	transfer.	Once	it	reaches	the	destination,	the	embedded
header	and	footer	PDU	elements	are	ripped	off	one	by	one	as	it	passes	through
each	and	every	layer	of	the	TCP/IP	model	as	it	progresses	upward	in	the	model.

The	following	figure	depicts	the	process	of	encapsulation:	

Figure	1.1:	Data	encapsulation

	

An	introduction	to	packet	analysis
with	Wireshark
Packet	analysis	(also	known	as	packet	sniffing	or	protocol	analyzing)	is	used	to
intercept	and	capture	live	data	as	it	travels	over	the	network	(Ethernet	or	Wi-Fi)
in	order	to	understand	what	is	happening	in	the	network.	Packet	analysis	is	done
by	protocol	analyzers	such	as	Wireshark	available	on	the	Internet.	Some	of	these
are	free	and	some	are	paid	for	commercial	use.	In	this	book,	we	will	use
Wireshark	to	perform	network	analysis,	which	is	an	open	source	software	and
the	best	free-network	analyzer	available	on	the	Internet.

Numerous	problems	can	happen	in	today's	world	of	networking;	for	this,	we
need	to	be	geared	up	all	the	time	with	the	latest	set	of	tools	that	can	avail	us	of
the	ease	of	troubleshooting	in	any	situation.	Each	of	these	problems	will	start
from	the	packet	level	and	can	gradually	grow	up	to	a	high	network	downtime.
Even	the	best	of	protocols	and	services	running	on	a	system	can	go	bad	and
behave	maliciously.	To	get	to	the	root	of	the	problem,	we	need	to	look	into	the
packet	level	to	understand	it	better.	If	you	need	to	maintain	your	network,	then
you	definitely	need	to	look	into	the	packet	level.	Packet	analysis	can	be	used	for
the	following	aspects:

To	analyze	network	problems	by	looking	into	the	packets	and	their	specific
details	so	that	you	can	get	a	better	hold	over	your	network.
To	detect	network	intrusion	attempts	and	whether	there	are	any	malicious
users	who	are	trying	to	get	into	your	network,	or	they	have	already	got
access	to	something	in	your	network.
To	detect	network	misuse	by	internal	or	external	users	by	establishing
firewall	rules	in	your	security	appliance	and	then	monitoring	each	of	these
rules	through	Wireshark.
To	isolate	exploited	systems	so	that	the	affected	system	doesn't	become	a
pivot	point	for	your	network	for	malicious	users.
To	monitor	data	in	motion	once	it	travels	live	in	your	network	to	have	better
control	over	the	allowed	and	restricted	categories	of	data.	For	instance,	say
you	want	to	create	a	rule	for	your	firewall	that	will	block	the	access	to	Bit
Torrent	sites.	Blocking	access	to	them	can	be	done	from	your	manageable
router,	but	knowing	from	where	the	request	was	originated	can	be	easily

audited	through	Wireshark.
To	gather	and	report	network	statistics	by	filtering	the	most	specific	packets
as	per	your	requirements	and	then	creating	specific	capture	filters	for	your
perusal	that	can	help	you	in	the	long	run.
Learning	who	is	on	the	network	and	what	they	are	doing,	is	there	something
they	are	not	allowed	to	do,	and	is	there	anyone	who	is	trying	to	bypass	the
network	restrictions.	All	of	these	simple	day-to-day	tasks	can	be	achieved
easily	through	Wireshark.
To	debug	client/server	communications	so	that	all	the	request	and	replies
communicated	between	the	peers	on	our	network	can	be	audited	to	maintain
the	integrity	of	your	network.
To	look	for	applications	that	are	sitting	in	the	corner	of	your	own	network
and	eating	the	bandwidth.	They	might	be	making	your	network	insecure	or
making	it	visible	to	the	public	network.	Through	this	unnoticed	application,
different	forms	of	network	traffic	can	enter	without	any	restrictions.
To	debug	network	protocol	implementations	and	any	kind	of	anomalies
present	due	to	various	misconfigurations	in	the	current	running	devices.

To	identify	possible	or	malicious	attacks	that	your	network	can	be	a	victim	of,	to
analyze	them,	control/supervise	them,	and	make	yourself	ready	for	any	possible
malicious	activity.

When	performing	a	packet	analysis,	you	should	take	care	of	things	such	as
which	protocols	can	be	interpreted,	which	is	the	best	software	you	can	use
according	to	your	expertise,	which	protocol	analyzer	will	best	suit	your	network
requirement.	Experience	does	count	in	this	field;	once	you	start	working	with
Wireshark,	gradually	you	will	come	up	with	new	ideas	to	troubleshoot	and
analyze	your	packets	in	a	much	more	advanced	way.

Packet	sniffers	can	interpret	common	network	protocols	(such	as	IP	and	ICMP),
transport	layers	(such	as	TCP	and	UDP),	and	application	protocols	(such	as	DNS
and	HTTP).

Due	to	the	overwhelming	amount	of	information	presented	by	Wireshark's	GUI,
it	might	seem	complex	to	some	users	and	might	be	considered	as	one	of	its
demerits.	There	are	a	few	CUI/GUI	tools	that	can	solve	this	purpose.	They	are
pretty	simple	to	use	and	also	present	a	simpler	interface,	for	example,	TShark,
tcpdump,	Fiddler,	and	so	on.

How	to	do	packet	analysis
When	traffic	is	captured,	either	all	raw	data	is	captured	or	only	the	header	data	is
captured	without	capturing	the	total	content	of	the	packet.	Captured	information
is	decoded	from	raw	data	to	a	human-readable	form,	which	allows	users	to
understand	the	exchanged	data	between	the	networks	in	a	much	more	precise
manner.

What	is	Wireshark?
Wireshark	is	a	packet-sniffing	software	that	is	used	by	IT	professionals	all
around	the	world	for	analysis	purpose.	You	can	download	it	for	free	from
https://www.wireshark.org/download.html.

Wireshark	can	be	installed	on	a	variety	of	platforms,	including	Linux,	MAC,	and
Windows	(most	of	the	versions).	This	is	open	source	software,	which	means	that
the	code	of	the	software	and	its	required	libraries	can	be	downloaded	from	the
same	website	we	mentioned	earlier.

One	of	the	important	key	aspects	of	packet	sniffing	is	where	to	place	the	packet
sniffer	in	the	physical	network	to	achieve	the	maximum	utilization	out	of	it;
packet	sniffing	is	often	referred	to	as	tapping	into	the	wire.

Tapping	into	the	wire	is	not	just	about	starting	Wireshark	on	your	system;	there
are	a	couple	of	things	a	person	should	know	about	before	starting	the	sniffer.	For
instance,	placing	the	sniffer	at	a	proper	place	in	the	organization's	infrastructure,
having	working	knowledge	of	different	networking	devices	because	each	of	the
networking	devices	(hubs,	switches,	routers,	and	firewalls)	behave	differently.	It
is	also	important	to	know	how	each	of	them	work	and	how	network	devices
handle	network	traffic.	Placing	the	sniffer	in	the	right	place	can	impact	your
packet	analyzing	experience	in	a	detailed	manner,	which	in	the	end	can	lead	to
drastic	results	if	done	correctly.

After	you	have	placed	your	sniffer,	you	should	confirm	that	your	NIC	supports
promiscuous	working.	By	enabling	this,	your	interface	card	will	start	learning
about	even	those	packets	that	are	not	destined	or	routed	through	your	machine.	A
network's	broadcasted	traffic	can	be	captured	and	analyzed	by	every	client,
which	is	part	of	the	same	network.	Network	devices	broadcast	multiple	types	of
traffic	that	can	be	listened	to	by	an	interface,	which	supports	the	promiscuous
mode.

The	ARP	protocol's	traffic	is	broadcasted.	The	address	resolution	protocol	is
responsible	for	resolving	MAC	to	IP	addresses	and	vice	versa.	Devices	such	as
switches	send	an	ARP	packet	to	all	devices	asking	for	the	correct	device	to
respond	with	it's	MAC	address.	Gradually,	the	switch	will	maintain	a	list	of

http://www.wireshark.org/download.html

MAC	addresses	and	their	corresponding	IP	addresses,	which	is	even	termed	as
the	CAM	table	(content	addressable	memory).	Now,	whenever	any	host	wants	to
communicate	with	its	other	corresponding	peers	over	the	LAN,	information
required	for	the	transfer	is	communicated	to	the	sender	from	the	switch.
Information	such	as	IP	and	MAC	addresses	for	different	devices	can	be	easily
captured	and	recorded	through	ARP	traffic.

How	it	works
Wireshark	comes	with	the	libcap/Winpcap	driver,	which	lets	you	switch	your
NIC	to	the	promiscuous	mode;	the	only	time	you	don't	want	to	sniff	in	the
promiscuous	mode	is	when	the	packets	are	directly,	intentionally	destined	to
your	device.	On	a	Windows-based	system,	you	should	have	elevated
administrator	privileges	to	sniff	and	analyze	the	packets.	There	are	three
common	step	processes	that	every	protocol	analyzer	follows:	collect,	convert,
and	analyze.	These	are	described	as	follows:

Collect:	This	is	the	first	step	where	you	choose	a	certain	interface	to	listen
on,	and	through	this,	you	can	acquire	a	certain	amount	of	raw	data	from	the
network,	which	can	be	achieved	by	switching	your	interface	into	a
promiscuous	mode	so	that,	after	capturing	what	ever	traffic	is	being
broadcasted	in	your	network,	it	can	be	displayed	in	your	Wireshark	GUI.
Convert:	This	is	to	increase	the	readability	of	the	collected	binary	form.
Network	packets	can	be	converted	by	the	protocol	analyzer,	such	as
Wireshark,	to	simple	and	easier	formats	so	that	people	like	us	can	have	a
better	understanding	of	packets	and	solve	our	day-to-day	problems	easily.
Analyze:	In	this	final	step,	after	the	collection	and	conversion	of	the
network	packets,	a	step-by-step	process	of	analyzing	the	data	starts	where
we	look	into	the	specific	details	about	the	protocols	and	their	specific
configuration	details.	Then,	we	move	on	to	host	and	destination	addresses
and	the	kind	of	information	they	are	sharing.	Rest	of	the	analysis	is	left	to
the	user's	consent	and	how	they	filter	and	review	the	collected	data.

If	you	want	to	get	a	foothold	on	understanding	the	process	of	packet	capturing
and	analysis,	you	really	need	to	be	well	versed	with	networking	protocols	and
how	they	work	because	the	whole	communication	that	happens	over	a	network	is
governed	by	various	protocols,	such	as	ARP,	Dynamic	Host	Control	Protocol
(DHCP),	Domain	Name	Service	(DNS),	Transmission	Control	Protocol
(TCP),	Internet	Protocol	(IP),	HTTP,	and	many	others.

Protocols	are	the	rules	and	regulations	that	govern	the	process	of	communication
between	two	network	devices	and	control	the	environment	under	which	they
operate.	Each	of	these	protocols	has	different	complexity	levels	depending	on
how	and	where	they	are	being	implemented.	Majorly,	all	protocols	work	in	the

same	fashion,	where	they	send	a	request	and	wait	for	the	confirmation,	and	as
they	receive	an	acknowledgement,	they	let	the	devices	communicate.

After	the	data	has	been	successfully	transferred	between	them,	the	connections
should	be	terminated	gracefully	in	order	to	mark	a	communication	as	successful
without	loss	of	even	a	single	bit.	While	the	data	is	transferred,	protocols	need	to
maintain	the	integrity	of	the	communication	as	well,	that	is,	if	abc	information	is
sent	from	the	sender's	side,	it	should	be	received	in	the	same	order	and	manner.
If	the	bits	are	being	tampered	during	the	transition,	this	means	that	the	protocol
used	isn't	reliable.	Analyzing	all	of	these	tasks	is	the	basic	work	responsibility	of
any	network	protocol	analyzer.

Capturing	methodologies
Network	packets	can	be	captured	through	various	techniques.	Depending	on	the
requirement,	a	protocol	analyzer	is	placed	at	a	certain	place	in	network	with	a
particular	type	of	configuration.

Hub-based	networks
Hub-based	networks	are	the	easiest	ones	to	sniff	out	because	you've	the	freedom
to	place	the	sniffer	at	any	place	you	want,	as	hubs	broadcast	each	and	every
packet	to	the	entire	network	they	are	a	part	of.	So,	we	don't	have	to	worry	about
the	placement.	However,	hubs	have	one	weakness	that	can	drastically	decrease
network	performance	due	to	the	collision	of	packets.	Because	hubs	do	not	have
any	priority-based	system	for	device	that	send	packets,	whoever	wants	to	send
them	can	just	initiate	the	connection	with	the	HUB	(central	device)	and	start
transmitting	the	packets.	Often,	more	than	one	devices	start	sending	packets	at
the	same	instance.	Now,	as	a	result,	the	collision	of	the	packets	will	happen,	and
the	sending	side	will	be	informed	to	resend	the	previous	packet.	As	a
consequence,	things	such	as	traffic	congestion	and	improper	bandwidth
utilization	can	be	experienced.

The	switched	environment
Due	to	some	restrictions	present	in	switched-based	infrastructures,	packet
analysis	becomes	a	bit	complex.	To	bypass	these	restrictions	and	make	the	life	of
administrators	easy,	we	will	talk	about	a	couple	of	solutions	such	as	port
mirroring	and	hubbing	out.

In	port	mirroring,	once	you	have	the	command-line	configuration	console	or
web-based	interface	to	mage	you're	the	access	point	(router/switch),	then	we	can
easily	configure	port	mirroring.

Let's	make	it	simpler	for	you	with	a	logical	illustration.	For	instance,	let's	assume
that	we	have	a	24-ports	switch	and	8	PCs	which	(PC-1	to	PC-8)	are	connected.
We	are	still	left	with	more	than	15	ports.	Place	your	sniffer	in	any	of	those	free
ports	and	then	configure	port	mirroring,	which	will	copy	all	the	traffic	from
whatever	device	we	want	to	the	port	of	our	choice,	where	our	protocol	analyzer
sits,	which	can	see	the	whole	bunch	of	data	traveling	through	the	mirrored	port.

Once	this	is	completely	configured,	we	will	be	able	to	easily	analyze	each	and
every	piece	of	information	going	back	and	forth	from	the	mirrored	port.	This
technique	is	one	of	the	easiest	among	others	to	configure;	the	only	thing	you
should	know	beforehand	is	how	to	configure	switches	with	command-line
interfaces.	These	days,	admins	are	provided	with	a	GUI	for	configuration
purposes	if	it	is	the	case	for	you	to	just	go	for	it.	The	following	figure	depicts	a
simple	demonstration	of	port	mirroring:

Figure	1.2:	Port	mirroring

	

Hubbing	out	is	feasible	when	your	switch	doesn't	support	port	mirroring.	To	use
the	technique,	you	have	to	actually	plug	the	target	PC	out	of	the	switched
network,	then	plug	your	hub	to	the	switch,	and	then	connect	you	analyzer	and
target	device	to	the	switch	so	that	becomes	the	part	of	the	same	network.

Now,	the	protocol	analyzer	and	the	target	are	part	of	the	same	broadcast	domain.
Your	analyzer	will	easily	capture	every	packet	destined	to	target	or	originated
from	the	target.	But	make	sure	that	the	target	is	aware	about	the	data	loss	that
can	happen	while	you	try	to	create	hubbing	out	for	analysis.	The	following
figure	will	make	it	easier	for	us	to	understand	the	concept	precisely:

Figure	1.3:	Hubbing	out

	

ARP	poisoning
This	is	an	unethical	way	to	capture	network	traffic	where	we	try	to	imitate
another	device	between	two	parties.	Let's	say,	for	example,	we	have	our	default
gateway	at	192.168.1.1	and	our	client	is	located	at	192.168.1.2.	Both	of	these
devices	must	have	maintained	a	local	ARP	cache	that	facilitates	them	to	send
packets	without	any	extra	overhead	over	the	LAN.	Now,	the	question	is	what
kind	information	does	the	ARP	cache	hold,	and	in	which	form.	Let	me	tell	you,
the	command	to	view	the	ARP	cache,	which	displays	MAC	addresses	associated
for	a	particular	IP	address	is	arp	-a	.	Issuing	the	arp	-a	command	(the	same
works	for	most	of	the	platforms)	populates	a	table	that	holds	a	device's	IP
address	and	its	MAC	address.	Have	a	look	at	the	following	diagram	which
shows	a	normal	scenario	of	ARP	poisoning:

Before	ARP	Cache

192.68.1.1	–	(Server)

192.68.1.2	–	AA:BB:EE

192.68.1.3	–	AA:BB:DD

192.68.1.2	–	(Client)

192.68.1.1	–	AA:BB:CC

192.68.1.3	–	AA:BB:DD

192.68.1.3	–	(Attacker)

192.68.1.1	–	AA:BB:CC

192.68.1.2	–	AA:BB:EE

Now	that	we've	understood	what	is	stored	inside	an	ARP	cache,	let's	try	to
poison	it.

After	ARP	Cache

192.68.1.1	–	(Server)

192.68.1.2	–	AA:BB:DD

192.68.1.3	–	AA:BB:DD

192.68.1.2	–	(Client)

192.68.1.1	–	AA:BB:DD

192.68.1.3	–	AA:BB:DD

192.68.1.3	–	(Attacker)

192.68.1.1	–	AA:BB:CC

192.68.1.2	–	AA:BB:EE

Figure	1.4:	ARP	poisoning	(the	normal	scenario)

	

Now	that	you've	understood	what	is	the	importance	of	the	ARP	protocol	and
how	it	works,	we	can	try	to	poison	the	arp	cache	of	both	the	default	gateway	and
the	client	with	the	attacker's	MAC	address.	In	simple	terms,	we	will	replace	the
client's	MAC	address	in	the	default	gateway's	ARP	cache	with	the	attacker's
MAC	address.	We	will	do	the	same	in	the	client's	MAC	address,	replacing	the
default	gateway's	MAC	address	with	the	attacker's	MAC	address.	As	a	result,
every	packet	destined	to	the	client	from	the	default	gateway	and	vice	versa	will
be	sent	to	the	attacker's	machine.

If	port	forwarding	is	already	configured	on	the	attacker's	side,	the	received
packet	will	be	forwarded	to	the	real	intended	destination,	without	giving	any
hints	to	the	client	and	the	default	gateway	that	the	packet	is	being	sniffed.

Figure	1.5:	ARP	poisoning	(the	poisoned	scenario)

	

Other	than	these	two	techniques,	there	is	a	variety	of	hardware	available	on	the
market,	which	are	popularly	known	as	taps	and	can	be	placed	between	any	two
devices	to	sniff	and	analyze	the	traffic.	Though	this	technique	is	effective	to
capture	network	traffic	in	some	scenarios,	it	should	be	practised	or	deployed	in	a
controlled	environment	because	it	can	prove	to	be	malicious	to	the	internal
corporate	network.

Passing	through	routers
When	dealing	with	routed	environments,	the	main	aspect	of	packet	analyses	is	to
place	your	sniffer	at	the	right	place	from	where	we	can	gather	the	required
information.	Dealing	with	routed	structures	demands	more	skills,	as	sometimes
you	need	to	rethink	about	the	placement	of	your	sniffer.	Consider	a	routed
environment	with	three	routers:

Router	1,	router	2,	and	router	3	are	working	together;	each	of	them	owns	2-3
PCs.	Router	1	is	the	acting	like	a	root	node	while	controlling	its	child	networked
nodes	(router	2	and	router	3).	Router	3	clients	are	not	able	to	connect	to	router	1
clients.	To	resolve	this	issue,	the	admin	of	the	organization	has	placed	the	sniffer
inside	the	router	3	area.

After	a	while,	the	admin	has	collected	quite	a	good	amount	of	packets;	the	admin
is	still	not	able	to	detect	the	anomaly	within	the	network.	So,	he/she	decides	to
move	the	sniffer	to	another	area	in	the	network.	After	placing	the	sniffer	in	the
router	1	area,	the	admin	can	see	quite	a	useful	stream	of	packets	that	he/she	was
looking	for	earlier.	This	is	quite	a	simple	illustration	of	moving	the	sniffer
around,	which	can	be	helpful	in	certain	situations.	The	moral	is	that	placing	the
sniffer	in	your	networked	infrastructure	is	quite	an	important	task.

After	reading	this,	I	hope	you	would	now	like	to	see	how	Wireshark	actually
looks	like,	so	let's	take	a	look	at	the	GUI	of	the	software	and	how	we	have	to
initialize	the	process	of	capturing	network	packets.

If	you	do	not	have	Wireshark	installed,	you	can	get	a	free	copy	from
https://www.wireshark.org/download.html.	To	go	through	the	illustrations	in	this
book,	you	also	need	to	be	familiar	with	the	interface.

https://www.wireshark.org/download.html

Why	use	Wireshark?
I	hope	I	am	not	the	only	one	who	is	obsessed	with	the	simplicity	of	the	packet
capturing	scenario,	which	Wireshark	facilitates	for	us.	I	will	just	quickly	point
out	the	reasons	why	most	people	prefer	Wireshark	to	other	packet	sniffers:

User	friendly:	It	does	count	for	every	GUI	we	have	ever	seen	or	worked
with,	how	easily	the	options	are	presented,	and	how	convenient	it	is	to	use
(I	guess,	even	the	ones	who	don't	know	about	packet	analysis	can	start
capturing	packets	in	Wireshark	without	any	prior	specialized	knowledge).
Robustness:	The	amount	of	information	Wireshark	can	handle	is
outstanding;	what	I	actually	mean	by	this	is	software	of	this	kind	may	hang
or	crash	(because	of	thousands	of	packets	that	are	captured	and	displayed
every	second)	when	trying	to	display	the	packets	traveling	all	over	the
network.	However,	Wireshark	doesn't—a	big	hand	to	Wireshark	creators	for
how	well	they	have	structured	it.
Platform	independent:	Yeah,	this	one	is	definitely	on	the	list.	This	free
software	can	be	installed	on	any	platform	that	is	used	for	computing
purposes	by	administrators	these	days,	whether	Linux-based,	Windows-
based,	or	Macintosh-based	platforms.
Filters:	There	are	two	kinds	of	filtering	options	present	in	Wireshark:

You	choose	what	to	capture	(capture	filters)
You	choose	what	to	display	after	you've	captured	(display	filters)

Cost:	Wireshark	comes	free,	and	is	developed	and	maintained	by	a	dedicated
community.	Wireshark	offers	some	paid	professional	tools	also.	For	more	details
refer	to	Wireshark's	official	website.
Support:	Wireshark	is	being	developed	very	actively	by	a	group	of

contributors	scattered	around	the	globe	.	We	can	sign	up	to	the	Wireshark's
mailing	list	or	we	can	get	help	from	the	online	documentations,	which	can	be
accessed	through	the	GUI	itself;	and	various	online	forums	are	available	to	get
the	most	effective;	go	to	Google	paid	Wireshark	support	to	know	more	about	it.

The	Wireshark	GUI
Before	we	discuss	its	awesome	features,	let	me	take	this	opportunity	to	explain
the	history	of	Wireshark	and	how	it	came	into	existence.

Wireshark	was	built	during	the	late	'90s.	Combs,	a	young	college	graduate	from
Kansas	city	developed	Ethereal	(the	basic	version	of	Wireshark),	and	by	the	time
Combs	developed	this	awesome	piece	of	invention,	he	had	landed	himself	a	job
where	he	signed	a	formal	contract.	After	a	few	years	of	service,	Combs	decided
to	quit	his	job	and	to	pursue	his	dreams	by	developing	Ethereal	further.
Unfortunately,	as	per	the	legal	terms,	the	Combs	invention	was	part	of	the
company's	proprietary	software.	Despite	this,	Combs	left	the	job	and	started
working	on	the	new	version	of	Ethereal,	which	he	titled	Wireshark.	Since	2006,
Wireshark	has	been	in	active	development	and	is	being	used	worldwide.	It
supports	a	majority	of	protocols	(more	than	800),	which	are	implemented	in	the
wild	today.

The	installation	process

Follow	these	steps	to	install	Wireshark	on	your	system:

1.	 In	this	book,	I	am	going	to	you	use	a	Mac	PC;	for	other	platforms,	the
installation	is	the	same.	Some	OSes,	such	as	Kali	Linux,	come	with	a
preinstalled	version	of	Wireshark.

2.	 So,	if	you	are	using	Macintosh,	then	first	and	foremost,	you	need	to
download	X11	Quartz	(XQuartz-2.7.7),	which	will	simulate	an	environment
to	run	Wireshark	(for	Windows	just	download	the	respective	executable
compatible	with	your	processor).

3.	 Now,	you	can	install	Wireshark	(Wireshark	1.12.6	Intel	64),	which	we
downloaded	earlier	in	this	book.

4.	 Once	both	of	these	are	successfully	installed,	we	need	to	restart	our
computer.

5.	 After	the	PC	has	been	restarted,	start	Wireshark.	As	soon	as	the	packet
analyzer	opens,	you	will	see	that	the	X11	server	starts	on	its	own.	You	don't
need	to	worry	about	it;	just	leave	it	in	the	background.

6.	 Once	it	is	opened	completely,	it	will	look	as	shown	in	the	following
screenshot:	

Figure	1.6:	The	Wireshark	screen

	

Before	we	go	ahead	and	start	the	first	capture,	we	need	to	get	a	bit	familiar	with
the	options	and	menus	available.

There	are	six	main	parts	in	the	Wireshark	GUI,	which	are	explained	as	follows:

Menu	Bar:	This	represents	tools	in	a	generalized	form	that	are	organized	in
the	Applications	menu.
Main	Tool	Bar:	This	consists	of	the	frequently	used	tools	that	can	offer
efficient	utilization	of	the	software.
Packet	List	Pane:	This	window	area	displays	all	the	various	packets
getting	captured	by	Wireshark.
Packet	Details	Pane:	This	window	gives	us	details	pertaining	to	the
selected	packet	in	the	packet	list	pane	are	shown.	For	example,	we	can	view
source	and	destination	IP	addresses	and	different	protocols	used	for
communication	arranged	in	the	bottom-top	approach	(Link	Layer	to
Application	Layer).	Information	regarding	the	packets	is	listed	in	different
categories	of	protocols	that	can	be	expanded	to	get	more	details	for	the
selected	packet.

Bytes	Pane:	This	shows	the	data	in	the	packets	in	the	form	of	hex	bytes	and
their	corresponding	ASCII	values;	it	shows	the	values	in	the	form	in	which
they	travel	in	the	wires.
Status	Bar:	This	displays	details	such	as	total	packets	captured.

The	following	screenshot	will	help	you	to	identify	different	sections	in	the
application,	please	make	sure	you	get	yourself	acquainted	with	all	of	them
before	proceeding	to	further	chapters.

	

Within	the	toolbar	area,	we	have	a	few	useful	tools.	I	would	like	to	give	you	a
brief	overview	of	some	of	them:

	:	This	gives	you	the	option	to	choose	an	interface	for	listening

	:	Through	this,	you	can	customize	the	capturing	process

	:	These	are	to	start/stop/restart	the	capturing
process

	:	This	is	to	open	a	saved	capture	file

	:This	is	to	save	the	current	capture	in	a	file

	:	This	is	to	reload	the	current	capture	file

	:	This	is	to	close	the	current	capture	file

	:	This	is	to	go	back	to	the	recent	most	visited	packet

	:	This	icon	is	to	go	forward	to	the	most	recently	visited	packet

	:	This	is	used	to	go	to	a	specific	packet	number

	:	Toggle	Color	coding	for	the	packets	On/Off

	This	is	used	to	toggle	the	autoscroll	on/off

	:	This	is	to	zoom	in,	zoom	out,	and	reset	zoom	to
the	default

	:	This	is	used	to	change	the	color	coding	as	per	requirements

	:	This	is	used	to	narrow	down	the	window	in	order	to	capture
packets

	:	This	is	used	to	configure	display	filters	to	only	see	what	is
required

Even	after	selecting	a	working	interface,	sometimes,	you	won't	be	able	to	see
any	packets	in	your	packet	list	pane.	There	can	be	multiple	reasons	for	this,	some
of	which	are	listed	as	follows:

You	do	not	have	any	network	traffic
The	packets	traveling	in	the	network	are	not	destined	to	your	device
You	do	not	have	the	promiscuous	mode	activated	or	do	not	have	an	option
for	the	promiscuous	mode

After	launching	the	Wireshark	application,	you	will	see	something	like	the
following	screenshot	on	our	screens.	Although	it	doesn't	look	so	interesting	at
first	glance,	what	makes	it	interesting	are	the	packets	that	are	flowing	around.
Yeah,	I	am	talking	about	capturing	packets.

Figure	1.7:	The	Wireshark	capture	screen

	

Starting	our	first	capture
As	you've	been	introduced	to	the	basics	of	Wireshark	and	since	you	have	learned
how	to	install	Wireshark,	I	feel	you	are	ready	to	initiate	your	first	capture.	I	will
be	guiding	you	through	the	following	series	of	steps	to	start/stop/save	you	first
Wireshark	capture:

1.	 Open	the	Wireshark	application.
2.	 Choose	an	interface	to	listen	to.

Figure	1.8:	The	interface	window

	
3.	 Before	you	click	on	Start,	we	have	the	Options	button,	which	gives	us	the

advantage	of	customizing	the	capture	process;	but	as	of	now,	we	will	be
using	the	default	configuration.

Tip

Make	sure	that	the	Promiscuous	mode	is	activated	so	that	we	can	capture
the	traffic	that	is	not	destined	to	our	machine.

Figure	1.9:	The	capture	customization	screen

	
4.	 Click	on	the	Start	button	to	initiate	the	capturing	process.
5.	 Open	your	browser.
6.	 Visit	any	website	you	want	to.

Figure	1.10:	The	Wireshark	website

	
7.	 Switch	back	to	the	Wireshark	screen;	if	everything	goes	well,	you	should	be

able	to	see	a	numerous	packets	getting	captured	in	your	Wireshark	GUI
inside	the	packet	list	pane.

To	stop	the	capture,	you	can	just	click	on	the	stop	capture	button	in	the
toolbar	area	or	you	can	click	on	Stop	under	the	Capture	menu	bar.

Figure	1.11:	Stopping	capture

	
8.	 I	know	there	is	an	overwhelming	amount	of	information	you	will	see	by

now,	but	don't	worry	about	it.	I	am	here	to	make	it	simple	for	you.
9.	 The	real	process	of	packet	analysis	starts	when	you	have	captured	packets

—I	mean	packet	filtering.	We	will	be	discussing	packet	filtering	in	detail	in
the	upcoming	chapters.

10.	 Now,	the	last	step	is	to	save	the	capture	file	for	later	use:	

	
Save	your	file	with	the	default	.pcapng	extension	in	you	folder.

If	you	have	read	all	the	steps	all	the	way	up	to	this	point,	I	would	encourage	you
to	create	your	first	capture	file.

Summary
This	chapter	lays	the	foundation	of	basic	networking	concepts	along	with	an
introduction	of	the	Wireshark	GUI.	Wireshark	is	a	protocol	analyzer	that	is	used
worldwide	by	IT	professionals	to	capture	and	analyze	network-level	packets.

The	TCP/IP	model	has	four	layers:	the	Application	Layer,	Transport	Layer,
Network	Layer,	and	Link	Layer.	Data	gets	encapsulated	as	it	passes	on	from	one
layer	to	another;	the	resulting	packet	at	the	bottom	is	called	a	complete	PDU,
which	actually	travels	over	the	channel.

To	install	Wireshark,	you	just	need	to	visit	http://www.wireshark.org	and	then
download	the	appropriate	version	of	this	open	source	software.	The	Wireshark
community	is	governed	by	real-world	geeks;	this	can	be	a	good	source	of
learning	and	for	troubleshooting	purposes.

The	Wireshark	GUI	is	user	friendly,	robust,	and	platform	independent;	even	new
IT	professionals	can	easily	adapt	the	tool.

One	important	aspect	of	protocol	analyzing	is	to	place	the	sniffer	at	the	right
place;	every	organization's	infrastructure	is	different	from	another,	where	we
might	need	to	apply	different	techniques	in	order	to	get	the	right	packets	to	use.

Hubbing	out,	port	mirroring,	ARP	poisoning,	and	tapping	are	some	of	those
useful	techniques	that	can	be	used	to	monitor	and	analyze	traffic	in	different
situations.

There	are	six	main	parts	in	the	Wireshark	tool	window:	Menu	Bar,	Main	Tool
Bar,	Packet	List	Pane,	Packet	Details	Pane,	Bytes	Pane,	and	Status	Bar.

Using	the	back/forward	key	during	a	packet	analysis	scenario	can	be	really
useful.	One	should	know	about	all	the	tools	that	are	displayed	in	the	main
toolbar	area.

In	the	next	chapter,	you	will	learn	how	to	work	with	different	kinds	of	filters
available	in	Wireshark.

http://www.wireshark.org

Practice	questions
Q.1	How	many	layers	are	there	in	the	TCP/IP?	Name	them.

Q.2	Which	layer	in	the	TCP/IP	model	handles	Layer	2	addresses?

Q.3	The	Link	Layer	is	also	called?

Q.4	The	HTTP	protocol	uses	TCP	or	UDP?

Q.5	IP,	ICMP,	and	_________	are	the	protocols	in	the	Internet	Layer	Q.6	How
many	parts	of	the	Wireshark	window	do	you	know?

Q.7	ARP	is	a	Layer	3	protocol—true/false?

Q.8	Does	the	TCP	protocol	follow	a	three-way	handshake?

Q.9	The	Port	Mirroring	technique	is	possible	through	switches	only—
True/False?

Q.10	The	Hubbing	out	technique	uses	a	router	to	isolate	a	PC	from	it	peers—
true/false?

Q.11	TCP	is	an	unreliable	protocol—true/false?

Q.12	Install	Wireshark	and	start	a	sample	capture	using	your	wireless	interface.
Save	your	capture	file	on	the	desktop	with	the	name	first.pcap,	and	close
Wireshark.

Q.13	Open	your	first.pcap	capture	file	in	Wireshark	and	check	how	many
packets	you	captured	in	total.

Q.14	Which	pane	displays	information	in	the	HEX	and	ASCII	form	for	each
packet	we've	captured?

Q.15	Switch	off	the	promiscuous	mode	from	the	capture	options	window	and
observe	whether	you	are	still	able	to	receive	packets	from	other	devices	or	not.

Chapter	2.	Filtering	Our	Way	in
Wireshark
This	chapter	will	talk	about	different	filtering	options	available	in	Wireshark,
namely,	capture	and	display	filters.	We	will	also	look	at	how	to	create	and	use
different	profiles.	The	following	are	the	topics	we	will	cover	in	this	chapter:

An	introduction	to	capture	filters
Why	and	how	to	use	capture	filters
Lab	up—capture	filters
An	introduction	to	display	filters
Why	and	how	to	use	display	filters
Lab	up—display	filters
Colorizing	traffic
Creating	a	new	Wireshark	profile(s)
Lab	up—profiles

I	hope	you	are	ready	to	start	analyzing	packets	using	different	filtering	options
present	in	Wireshark	and	to	reuse	the	filters	that	we	previously	created	in	a	user-
defined	profile.	I	will	be	guiding	you	with	a	technique	to	filter	packets	based	on
certain	expressions,	which	we	will	create	using	different	primitives	that	are
available.

Before	we	go	ahead	and	start	creating	awesome	filters,	I	want	to	mention	one
more	interesting	tool	that	is	used	to	find	packets:	the	find	utility.

An	introduction	to	filters
In	the	world	of	Wireshark,	there	are	two	kinds	of	filters	that	can	be	used	over
live	traffic,	and	on	saved	capture	files.	Filters	enhance	the	flexibility	of	packet
analysis,	where	a	certain	user	is	given	the	privilege	of	seeing	what	he/she	wants
to	see	to	capture	what	they	want	to	capture.

The	two	types	of	filters	are	capture	filter	and	display	filter.	Now,	let's	have	look
at	each	one	of	them	in	detail.

Capture	filters
This	gives	you	the	facility	to	capture	what	you	want	to	capture—others	will	be
discarded.	Capturing	packets	is	a	processor-intensive	task,	and	Wireshark	will
acquire	a	quite	good	amount	of	primary	memory	as	well.	So,	sometimes,	we	will
have	to	save	the	resources	for	other	processes,	which	can	be	utilized	to	analyze
packets,	and	in	some	cases,	we	would	like	to	capture	only	that	data	which	meets
our	expression—rest	of	it	will	be	dropped.

Wireshark	offers	some	interesting	options	to	configure	an	interface,	which	will
be	capturing	traffic	that	meets	only	a	certain	expression,	and	this	is	achievable
through	the	Capture	Options	window,	as	shown	in	the	following	screenshot:	

Figure	2.1:	The	Capture	Options	dialog

	

Here,	points	list	various	capture	options	dialog	related	details

Capture:	In	this	window,	you	can	choose	the	interface	you	want	to	capture
packets	from,	and	you	can	even	select	multiple	interfaces	at	once	to	listen
on	all	of	them.	The	details	for	every	interface	are	listed	under	separate
columns	such	as	Capture,	Interface,	the	name	of	the	interface,	whether	the
promiscuous	mode	is	enabled	or	not,	and	so	on.	Under	the	Capture	dialog,
you	will	see	a	checkbox	to	toggle	the	promiscuous	mode,	and	you	can	even
choose	the	promiscuous	on	all	interfaces	option	to	activate	what	you
require	in	just	one	click.
Manage	Interfaces:	This	button	facilitates	addition	or	removal	of	a	new
interface	for	listening	purposes	you	intend	to.	You	can	add	even	remote
machine	interfaces,	where	you	would	be	required	to	have	root	level
privileges.

Capture	Filter:	By	clicking	on	this	Capture	Filter	button,	you	will	be
able	to	see	a	dialog	similar	to	what	is	shown	here.	The	already
configured	capture	filters	are	listed	by	default,	and	here,	we	can	create
and	save	our	custom	capture	filters	as	well.

Figure	2.2	:Default	Capture	filters

	

To	start	off,	users	can	use	these	default	filtering	profiles	and	get	an	idea	about
how	to	create	custom	filtering	strings.	Once	you	are	well	versed	with	the	basics,
you	can	go	ahead	and	use	the	same	window	to	create	your	own	custom	filters,
but	make	sure	that	you	have	followed	the	Berkley	Packet	Filtering	(BPF)
syntax.	The	BPF	syntax	is	an	industry	standard	and	is	used	by	multiple	protocol
analyzers,	which	make	your	filter's	configuration	file	portable.

Let's	create	one	together	to	get	a	better	hold	over	it;	consider	a	scenario	where
we	have	to	capture	packets	originating	from	a	web	server	that	is	located	at
192.168.1.1	(change	the	IP	address	to	the	web	server's	address	that	you	are
monitoring),	and	follow	the	next	steps:

1.	 Open	the	Capture	Options	dialog.
2.	 Click	on	Capture	Filter.
3.	 Click	on	New.
4.	 Write	Web	server	192.168.1.1	inside	the	Filter	name	textbox.
5.	 Write	host	192.168.1.1	and	port	80	inside	the	Filter	String	text-box	

	
6.	 Once	you've	done	this,	click	on	OK;	if	you've	entered	everything	correctly,

the	textbox	followed	by	the	Capture	Filter	button	will	be	displayed	with	a
green	background,	as	shown	in	the	following	screenshot:	

Figure	2.4	:Creating	a	sample	capture	filter

	

Capture	Files:	This	option	gives	you	the	flexibility	to	save	your	captured
packets	into	the	file(s)	that	already	exists	on	your	system.	The	captured
packets	will	be	added	to	the	file	of	your	choice	if	you	don't	choose	any.	A

temporary	file	will	be	created,	and	data	will	be	written	to	it,	which	can	be
saved	to	a	user-specified	location.	To	achieve	this,	write	the	name	of	the	file
that	uses	absolute	path	referencing	or	click	on	Browse	followed	by	the	File
textbox	to	choose	a	location.

If	you	select	the	multiple	files	option,	then	you	can	save	your	packets	in
multiple	files,	where	we	can	customize	more	options,	which	are	stated	as
follows:

Next	File	Every:	After	capturing	a	certain	amount	of	data,	Wireshark
will	create	a	new	file	and	your	data	will	be	added	to	it.	For	instance,	I
want	to	create	a	new	file	after	Wireshark	captures	2	MBs	of	data.
Next	File	Every:	After	a	certain	amount	of	time,	Wireshark	will	create
a	new	file	and	your	packets	will	be	added	to	it.	For	instance,	I	want	to
create	a	new	file	after	every	5	minutes	of	the	capturing	process.
Ring	buffer:	Using	this	option,	you	can	restrict	the	creation	of	a	new
file.	Wireshark	uses	the	First	in	First	Out	(FIFO)	option	to	write	data
to	multiple	filesets.	For	example,	you	have	selected	the	Ring	buffer
option	and	increased	the	number	of	files	to	5,	and	you	have	configured
that	after	every	5	MBs,	a	new	file	should	be	created.

Now,	according	to	this	configuration,	once	you	start	capturing	packets,	after
every	5	MBs	of	data,	a	new	file	will	be	created	and	the	packets	will	be	written	to
it.	Once	the	limit	that	you	specified	in	the	Ring	Buffer	area	is	exceeded,
Wireshark	will	not	create	a	new	file;	instead,	it	will	roll	back	to	the	first	file	and
append	data	to	it.	The	following	screenshot	shows	a	similar	kind	of
configuration:	

Figure	2.5	:	The	Capture	Files	option

	
Stop	Capture	Settings:	This	option	lets	you	stop	the	capturing	process	after	a

certain	condition	is	triggered;	we	have	four	different	kinds	of	triggers.	Activating
these	can	stop	Wireshark	from	capturing	new	packets,	and	they	are	stated	as
follows:

Packet(s):	Stop	capturing	after	a	certain	count	of	packets	is	reached
File(s):	Stop	capturing	after	the	creation	of	a	certain	number	of	files
Megabyte(s):	Stop	capturing	after	capturing	a	certain	amount	of	data
Minute(s):	Stop	capturing	after	running	for	a	certain	period	of	time

There	might	be	one	question	that	you	may	want	to	ask:	what	if	we	select	more
than	one	option	at	a	time?	For	instance,	as	shown	in	the	following	figure.

You	can	activate	more	than	one	option	at	a	time;	Wireshark	will	stop	capturing
whichever	condition	is	met	first.

Figure	2.6	:	The	Stop	Capture	options

	
Display	Options:	There	are	a	few	options	available	in	this	section	that	can	be

configured	to	restrict	how	the	packets	and	their	corresponding	information	will
be	displayed	in	the	Packet	List	Pane	option	and	the	Protocol	hierarchy
window.	Refer	to	the	following	figure	to	see	this.

If	you	select	Update	list	of	packets	in	real-time,	you	will	observe	that	Packet
List	Pane	is	updated	as	soon	as	Wireshark	captures	a	new	packet,	and	the	pane
will	be	scrolled	upwards	automatically.	Choose	these	options	if	needed;
otherwise,	the	resources	acquired	by	these	two	tasks	can	be	used	for	other
processes.

If	you	check	the	Hide	capture	info	dialog	box,	the	Protocol	Hierarchy
window,	that	shows	the	statistics	(in	percentage)	,	will	be	hidden.	If	you	don't
have	any	specific	purpose,	I	would	recommend	that	you	uncheck	all	these
options.

Figure	2.7:	Display	Options

	
Name	Resolution:	If	selected,	this	feature	can	resolve	the	Layer	2,	Layer	3,

and	Layer	4	addresses	to	their	corresponding	names;	for	better	understanding,

refer	to	the	following	screenshot:	

Figure	2.8:	Name	Resolution

	

Why	use	capture	filters
Capturing	only	traffic	that	meets	your	requirement	is	really	useful	when	you
have	a	large	volume	of	packets	flowing	around.	Creating	your	own	custom
capture	filters	can	come	in	really	handy	while	you	analyze	a	production
environment.	Capture	filters	are	applied	before	you	initiate	the	actual	capture
process.	In	general,	every	packet	captured	by	Wireshark	is	passed	to	the
capturing	engine	so	that	it	gets	translated	to	a	human-understandable	format,	but
if	you	have	applied	a	capture	filter,	Wireshark	will	drop	the	packets	that	don't
meet	your	expression.	All	these	dropped	packets	won't	be	passed	to	the	capturing
engine,	.	In	comparison,	display	filters	are	much	more	specific	and	powerful;
while	using	capture	filters,	you	should	be	careful,	because	there	is	no	way	of
recovering	dropped	packets	that	do	not	meet	the	expression	that	you	created.

The	Berkley	Packet	Filter	(BPF)	syntax	is	used	to	create	capture	filters,	and
several	protocol	analyzers	use	it	as	well,	thus	maintaining	industry	standards.	It
is	significantly	easy	to	learn	and	practice,	just	use	the	basic	format	to	structure
an	expression.

How	to	use	capture	filters
Using	the	BPF	syntax	earlier,	we	created	a	simple	capture	filter	through	the
capture	filter	dialog;	let's	discuss	it	in	detail	because	it	is	really	crucial	to	know
about	BPF,	as	it	is	used	by	a	variety	of	analyzers.

If	you're	using	the	BPF	syntax,	you	have	to	follow	a	certain	format	structure,
which	is	a	combination	of	two	arguments:	identifiers	and	qualifiers,	which	are
explained	as	follows:

Identifiers:	This	is	the	value	that	you	are	looking	for	in	your	packets.	For
example,	if	you	are	filtering	the	packets	for	a	certain	IP	address,	then	your
capture	filter	will	look	something	like	host	192.168.1.1,	where	the	value
192.168.1.1	is	an	identifier.
Qualifiers:	These	are	categorized	into	three	different	sections:

Type:	There	are	three	types	of	type	qualifiers:	host,	port,	and	net.	In
short,	a	type	qualifier	refers	to	the	name	or	the	number	that	your
identifier	refers	to.	For	example,	in	your	host	192.168.1.1	filter,
host	is	the	type	qualifier.
Direction:	Sometimes,	when	you	need	to	capture	packets	from	a
particular	destination	or	source,	we	can	specify	direction	qualifiers	as
well.	For	example,	in	the	src	host	192.168.1.1	capture	filter,	src
specifies	that	we've	to	capture	packets	originating	from	a	specific	host
only.	Likewise,	if	you	specify	dst	host	192.168.1.1,	would	capture
packets	only	destined	to	host	192.168.1.1.
Proto:	This	refers	to	protocol	qualifiers	that	give	us	the	feature	where
we	can	mention	the	specific	protocol	that	we	want	to	add	in	our
expression	for	capture	purposes.	For	example,	if	you	want	to	capture
http	traffic	coming	from	your	host	192.168.1.1,	then	your	expression
will	look	something	like	src	host	192.168.1.1	and	tcp	port	80.

In	the	previous	example,	we	combined	two	expressions	together	using	the
concatenation	operator	(&/and).	Similarly,	we've	the	alteration	operator	(|/or)	and
the	negation	operator	(!/not),	which	can	be	used	to	combine	and	create	complex
filters.

For	example,	as	per	our	previously	created	filter	src	host	192.168.1.1	and

tcp	port	80,	all	the	packets	originating	from	192.168.1.1	and	going	to	port	80
will	be	captured.

If	you	add	the	or	operator	between	src	host	192.168.1.1	or	tcp	port	80,
then	when	an	expression	in	your	filter	matches,	then	the	packet	will	be	captured.
This	means	that	every	packet	originating	from	192.168.1.1	or	any	packet
associated	with	port	80	will	be	captured	regardless	of	the	second	condition.

In	the	case	of	the	not	operator,	a	capture	filter	such	as	not	port	80	states	that
any	packet	associated	with	port	80	should	not	be	captured.

Once	you	start	working	in	a	production	environment,	you	will	see	how	common
it	is	to	combine	filters	using	the	AND,	OR,	and	NOT	operators.

An	example	capture	filter
Though	you	have	a	variety	of	filters	available	in	Wireshark	itself,	which	can	give
you	an	overview	of	the	BPF	syntax,	to	access	the	present	filters	by	default,	go	to
Capture	|	Capture	Filers	or	click	on	the	Capture	Options	button	in	the	main
toolbar	and	then	click	on	Capture	Filter.	From	the	same	window,	we	have	an
option	to	create	new	filters	that	we	already	discussed.

Refer	to	the	following	table	for	sample	capture	filters:

Filters Description

host	192.168.1.1 All	traffic	associated	with	host	192.168.1.1

port	8080 All	traffic	associated	with	port	8080

src	host	192.168.1.1 All	traffic	originating	from	host	192.168.1.1

dst	host	192.168.1.1 All	traffic	destined	to	host	192.168.1.1

src	port	53 All	traffic	originating	from	port	53

dst	port	21 All	traffic	destined	to	port	21

src	192.168.1.1	and
tcp	port	21

All	traffic	originating	from	192.168.1.1	and	associated	with	port	21

dst	192.168.1.1	or	dst
192.168.1.2

All	traffic	destined	to	192.168.1.1	or	destined	to	host	192.168.1.2

not	port	80 All	traffic	not	associated	with	port	80

not	src	host
192.168.1.1

All	traffic	not	originating	from	host	192.168.1.1

not	port	21	and	not
port	22

All	traffic	not	associated	with	port	21	or	port	22

tcp All	tcp	traffic

Ipv6

tcp	or	udp

host	www.google.com

ether	host
07:34:aa:b6:78:89

All	ipv6	traffic

All	TCP	or	UDP	traffic	All	traffic	to	and	from	Google's	IP	address	All	traffic
associated	with	the	specified	MAC	address

Note

It	is	essential	to	know	about	the	BPF	syntax.	As	and	when	you	get	into
Wireshark	in	more	detail,	you	will	feel	its	importance.	I	would	suggest	that	you
practice	it	once	when	you	are	comfortable	with	the	syntax.

Capture	filters	that	use	protocol	header
values
Capture	filters	can	be	created	on	the	basis	of	offset	values	present	in	protocol
header	fields.	The	syntax	to	create	such	filters	looks	like
proto[offset:size(optional)]=value.	Here,	proto	is	any	protocol	that	you
want	to	filter,	offset	is	the	position	of	the	corresponding	value	in	the	header,
size	is	the	length	of	the	data	you	are	looking	for,	and	value	is	the	data	you	want
to	find.

Say,	for	instance,	we	want	to	capture	only	ICMP	reply	packets;	now,	if	you
observe	the	following	figure,	you	will	note	that	the	ICMP	header	type	is	located
at	the	first	place	and	the	offset	counting	starts	from	0.	So,	the	offset	value	will	be
0	in	this	case,	and	the	size	of	the	field	is	1	bytes.	We	have	all	the	required
information	to	create	a	capture	filter,	so	now,	the	resulting	expression	will	look
like	icmp[0:1]=0.

Figure	2.9:	ICMP	reply

	

Let's	try	to	apply	the	same	to	Wireshark;	we	will	then	ping	www.google.com	to
check	whether	it	works.

Figure	2.10	:	ICMP	capture	filter

	

Let's	ping	www.google.com	and	check	whether	it	works.

Figure	2.11:	Browse	google.com

	

As	a	result,	Wireshark	will	capture	only	the	ICMP	reply	packets.	Using	the	same
technique,	you	can	filter	out	traffic	on	the	basis	of	the	protocol	header	value:	

http://www.google.com
http://www.google.com

	

The	following	table	lists	some	sample	bytes-based	capture	filters	for	TCP	and
ICMP;	try	practicing	them	too:

Filter Description

icmp[0]	=	0 ICMP	request	packets

icmp[0:1]	=	8 ICMP	reply	packets

icmp[0:1]	=	3

tcp[13]	=	2

ICMP	destination	host	unreachable	packets	TCP	SYN	flag	packets	only

tcp[13]	=	18 TCP	SYN/ACK	flag	packets	only

tcp[13]	=	32 TCP	URG	flag	set	packets	only

Display	filters
Display	filters	are	much	more	flexible	and	powerful	when	compared	to	capture
filters.	Display	filters	do	not	discard	any	packets;	instead,	the	packets	are	hidden
to	make	viewing	convenient	or	convenience.	Discarding	packets	is	not	a	very
effective	practice	because,	once	the	packets	are	dropped,	they	cannot	be
recovered.	When	you	apply	the	display	filter,	only	those	packets	that	meet	the
specification	of	your	filter	will	be	displayed.	In	the	the	second	column	of	the
status	bar	of	the	Wireshark	window,	you	will	see	a	number	of	packets	displayed
after	you	apply	a	filter.

A	display	filter	can	be	used	for	a	capture	file	in	the	Filter	dialog	box	located
above	the	Packet	List	Pane.	Display	filters	are	more	popular	than	capture
filters.	The	syntax	used	for	display	filters	can	be	easily	adapted	and	applied.	For
new	users,	a	display	filter	is	like	a	super	power	that	gives	you	the	functionality
of	hiding	inappropriate	packets	in	run-time	that	do	not	meet	your	requirements
as	per	the	current	scenario.

Display	filters	can	be	created	on	the	basis	of	several	different	constraints	such	as
the	IP	address,	protocols,	port	numbers,	and	header	values	in	specific	protocols.
There	are	lot	of	conditional	tools	and	concatenation	operators	that	can	be	used	to
create	complex	expressions.	You	can	combine	different	sets	of	expressions	to	get
more	specific	sets	of	packets	that	we	are	looking	for.	Each	and	every	packet
shown	in	the	Packet	List	Pane	can	be	filtered	using	the	fields	that	a	packet
contains.

Display	filters	do	not	delete	data;	instead,	packets	are	hidden,	which	can	be
made	visible	again	once	the	filter	in	the	Filter	dialog	above	the	list	pane	is
cleared.	For	instance,	to	display	only	ICMP	packets,	just	enter	ICMP	in	the	filter
dialog	and	click	on	Apply;	it's	really	simple,	isn't?	If	you	want	to	see	all	packets
again,	just	click	on	the	Clear	button	and	everything	will	be	back	to	normal.

Wireshark	has	a	very	awesome	feature	that	can	assist	you	while	creating	your
filter.	Just	click	on	the	Expression	button	at	the	end	of	the	Filter	dialog	box,
choose	the	protocol	you	want	to	filter,	and	specify	the	value	if	there	is	one.

Using	the	filter	expression	dialog	is	really	easy,	and	if	you	are	a	beginner,	then

this	is	a	boon	for	you.	Let's	learn	how	to	use	the	expression	dialog.

Figure	2.12	:	The	filter	expression

	
1.	 As	show	in	the	preceding	screenshot,	click	on	the	Expression	button.
2.	 Now,	you	will	be	presented	with	the	Expression	window	like	the	one

shown	in	the	following	screenshot:	

	
For	example,	if	you	want	to	see	only	packets	associated	with	ip:192.168.1.1,

then	just	scroll	down	in	the	Field	Name	to	find	IPv4.	Then,	expand	the	section
and	choose	the	ip.addr	option.
Then,	from	the	Relation	box	next	to	it,	choose	the	operator	you	wish	to	add	in

your	expression.
At	last,	write	the	IP	you	are	looking	for	in	the	Value	(IPv4	address)	box.
At	last,	just	click	on	OK.	If	you've	followed	all	the	steps	up	to	here	correctly,

then	you	would	be	able	to	see	the	packets	originated	from	the	ip	that	you
mentioned	(change	192.168.1.1	to	your	IP	address).
Below	the	Value	box,	there	is	a	Predefined	value	box	that	is	used	when	a

certain	protocol	restricts	us	to	use	only	a	specific	set	of	values.	You	can	choose	a
value	form	here.
Below	the	Predefined	Value	box,	there	is	a	Range	box	that	allows	us	to	enter

a	range	of	values	such	as	1-78,	0-5,	120-255	if	the	protocol	allows	the	same.

This	is	one	of	the	easiest	ways	to	create	a	display	filter;	there	is	one	more	way
following	which	we	can	also	create	such	filters.	Entering	filters	manually	can
drastically	increase	the	speed	of	your	work,	but	it	requires	a	bit	more	skill	than
there	are	in	a	novice	user.

Before	we	start	digging	into	creating	filters	manually,	I	want	you	to	know	about
a	few	more	things,	such	as	comparison	and	logical	operators.	These	can	be	used
to	create	simple	and	the	most	complex	filters	for	Wireshark.

The	following	table	lists	the	comparison	operators	used	to	create	display	filters:

Operator Description

==/eq Equal	to

!=/ne Not	equal	to

</lt Less	than

<=/le Less	than	equal	to

>/gt Greater	than

>=/ge Greater	than	equal	to

Next,	let's	have	a	look	at	the	logical	operators	that	are	used	to	combine	different
conditions	together.	The	following	table	lists	all	of	them:

Operator Description

AND/&& The	AND	logical	operator	is	used	when	we	want	both	parts	of	the	expression	to	state	true.	For
example,	the	ip.src==192.168.1.1	and	tcp	filters	would	only	display	packets	originated	from
ip	192.168.1.1	and	associated	with	the	tcp	protocol.	Only	the	packets	that	match	both	the
expressions	will	be	shown.

OR/|| The	OR	logical	operator	is	used	when	we	just	focus	on	one	condition	to	be	true	at	a	time;	if
both	are	true,	even	then	it's	ok.	For	example,	the	port	53	or	port	80	filters	would	display	all
packets	associated	with	port	53	(DNS)	along	with	all	packets	associated	with	port	80	(http).

NOT/! The	NOT	logical	operator	is	used	when	we	want	to	exclude	some	packets	from	the	list	pane.
For	example,	the	!dns	filter	would	hide	all	the	packets	associated	with	the	DNS	protocol.

Retaining	filters	for	later	use
Sometimes,	you	will	have	a	requirement	where	having	access	to	previously
created	filters	would	make	your	work	easy	and	fast	enough.	Wireshark	gives	you
the	facility	where	you	can	retain	your	display	filters	through	their	saved	names
and	use	them	at	a	later	point	of	time	whenever	required.	This	option	will	save
you	the	great	amount	of	time	and	effort	required	to	type	some	of	the	complex
display	filters.	To	create	one	for	yourself,	follow	the	given	steps:

1.	 Go	to	Analyze	|	Display	filters;	this	will	give	you	a	window	like	the	one
shown	in	the	following	screenshot:	

Figure	2.13:	Adding	Display	Filters

	

Now,	click	on	New,	enter	the	values	in	the	Filter	name	and	Filter	string
fields.	For	instance,	we	want	to	create	a	display	filter	for	no	ARP	packets.	Then,
the	values	will	look	something	like	the	following	screenshot:	

Figure	2.14	:	Creating	a	new	filter

	
After	entering	the	same,	click	on	Apply.	Now,	in	the	list	of	default	filters

present	you	would	be	able	to	see	NO	ARP,	which	can	be	used	later.
Make	sure	that	the	Filter	String	box	is	shown	with	a	green	background,	which

denotes	that	your	expression	is	correct;	if	it	is	in	red	color,	then	you	need	to
recheck	it,	and	if	it	is	in	yellow,	this	denotes	that	the	results	can	be	unexpected.
Now,	you	can	click	on	Apply	and	then	click	on	Ok.
If	you	need	assistance	to	create	any	filter	you	want,	simply	click	on	the

Expression	button	next	to	the	Filter	string	box,	where	all	the	protocols	and
majorly	used	filter	expressions	can	be	found.
The	Delete	button	will	assist	you	in	deleting	an	existing	filter	from	the	list.
The	Cancel	button	will	discard	any	unsaved	changes	and	close	the	window.
The	Ok	button	commits	Save	and	will	close	the	window.
Now,	let's	try	applying	the	filter	we	just	created.	Navigate	to	Analyze	|

Display	Filter	|	(Scroll	and	select)	Display	Filter	|	Apply.

Try	following	the	same	and	create	your	own	display	filter	that	you	might	want	to
reuse.

Searching	for	packets	using	the	Find
dialog
If	you	want	to	find	a	packet	for	a	particular	criterion,	you	can	use	the	Find
dialog.	It	has	a	couple	of	useful	search	techniques	that	can	be	applied	easily	and
effectively	on	an	already	captured	file	or	on	a	live	running	capture.	You	can
access	the	Find	utility	by	navigating	to	Edit	|	Find	packets	or	using	the	shortcut
Ctrl	+	F.

Figure	2.15:	The	Find	Packet	dialog

	

Let's	see	some	more	configurable	options	in	it:

The	display	filter:	After	capturing	the	traffic,	while	analyzing	whether	you
just	want	to	see	some	specific	packets	based	on	a	certain	IP	/Port/	Protocol,
those	packets	that	meet	a	certain	criteria	will	be	displayed	in	the	list	pane,
for	example:

The	ip.addr	==	192.168.1.1	(based	on	an	IP	address)
The	port	8080	(based	on	a	port	number)

http	(based	on	a	protocol)
The	Hex	value:	If	you	have	the	hex	value	for	a	certain	packet	that	you	are

looking	for,	then	this	option	can	be	selected.	Just	write	the	physical	address
separated	by	colons,	for	example:

0A:C4:22:90:45:00

AA:BB:CC

String:	The	next	and	last	option	is	a	text-string-based	search	where	you	can
enter	the	name	of	the	DNS	server,	name	of	the	machine,	and	any	resolved	name
that	you	know	about	(enter	any	string	or	word),	for	example:

Cisco
An	administrator
A	web	server
Google

Search	In:	This	feature	gives	us	the	ability	to	search	in	a	specific	pane.	For
instance,	if	you	are	looking	for	a	packet	in	the	bytes	pane,	which	matches	the
value	Google	(the	ASCII	value	in	the	packet	bytes	pane	will	be	matched),	then
we	can	go	ahead	and	first	choose	the	String	option	and	then	check	the	Search	In
box	and	choose	Packet	Bytes.
String	Options:	To	use	this,	first	select	the	String	option	and	then	select

Case-Sensitive	and	then	if	you	want,	choose	the	character	width	as	well	(but	I
would	suggest	not	changing	this	unless	until	you	have	a	specific	reason	to	do
so).

Direction:	This	last	option	changes	the	direction	of	a	search;	you	can
change	it	to	upward	or	downwards.

Once	you	have	customized	the	options,	enter	the	text	and	click	on	Find.	This
will	give	you	the	first	exact	capture	that	matches	your	criterion.	To	move	back
and	forth	between	the	matched	packets,	you	can	use	Ctrl	+	N	(next)	and	Ctrl	+	B
(previous).

Colorize	traffic
For	better	and	convenient	viewing	experience,	Wireshark	gives	us	a	feature
where	we	can	colorize	a	certain	type	of	traffic	that	we	want	to	highlight.
Colorization	of	traffic	is	done	in	order	to	distinguish	between	different	sets	of
traffic.	Coloring	a	specific	set	of	traffic	with	a	different	rule	other	than	the
default	one	will	be	like	finding	a	needle	in	a	haystack.

The	default	profile	for	most	protocols	is	already	created	because	of	which	we	are
able	to	see	traffic	in	the	packet	list	pane	in	different	colors.	You	can	access	it	by
navigating	to	View	|	Edit	coloring	rules	or	clicking	on	the	Edit	coloring	rules
button	from	the	main	toolbar	to	open	a	window	as	shown	in	the	following
screenshot:

Figure	2.16:	Coloring	rules

	

All	rules	that	are	currently	saved	as	part	of	your	global	configuration	file	to

colorize	traffic	with	certain	foreground	and	background	colors	are	listed	in	this
dialog.	Every	packet	listed	in	the	packet	list	pane	follows	a	certain	rule,	which
gives	them	a	unique	and	distinguished	look	and	feel.

Let's	use	this	feature	and	color	the	http	error	packets	with	a	color	of	our
choice.	Say,	for	instance,	I've	a	web	server	running	on	my	machine	that	is	used
by	the	clients	connected	for	file	accessing	purpose.	Now,	one	of	the	clients	in	my
network	is	trying	directory	listing	and	gets	HTTP	404	error	messages.	These	error
messages	will	pop	up	in	my	packet	list	pane	but	will	be	colored	using	the	same
http	coloring	rule	that	makes	these	errors	less	visible	to	me.	To	make	this	more
visible,	I	want	to	colorize	the	HTTP	404	error	messages	with	a	black	background
and	with	a	cyan	foreground.	Follow	the	steps	shown	here	that	will	achieve	the
same:

1.	 I	have	configured	a	Linux	box	running	on	172.16.136.129,	and	my	Mac
OS	is	running	on	172.16.136.1	that	serves	as	a	web	server	for	Linux,	as
Shown	in	the	following	screenshot:

Figure	2.17:	The	web	server	running	on	172.16.136.1

	

Normal	traffic	from	a	Linux-accessing	web	server	looks	something	like	the
screenshot	here:

	

2.	 Now	that	everything	is	up	and	running,	we	will	try	to	do	some	directory
listing	manually	from	Linux,	which	will	give	eventually	HTTP	404	error
messages.

	

The	traffic	generated	through	this	request	is	captured,	which	can	be	seen	in
the	following	screenshot:

	

We	can	see,	in	the	preceding	captured	traffic,	that	the	client	requested	the
abc.jpg	resource,	which	was	not	available;	thus,	the	client	received	a	404
Not	found	error.

3.	 We	figured	out	easily	because	there	is	just	one	client	requesting	a	single
resource.	Consider	a	production	environment	where	thousands	of	clients	are
present	and	they	might	do	the	same.	In	such	cases,	coloring	a	specific	set	of
packets	with	a	different	rule	is	a	game	changer.

4.	 Navigate	to	Edit	Coloring	Rules	|	New.	Type	HTTP	404	in	the	Name	box.
Type	http.response.code==404	in	the	String	box.	Choose	the
Foreground	Color	option	as	Cyan,	and	choose	the	Background	Color
option	as	Black.	Then,	click	on	OK	and	navigate	to	Apply	|	OK.

	
5.	 Once	you	click	on	Apply,	you	will	see	that	only	the	HTTP	404	error	packets

will	be	colored	according	to	your	new	coloring	rule.

Figure	2.19:	After	applying	the	new	coloring	rule

	

Try	the	same	using	a	virtual	environment	to	give	yourself	more	insight	into	the
topic.

Coloring	rules	listed	in	the	Edit	Coloring	Rules	dialog	will	be	checked	in	a	top-
to-bottom	manner.	With	every	packet,	there	is	coloring	rule	information	attached
that	can	be	listed	from	the	Packet	Details	Pane	under	the	Frame	section.
Consider	the	following	screenshot	illustrating	the	same:

Figure	2.20:	Coloring	info	in	a	frame	header

	

Create	new	Wireshark	profiles
Profiles	in	Wireshark	are	like	customized	environments,	which	can	save	a
significant	amount	of	time	while	auditing	a	network.	A	profile	is	a	set	of
different	components,	such	as	capture	filters,	display	filters,	time	preferences,
column	preferences,	protocol	preferences,	color	profiles,	and	so	on,	that	fit
together	and	give	you	a	case-specific	scenario,	which	you	might	require
instantly.

Importing	and	exporting	profiles	is	very	easy	in	Wireshark,	which	is	pretty
useful	while	auditing	a	network	where	you	don't	have	your	preinstalled	tools.
Just	copy	and	paste	the	Profile	configuration	files	in	a	certain	directory	to	use
them.	To	create	a	profile,	follow	these	steps:

1.	 Right-click	on	the	Profile	column	in	Status	Bar.

2.	 Click	on	New...	in	the	pop-up	dialog.

3.	 Now,	choose	any	profile	you	wish	to	use	as	a	template	and	type	the	name	of
the	new	profile.

4.	 And	then,	click	on	OK.

Now,	in	the	status	bar,	you	will	see	the	the	same	profile	has	been	activated.	The
changes	that	you	are	going	to	make	in	this	profile	stay	here,	for	example,	you
can	create	capture/display	filters,	change	protocol	preferences,	and	change	color
preferences.	This	means	that	any	changes	in	a	profile	do	not	alter	the	contents	of
other	profiles	that	are	saved.

This	way,	we	can	create	different	profiles	for	case-sensitive	scenarios	that	can
save	time	and	make	the	task	easy.

Summary
Using	the	Find	utility	can	be	pretty	useful	sometimes,	and	can	be	accessed	from
the	Edit	menu	in	Wireshark.	The	Find	utility	gives	us	various	vectors	to	search
the	packet	content.

Filtering	traffic	lets	you	see	only	those	packets	that	you	are	interested	in;	there
are	two	types	of	filters:	display	filters	and	capture	filters.

Display	filters	hide	the	packets,	and	once	the	expression	you	made	is	cleared,	all
packets	can	be	seen	again.	However,	capture	filters	discard	the	packets	that	do
not	meet	the	expression	that	you	created.	Discarded	packets	are	not	passed	to	the
capturing	engine.

Capture	filters	use	the	BPF	syntax,	which	is	an	industry	standard	and	is	used	by
several	other	protocol	analyzers.

Coloring	preferences	can	be	really	useful	while	filtering	a	certain	set	of	traffic
based	on	a	specific	expression.	Distinguishing	packets	will	be	become	easy,	as
the	matched	packets	will	be	shown	with	a	different	coloring	scheme.

Profiles	are	like	case-sensitive	scenarios	that	can	save	your	time	and	workload.
Changes	made	to	the	profiles	with	respect	to	its	different	components,	such	as
display/capture	filter	and	color/protocol/time	preferences,	stay	within	the	same.

Exporting	profiles	and	various	settings	from	Wireshark	is	very	simple,	which
make	the	software	more	portable.

In	the	next	chapter,	you	will	learn	how	to	work	with	Wireshark's	advanced
features	such	as	graphs	and	statistical	options.

Practice	questions
Q.1	Explain	the	difference	between	display	filters	and	capture	filters,	and	which
is	more	efficient	in	terms	of	system	resource	utilization.

Q.2	Explain	the	difference	between	Find	Utility	and	Filters.	Use	the	Find	utility
to	search	using	hex	values.

Q.3	Create	a	capture	filter	to	capture	only	ARP	broadcast	packets.

Q.4	Create	a	capture	filter	to	capture	all	packets	except	the	packet	destined	to
and	originated	from	your	physical	address.

Q.5	Create	a	capture	filter	to	capture	only	TCP	SYN	packets	and	TCP	ACK
packets.

Q.6	Create	a	capture	filter	to	capture	HTTP	traffic	sent	only	from	you	machine.

Q.7	Create	a	display	filter	to	show	packets	originating	only	from	your	IP.

Q.8	Create	a	display	filter	to	see	packets	that	are	only	related	to	the	protocol
Secure	Socket	layer.

Q.9	Create	a	display	filter	to	see	only	the	ICMP	destination	host's	unreachable
packets.

Q.10	Create	a	display	filter	to	see	only	TCP	packets	with	a	FIN	and	ACK	flags
set.

Q.11	Create	a	display	filter	to	show	TCP	packets	with	header	length	greater	than
40.

Q.12	Change	the	coloring	scheme	for	all	the	DNS	query	Type	A	packets	to	the
color	of	your	choice.

Q.13	Change	the	coloring	scheme	of	all	HTTP	error	messages	to	the	color	of
your	choice.

Q.14	Create	a	profile	with	the	name	DNS	using	a	default	profile,	and	create	a
capture	filter	in	this	profile	that	will	capture	DNS	traffic.	Then,	change	the
coloring	scheme	of	all	DNS	response	packets	to	the	color	of	your	choice.

Chapter	3.	Mastering	the	Advanced
Features	of	Wireshark
In	this	chapter,	we	will	look	under	the	hood	of	the	Statistics	menu	in	Wireshark
and	work	with	different	command-line	utilities	that	come	pre-packaged	with
Wireshark.	Here,	we	will	cover	the	following	topics:

Collecting	network	stats	using	Wireshark's	Statistics	menu
LabUp—Summary,	Protocol	Hierarchy,	Conversations,	and	Endpoints
Mapping	overall	traffic	in	graphical	form
LabUp—Graphs
View	network	traffic	in	plain-text	form
LabUp—TCP	Streams
Learn	how	to	view	logged	anomalies	in	your	trace	file
LabUp—Expert	Infos
Using	command-line	tools	for	protocol	analysis
LabUp—CommandLine
Practice	questions

With	Wireshark,	you	can	access	a	variety	of	statistics	about	the	packets	and
protocols	involved	in	the	communication	between	two	hosts.	We	can	collect
basic	as	well	as	advanced	and	specific	information	about	protocols	that	are
involved	in	the	communication	process.	We	will	discuss	most	of	the	useful	tools
available	in	this	menu,	which	can	give	us	a	better	insight	into	dealing	with	day-
to-day	complex	situations.

The	Statistics	menu
Statistics	in	Wireshark	are	not	presented	to	you	just	through	recorded	figures;
there	are	graphical	features	too,	which	can	present	the	figures	in	terms	of	graphs.
Using	this,	the	analysis	process	becomes	easier	and	much	efficient.	Multiple
types	of	graphs	are	available,	which	we	can	use	to	collect	valuable	information.

Command-line	tools	are	like	a	samurai's	sword,	which	will	enhance	the
capability	of	a	moderate	user	to	become	and	act	like	an	advanced	user.	In	this
chapter,	we	will	see	a	couple	of	inbuilt	tools	that	are	command	based.

Using	the	Statistics	menu
A	wide	range	of	tools	related	to	network	stats	is	available	in	the	menu,	which
facilitate	users	in	gaining	information	ranging	from	general	info	to	specific
protocol	related	info	in	detail.

The	general	details	with	respect	to	the	packets	captured,	filters	applied,	marked
packets,	and	various	other	stats	can	be	checked	in	the	Statistics	menu.	Though
this	option	is	just	for	informational	purpose,	at	times	this	can	be	pretty	much
useful.

To	access	the	summary	stats,	click	on	Statistics	|	Summary;	now,	you	will	be
able	to	see	a	window,	as	shown	in	the	upcoming	screenshot.

The	Summary	dialog	is	partitioned	into	a	couple	of	sections,	which	are	as
follows:

File:	General	information,	such	as	the	name	of	the	file,	location	of	the	file,
format	used,	and	encapsulation,	is	listed	under	this
Time:	This	section	will	tell	you	the	time	when	the	first	and	the	last	packets
were	captured	and	the	time	elapsed	(total	capture	duration)
Capture:	This	lists	the	name	of	the	OS	along	with	the	version	used	and	the
interface	used	to	dump	packets	from	the	live	network	traffic
Comments:	This	shows	any	comments	that	the	user	mentioned	for
reference
Interface(s):	This	lists	the	details	of	every	interface,	using	which	the	traffic
is	captured
Display:	This	section	gives	statistics	regarding	any	display	filter	that	has
been	used	and	the	percentage	of	ignored	packets	after	a	filter	was	applied

Figure	3.1:	Summary	dialog

	

Just	below	the	Display	section,	you	must	see	a	few	columns	listing	various
details,	which	include	a	summary	in	a	tabular	format	that	is	grouped	on	the	basis
of	different	categories,	such	as	average	packet	size,	total	number	of	packets
captured,	time	elapsed	between	the	first	and	last	packet	captured,	and	so	on.

Figure	3.2:	Without	display	filter(screenshot	1)

	

Let's	say,	for	instance,	we	have	a	capture	file	over	which	we	have	applied	the
display	filter	http.	After	this,	we	can	access	the	Summary	option.	Take	a	look	at
the	following	screenshot	and	try	to	compare	them	in	order	to	understand	the
difference	a	display	filter	would	make	in	the	representation	of	the	packets	related
summary.

Figure	3.3:	With	display	filter(screenshot	2)

	

Now,	after	applying	the	filter,	the	variance	among	the	values	listed	in	the	stats

can	be	observed.	That	is,	after	applying	the	display	filter	http,	the	Displayed%
column	has	a	different	set	of	values	as	compared	to	the	previous	one	without
display	filter.

Protocol	Hierarchy
The	Protocol	Hierarchy	window	provides	us	with	an	overview	regarding
distribution	of	protocols	used	in	the	communication	process	and	how	to	spot
unusual	activities	in	your	network	that	do	not	follow	the	benchmark	as	expected.
By	distribution	of	protocols,	I	mean	in	what	percentage	a	certain	protocol	has
been	used	in	the	communication	between	two	hosts,	and	statistics,	for	example,
how	many	bytes	and	packets	are	being	sent	and	received	for	every	protocol,	are
collected	easily.	Any	form	of	unusual	activity	can	be	easily	figured	out	by
matching	our	current	traffic	with	the	baseline	created.

Figure	3.4:	Protocol	Hierarchy	window

	

If	you	want	to	check	the	protocol	distribution	for	a	specific	host,	then	before	you
open	the	Protocol	Hierarchy	window,	apply	a	display	filter,	for	example,
ip.addr==172.20.10.1.	The	same	filter	will	be	visible	at	the	top	of	the	Hierarchy
window	just	below	the	title	bar.	This	makes	it	easy	for	us	to	figure	out	what	kind
of	traffic	is	actually	generated	from	a	certain	host,	and	any	malicious	traffic	from

a	certain	host	can	be	easily	figured	out.

Refer	to	the	following	screenshot:

Figure	3.5:	Protocol	Hierarchy	window	after	applying	display	filter

	

Using	the	Protocol	Hierarchy	window,	you	can	create	filters	too.	Just	right-
click	on	the	protocol	you	wish	to	use	and	then	go	ahead	and	specify	the
expression,	as	shown	in	the	following	screenshot:

	

There	will	be	situations	when	a	certain	host	in	your	network	has	been	breached
and	you	might	be	observing	some	unusual	traffic	associated	with	a	particular
host.	In	such	situations,	the	Protocol	Hierarchy	window	will	prove	worthy.

Conversations
When	two	devices	are	connected	to	each	other	on	the	network,	they	are	supposed
to	communicate;	this	is	considered	normal	behavior.	However,	suppose	you	have
thousands	of	devices	connected	to	your	network	and	you	want	to	figure	out	the
most	active	device	that	is	generating	too	much	traffic,	then	in	that	instance,	the
Conversations	window	will	be	quite	useful.

To	access	this	nice	tool,	click	on	Statistics	|	Conversations.	After	this,	you	will
be	presented	with	a	window	like	the	one	shown	in	the	following	screenshot,
which	lists	various	details	in	terms	of	several	columns	listing	the	packets	that
were	transferred,	the	bytes	that	were	transferred,	the	flow	of	traffic,	devices'
MAC	addresses,	and	various	other	details.	At	the	top,	you	will	observe	various
protocols	displayed	individually	in	separate	tabs,	and	along	with	each	active
protocol	tab,	you	will	notice	a	number	that	denotes	the	number	of	unique
conversations.

Figure	3.6:	Conversations	window

	

For	example,	if	you	are	looking	for	the	devices	that	generated	a	lot	of	packets
and	from	where	major	data	transfer	has	happened,	then	open	the	Conversations

dialog,	go	to	the	IPv4	tab,	and	sort	the	packets	column	in	a	descending	order.
Here,	the	device	listed	in	the	first	row	is	your	answer.	Take	a	look	at	the
following	screenshot	that	illustrates	the	same.

Figure	3.7:	Busiest	devices

	

In	the	first	row,	we	can	see	how	many	packets/bytes	have	been	sent	and	received
by	each	endpoint	and	the	total	elapsed	duration.	If	you	wish	to	create	a	filter	for
the	same,	right-click	on	the	first	row	and	then	create	the	respective	expression
you	are	thinking	about.	I	chose	the	first	option,	A<->B,	which	only	shows
packets	that	are	associated	with	Address	A	and	Address	B:

	

The	respective	filter	will	be	inserted	in	the	Display	Filter	dialog,	as	shown	in

the	following	screenshot:

	

The	Conversations	dialog	will	let	us	collect	and	analyze	details	in	a	more
granular	form,	which	can	be	used	in	various	scenarios	while	troubleshooting	and
auditing	networking	infrastructures.

Endpoints
Two	devices	that	share	data	with	each	other	are	often	referred	to	as	endpoints
with	reference	to	Wireshark.	As	we	have	noticed	and	observed,	if	a	host	intends
to	talk	to	another	host	on	the	network,	they	would	require	some	form	of	address
to	send	and	receive	packets—yes,	I	am	talking	about	the	physical	address	that
every	device	holds.

Every	host	is	able	to	communicate	with	the	help	of	an	Network	Interface	Card
(NIC)	that	holds	a	physical	address	(often	termed	as	a	MAC	address),	and	the
same	address	is	used	for	communication	over	a	local	network.	Devices	that
communicate	in	this	kind	of	infrastructure	are	termed	as	endpoints.	Wireshark
gives	us	the	facility	of	analyzing	and	collecting	information	regarding	these	two
devices.

Let's	say,	for	example,	that	we	are	observing	heavy	network	traffic	flowing
across	a	network,	which	is	kind	of	unusual	according	to	our	daily	traffic	pattern.
Now,	we	want	to	figure	out	due	to	which	device(s)	the	traffic	pattern	differs.	For
us,	the	Endpoints	dialog	comes	to	the	rescue,	which	can	be	accessed	from	the
Endpoints	menu	under	Statistics,	which	looks	something	like	the	following
screenshot.	Before	you	go	ahead	and	open	the	Endpoints	dialog,	simply	click	on
any	TCP	packet	from	the	Packet	List	pane.	What	you	will	see	is	a	list	of	tabs
visible	at	the	top,	each	stating	a	different	a	protocol.	Some	of	them	will	be	shown
as	active,	and	some	of	them	will	be	shown	as	inactive	because	if	in	your	traffic
you	have	a	packet	relating	to	a	certain	protocol,	the	tab	listing	that	particular
protocol	will	be	shown	as	active;	otherwise,	it	will	be	shown	as	inactive.

By	default,	you	will	be	presented	with	the	Ethernet	tab	(lists	the	Layer-2	MAC
address)	in	most	cases.	Along	with	the	protocol,	you	must	observe	a	number	that
states	the	number	of	endpoints	captured	for	that	specific	protocol.	As	in	our	case,
we	are	seeing	3	and	the	same	number	of	rows	are	visible	in	the	Main	pane.

In	the	Main	pane,	many	more	specific	details	can	be	seen	for	every	endpoint,
such	as	the	total	number	of	packets	transferred,	total	number	of	bytes	transferred,
and	total	bytes	and	packets	received	and	transmitted	for	an	individual	endpoint.

Figure	3.8:	Endpoints	window

	

Now,	if	you	want	to	analyze	other	protocols,	then	simply	click	on	any	tab	of
your	choice.	I	clicked	on	the	IPv4	tab	and	sorted	the	main	pane	using	the
Packets	column,	which	looks	like	the	one	shown	in	the	following	screenshot:	By
just	looking	at	the	Endpoints	dialog,	I	can	now	easily	figure	out	that	maximum
data	was	transferred	from	IP	172.20.10.7.	This	could	be	a	one	single	IP	talking	to
some	server	or	probably	a	server	talking	to	multiple	machines	on	our	network	at
a	moderate	rate.

Figure	3.8:	Endpoints	dialog—IPv4v	tab

	

If	you	would	like	to	dig	more	into	it,	we	have	an	interesting	option	that	can	be
taken	advantage	of;	simply	create	a	display	filter	for	the	same.	To	do	so,	right-
click	on	the	first	row	with	most	packets	transferred	and	choose	Selected	under
Apply	as	Filter,	as	shown	in	the	following	screenshot:	You	will	be	able	to	see	a
display	filter	for	the	same	Endpoint	in	the	Display	Filter	dialog	above	the	List
pane,	like	the	one	shown	here:	

	

This	facilitates	us	to	quickly	analyze	traffic	for	a	certain	endpoint	and	hence
increases	the	speed	of	analysis	for	users.	Once	you	click	on	Clear,	you	will	be
presented	with	the	same	Endpoint	dialog.	At	the	bottom	of	the	window,	you	will
see	two	check	boxes	and	a	few	buttons.	The	purpose	of	each	is	listed	in	the
following:	

	
Name	Resolution:	This	resolves	the	name	of	each	of	the	Ethernet	addresses
listed	in	the	Ethernet	tab.	But	in	some	scenarios,	it	might	affect	the
performance	of	the	application	adversely	too,	for	example,	when	trying	to
resolve	the	unique	IP	addresses	from	a	huge	pcap	file.
Limit	to	display	filter:	This	limits	the	results	of	the	Endpoint	window	on
the	basis	of	a	display	filter	that	you	already	applied	before	accessing	the
Endpoints	window.
Copy:	This	copies	the	content	of	the	current	Endpoints	window	tab	in	a
CSV	format	(comma-separated	values).
Map:	This	maps	the	selected	endpoint's	location	in	your	browser	on	the
basis	of	its	actual	geographical	location.

Working	with	IO,	Flow,	and	TCP
stream	graphs
Among	various	other	reporting	tools,	Wireshark	offers	graphing	capabilities	too,
which	can	present	captured	packets	in	an	interesting	format	that	makes	the
analysis	process	much	more	effective	and	easy	to	adapt.	The	graphing	feature	is
much	more	effective	in	comparison	to	scrolling	thousands	of	packets	to	figure
out	the	cause	of	any	network-related	problem.	If	you	have	an	overwhelming
number	of	packets	to	be	analyzed,	then	graphs	can	be	seriously	productive.
There	are	multiple	types	of	graphs	available	that	we	will	discuss,	starting	with
the	IO	graph.

IO	graphs
This	is	one	of	the	basic	graphs	that	are	created	using	the	packets	available	in	the
capture	file.	To	create	the	IO	graph,	select	any	TCP	packet	in	your	capture	file
and	then	click	on	IO	Graph	under	Statistics.	Refer	to	the	following	screenshot:

Figure	3.10:	IO	graphs

	

This	way,	you	can	see	the	highs	and	lows	in	your	traffic,	which	can	be	used	to
rectify	problems	or	can	even	be	used	for	monitoring	purpose.	In	the	preceding
graph,	the	data	on	the	x	axis	represents	the	time	in	seconds	and	the	data	on	y	axis
represents	the	number	of	packets	per	tick.	The	scale	for	the	x	and	y	axis	can	be
altered	if	needed,	where	x	axis	will	have	a	range	between	10	and	0.001	seconds
and	y	axis	values	will	range	between	packets/bytes/bits.

From	the	preceding	graph,	we	can	easily	depict	that	between	sixtieth	to	eightieth
second	of	the	capture	process,	the	network	was	most	active,	which	generated

approximately	1000	packets	each	second	of	the	capture	process.	Now,	you	will
be	realizing	how	easy	it	was	to	gather	that	specific	information	from	thousands
of	packets	in	merely	4-5	seconds;	this	is	what	graphing	makes	you	capable	of.

Just	below	the	plotted	area,	you	can	see	the	Graph	section,	which	lists	various
tools,	such	as	Graphs	1-5,	several	filters,	and	the	line	format,	and	various	other
details.	Let's	take	an	example	and	try	to	understand	the	functioning	of	each	of
them.

The	preceding	graph	displays	the	generalized	form	of	our	network	traffic.	Now,
my	requirement	is	that	I	just	want	to	see	the	frequency	of	the	UDP	traffic
separately	in	the	same	graph	plotted	with	a	red	line.	For	such	specifications,
follow	these	steps:

Write	UDP	as	a	filter	in	the	second	filter	box	from	the	top
Click	on	the	Graph	1	button	to	deactivate	it
Click	on	the	Graph	2	button	to	activate	it
Now,	you	will	see	the	same	window	as	shown	in	the	following	screenshot:

Figure	3.11	:	IO	graph-UDP	traffic	only

	

Analyzing	specifically	UDP	traffic	becomes	easier	in	just	a	few	steps.	It	is
clearly	visible	from	the	preceding	graph	that	most	of	the	UDP	traffic	was
generated	between	the	seventieth	to	eightieth	second	of	the	capture	process,	and
more	than	250	packets	were	received	during	the	capture	process.	If	you	want	to
compare	both	TCP	and	UDP	traffic	in	the	same	graph,	take	a	look	at	the
following	screenshot:

Figure	3.12:	IO	Graphs—TCP	and	UDP	together

	

Comparing	two	things	gives	us	a	new	angle	to	view	regular	things,	and	generally
speaking,	the	learning	process	becomes	better	when	we	start	comparing.

Flow	graphs
This	is	one	of	the	nicest	features	in	Wireshark,	where	we	are	assisted	with
troubleshooting	capabilities	in	scenarios	like	facing	a	lot	of	dropped	connections,
lost	frames,	retransmission	traffic,	and	more.	Flow	graphs	let	us	create	a	column-
based	graph,	which	summarizes	the	flow	of	traffic	between	two	endpoints,	and	it
even	lets	us	export	the	results	in	a	simple	text-based	format.	This	is	the	easiest
way	of	verifying	the	connection	between	client	and	server.

For	instance,	I	have	a	web	server	running	at	172.16.136.1	and	a	client	running	at
172.16.136.129.	The	client	will	request	the	web	server	for	a	certain	resource.
Let's	see	what	the	flow	graph	looks	like	for	such	kind	of	requests.	There	will	be
hundreds	of	packets	generated,	but	we	will	look	only	at	HTTP	packets,	just	to
make	the	results	more	confined	and	understandable.	Click	on	Flow	Graph	under
Statistics,	and	then	from	the	pop-up	dialog,	choose	Displayed	Packet.	Click	on
OK.	Refer	to	the	following	screenshot	that	illustrates	the	same:	

Figure	3.13:	Flowgraph

	

Now,	from	the	Graph	Analysis	window,	we	can	see	at	what	time	a	certain
request	was	made	and	what	response	did	we	receive,	which	TCP	port	was	used,
along	with	some	plain	English	comments,	and	the	flow	of	traffic	is	also	marked.
This	makes	it	simple	for	us	to	understand	how	TCP	packets	flow	around.

TCP	stream	graphs
There	are	a	couple	of	graphs	that	come	in	this	section.	Each	of	them	depicts	the
network	traffic	in	a	graphical	form	differently.	Let's	start	by	taking	a	look	at	each
one	of	them.

Round-trip	time	graphs
Round-trip	time	(RTT)	is	the	duration	in	which	the	ACK	for	a	packet	that	is
sent	is	received,	that	is,	for	every	packet	sent	from	a	host,	there	is	an	ACK
received	(TCP	communication),	which	determines	the	successful	delivery	of	the
packet.	The	total	time	that	is	consumed	from	the	transfer	of	the	packet	to	the
ACK	for	the	same	is	called	round	trip	time.	Follow	these	steps	to	create	one	for
yourself:

Select	any	TCP	packet	in	your	packet	list	pane.
Navigate	to	Statistics	|	TCP	Stream	Graph	|	Round	Trip	Time	Graph.
The	x	axis	represents	the	TCP	sequence	number	and	the	y	axis	represents
the	RTT	in	seconds.
Each	plotted	point	on	the	graph	represents	the	RTT	of	a	packet.	If	you	are
not	seeing	anything	in	your	graph,	then	you	might	have	selected	an	opposite
directional	packet.
RTT	graphs	are	often	used	by	network	admins	to	identify	any	congestion	or
latency	that	can	make	your	network	perform	slowly.
To	investigate	further,	just	click	on	any	plotted	RTT	dot	in	your	graph,	and
Wireshark	will	point	you	to	that	specific	packet	in	the	list	pane.

The	following	RTT	graph	represents	normal	web	traffic,	and	at	some	points	in
the	graph,	latency	can	be	observed:

Figure	3.14:	Round	Trip	time	Graph

	

Bottleneck	and	latency	can	often	be	identified	with	a	vertical	line	of	plotted	RTT
dots,	which	depicts	whether	the	packet	from	the	sending	device	is	first	queued
up	and	then	sent	all	at	once	or	whether	the	packets	are	suffering	with	duplicate
ACKs	or	packet	loss,	where	retransmission	was	required,	thus	increasing	the
RTT	time.

Throughput	graphs
This	graph	is	very	similar	to	the	IO	graph	that	depicts	the	traffic	flow.	However,
it	is	different	in	one	important	aspect	that	Throughput	graphs	depict	the
unidirectional	traffic	whereas	IO	graphs	depict	the	traffic	in	both	directions.	For
every	TCP	packet	that	you	select	in	the	list	pane,	the	Throughput	graph	can	be
different.	If	you	are	seeing	a	blank	graph,	then	just	select	another	TCP	packet
and	try	to	create	the	graph	again.	Follow	these	steps	to	create	one	for	yourself:

1.	 Open	the	trace	file	that	contains	your	packets.
2.	 Apply	a	display	filter	if	required.
3.	 Select	any	TCP	packet	from	the	list	pane.
4.	 Navigate	to	Statistics	|	TCP	Stream	graphs	|	Throughput	graph.
5.	 Voila!	It's	done.

In	the	title	bar,	the	IP	address	of	the	communicating	hosts	is	present,	along	with
the	direction	of	traffic.	The	x	axis	represents	the	time	in	seconds,	and	the	y	axis
represents	throughput	in	bytes/seconds.	Refer	to	the	following	graph	(Figure
3.15)	that	illustrates	the	same:

Figure	3.15:	Throughput	Graph

	

The	Time-sequence	graph	(tcptrace)
This	graph	depicts	the	stream	of	TCP	data	over	time.	The	traffic	that	will	be
presented	is	unidirectional	(moving	in	one	direction).	Time-sequence	graph	gives
us	an	idea	about	the	segments	that	are	currently	traveling,	the	acknowledgements
for	segments	that	we've	received,	and	the	buffer	area	that	the	client	is	capable	to
hold.	To	create	this	graph,	follow	these	steps:

1.	 Open	the	capture/trace	file	you	want	to	work	with.
2.	 Click	on	any	TCP	packet	from	the	list	pane.
3.	 Navigate	to	Statistics	|	TCP	Stream	Graphs	|	Time	sequence

graph(tcptrace).
4.	 You	must	now	see	something	like	the	following:

Figure	3.16	:	Time	Sequence	graph	(tcptrace)

	

The	x	axis	of	the	graph	represents	the	time	in	seconds	and	the	y	axis	represents
the	TCP	sequence	number.	TCP	sequence	numbers	are	incremented	by	the	bytes
of	data	sent	with	every	packet,	that	is,	if	the	sequence	number	is	1	and	the	packet
we	are	sending	holds	10	bytes	of	data,	then	the	sequence	number	will	be
incremented	by	10.	Hence,	the	sequence	number	for	the	next	packet	to	be	sent
will	be	11.	The	throughput	of	the	data	is	more	when	we	have	steeper	lines
plotted,	normally,	the	graph	plotting	starts	from	the	lower-left	corner	to	upper-
right	corner.

There	are	actually	three	lines	plotted	on	every	graph.	The	line	with	multiple	I
written	is	the	TCP	data	segment,	and	the	longer	the	I	stream,	the	more	the	data	in
the	packet.	The	line	below	the	TCP	segment	is	the	ACK	stream	for	data	sent,	and
the	line	at	the	top	represents	the	calculated	client-receiving	window.

The	distance	between	the	client-receiving	window	line	and	the	TCP	segment	line
is	the	window	size.	The	closer	the	line,	the	less	data	can	be	buffered,	and	vice
versa.	Consider	the	following	zoomed-in	screenshot	for	more	understanding:

Figure	3.17:	Throughput	graph

	

Let's	suppose	that	at	1.38	seconds	Host	A	is	sending	byte	995,000,	and	at	the
same	time,	host	A	received	an	ACK	for	byte	990,000,	which	states	that	5,000
bytes	are	still	unacknowledged	(in-flight).	A	point	to	be	noted	here	is	that	the
dark	grey	lines	denote	the	ACKs	received.

Follow	TCP	streams
Wireshark	provides	the	feature	of	reassembling	a	stream	of	plain	text	protocol
packets	into	an	easy-to-understand	format.

Figure	3.18:	Follow	TCP	Stream	window

	

For	instance,	assembling	an	HTTP	session	will	show	you	the	GET	requests	sent
from	the	client	and	the	responses	received	from	the	server	accordingly.	There	is
specific	color	coding	that	is	followed	by	the	requests	and	responses	shown	in	the
Follow	TCP	stream	dialog.	Any	text	in	red	color	denotes	a	request	that	a	client
has	sent,	and	any	text	in	blue	color	denotes	the	response	received	from	the
server.	If	the	protocol	is	HTTP,	then	you	can	view	almost	everything	in	plain

text;	if	the	protocol	is	HTTPS,	then	most	of	the	things	will	be	encrypted,	hence
giving	ambiguous	text	on	the	screen	(there	is	a	way	to	decrypt	HTTPS	traffic
too,	which	we	will	discuss	in	the	upcoming	chapters).	The	Follow	TCP	stream
option	can	be	of	great	help	while	troubleshooting	any	HTTP	session,	which	is
the	same	with	most	of	the	application	layer	protocols.

At	the	bottom	of	the	dialog,	you	have	a	drop-down	menu	from	where	you	can
choose	to	view	either	side	of	communication	or	you	can	choose	the	entire
communication,	consisting	of	requests	and	responses	that	are	shared	between	the
client	and	the	server	at	the	same	time.	Instead	of	just	viewing	the	data	in	RAW
format,	you	can	choose	between	ASCII,	EBCDIC,	Hex	dump,	and	C	arrays
format.

If	you	wish	to	save	the	content	shown	in	the	dialog,	then	click	on	Save	as,	which
will	save	the	content	in	a	simple	text	format.	Similarly,	to	print,	you	can	click	on
Print.	And	if	you	want	to	view	everything	except	the	Follow	TCP	stream
packets	that	you	are	viewing	currently,	then	click	on	Filter	out	this	stream.	To
close	the	dialog,	click	on	Close.

To	view	the	TCP	stream,	follow	these	steps:

1.	 Open	the	capture/trace	file.
2.	 Apply	the	display	filter	if	required.
3.	 Select	any	packet	from	the	list	pane.
4.	 Right-click	on	the	selected	packet	and	click	on	Follow	TCP	stream.

Following	the	preceding	steps	gives	a	simple	view	of	viewing	data.	Now,
figuring	out	who	initiated	the	connection	will	be	quite	easy.

Expert	Infos
The	information	in	the	Expert	Infos	dialog	is	populated	by	the	dissectors	that
enable	the	translation	of	every	protocol	that	is	well	known	to	Wireshark.	The
Expert	Infos	dialog	keeps	you	aware	of	the	specific	states	that	users	should
know	about.	Presently,	expert	infos	is	available	only	for	TCP-based
communication.	Maybe	for	other	protocols,	the	Expert	Info	dialog	will	be
available	by	the	time	you	read	this.

You	can	access	the	Expert	Info	dialog	by	clicking	on	Expert	Info	under
Analyze,	or	you	can	click	on	the	bottom-left	corner	on	the	colored	dot	just
before	the	status	bar.	Refer	to	the	following	screenshot,	which	illustrates	the

same:	

	

The	red	dot	at	the	bottom-left	corner	can	be	colored	with	different	colors,	such	as
cyan,	yellow,	green,	blue,	and	grey,	where	each	of	them	has	a	specific	meaning,
which	is	listed	as	follows:

Red:	This	indicates	errors
Yellow:	This	refers	to	warnings
Cyan:	This	refers	to	a	note

Blue:	This	refers	to	chats
Green:	This	refers	to	comments
Grey:	This	means	none

Now,	let's	have	a	look	at	the	Expert	Infos	dialog	and	discuss	various	other
elements	residing	within.	Refer	to	the	following	screenshot	for	illustration
purposes:	

Figure	3.19:	Expert	Infos	dialog

	

As	you	can	observe,	there	are	multiple	tabs	listed	just	below	the	title	bar	that
consist	of	packets	listed	depending	on	their	severity	level	and	category	of
information.	There	are	mainly	four	sections	in	the	Expert	Infos	dialog	that	point
to	the	likely	cause	of	the	problem,	so	double-checking	it	will	be	helpful.	Each
tab	contains	the	name	of	the	section	and	two	numbers:	one	inside	the	parenthesis
and	one	outside.	The	number	inside	the	parenthesis	denotes	the	total	number	of
packets	that	have	been	flagged	for	the	containing	category,	and	the	number
outside	denotes	the	total	number	of	unique	categories	for	the	packets	flagged.

We	will	go	through	each	section	one	by	one,	and	we	will	also	summarize	the
criteria	by	which	packets	are	flagged	and	listed	under	different	categories,	such

as	chat,	note,	warnings,	details,	and	so	on:

Chat:	These	are	general	messages	concerning	the	current	communication.
A	packet	that	falls	under	this	section	is	listed	as	follows:

Window	Update:	This	makes	the	sender	aware	that	the	TCP	receive
window	size	has	been	updated.

Note:	These	are	unusual	messages	that	may	or	may	not	be	part	of	the
current	normal	communication.	Packets	that	fall	under	this	section	are	listed
as	follows:

The	Zero	Window	Probe:	Suppose	that	the	server	receiving	the
packets	from	the	client	is	not	able	to	process	the	packets	received	at
the	same	speed	that	the	client	is	sending	them,	thus	causing	packet
loss.	In	such	cases,	a	server	will	send	a	Zero	Window	packet	to	the
client	to	halt	the	process	of	sending	packets	for	sometime	while
keeping	the	connection	alive.
The	Keep	Alive	ACK:	The	receiver	of	the	Keep	Alive	packets	sends
this	ACK	as	a	response.
The	Zero	Window	Probe	ACK:	This	relates	to	the	Zero	Window
Probe	example.	The	Zero	Window	Probe	ACK	will	be	sent	by	the
client	in	response	to	the	server's	request.
Window	is	full:	This	notifies	the	sending	host	that	the	TCP-receiving
window	is	currently	full.
TCP	retransmission:	The	TCP	packet	is	retransmitted	again	because
of	a	duplicate	ACK,	packet	loss,	or	if	the	timer	for	retransmission
expires.
The	duplicate	ACK:	If	you	think	about	the	TCP	three-way	handshake
communication,	for	every	packet	received	at	the	other	end,	the	sender
should	get	an	ACK	packet.	If	the	receiver	gets	the	packet	with	the
sequence	number	that	has	already	been	received,	then	duplicate	ACKs
will	be	generated.	This	will	happen	in	case	of	packet	loss	as	well.

Warning	messages:	These	are	unusual	messages	that	are	probably	not	a
part	of	your	general	communication.	Packets	that	fall	under	this	section	are
listed	as	follows:

Zero	Window:	These	messages	have	been	observed	when	the
receiving	side	tries	to	notify	the	sender	to	stop	sending	for	a	while	as
the	TCP-receiving	window	is	full.
Keep	Alive:	These	messages	will	be	observed	when	any	Keep	Alive
messages	have	been	captured	in	the	communication.

ACKed	Lost	Packet:	These	messages	will	be	observed	when	an	ACK
for	some	lost	packet	is	received.
Previous	Segment	Lost:	These	messages	will	be	observed	when	an
unexpected	packet	is	received	out	of	sequence.
Out	of	Order:	These	messages	will	be	observed	when	are	packets
received	in	some	random	sequence,	thus	signifying	no	sequence.
Fast	Retransmission:	These	messages	will	be	popped	up	when,	in	a
short	time	of	20	milliseconds,	duplicate	ACKs	have	been	transmitted
again.

Error:	These	are	general	error	messages	in	the	packets	or	are	thrown	by	the
dissector	of	a	specific	protocol	translating	it.	There	is	no	specific	category
in	error	messages.
Details:	Collectively,	all	Expert	Info	dialogs	can	be	viewed	in	the	details
tab.	However,	it	is	advisable	to	look	into	each	tab	individually	on	the	basis
of	their	severity	level.	Pointing	out	the	problems	can	be	sometimes	easy
because	the	entries	made	in	the	details	tab	are	lined	up	in	the	sequence	as
they	were	captured.	Viewing	anomalies	through	the	details	tab	can	be	a	bit
time	consuming	and	disadvantageous.
Packet	Comments:	This	refers	to	any	annotations	given	regarding	the	trace
file	that	can	be	used	to	share	any	interpretations	further.	Adding	comments
to	the	trace	file	can	be	really	useful	while	documenting	for	future
references.	To	add	a	comment	to	any	packet	of	your	choice,	just	right-click
on	the	selected	packet	and	click	on	Packet	Comment.	You	will	be
presented	with	a	dialog	where	you	can	add	a	comment	of	your	choice,	and
the	same	comment	will	be	visible	in	the	Packet	Comments	section	of	the
Expert	Infos	dialog.	Adding	a	comment	will	also	affect	how	a	certain
packet	is	shown	in	the	Details	pane.	Generally,	an	extra	field	will	be	added
to	the	details	pane	highlighted	with	a	green	background	color.

Figure	3.20:	Create	filter	using	Expert	Infos	dialog

	

Unique	categories	presented	in	every	section	can	be	expanded	to	get	more
information	about	a	specific	packet.	When	you	expand	and	click	on	the	packet
listed	in	the	Expert	Infos	dialog,	Wireshark	will	point	you	to	the	corresponding
packet	in	the	list	pane	that	can	be	investigated	further.	Creating	a	display	filter
for	every	category	is	also	possible;	just	right-click	on	the	selected	category	and
choose	the	type	of	filter	you	want	to	create.	Refer	to	the	following	screenshot	for
illustration	purposes:	

	

The	main	motive	of	the	Expert	Infos	dialog	is	to	find	the	anomalies	present	in	a
trace	file.	Finding	the	network	problems	in	the	trace	file	for	a	novice	user
becomes	a	lot	easier	and	faster.	Viewing	the	Expert	Infos	dialog	can	give	a

better	idea	about	the	unusual	behavior	of	network	packets.	As	we	already
discussed,	the	Expert	Infos	dialog	is	available	for	protocols	based	on	TCP/IP;
for	the	rest,	there	is	not	much	info	available.

The	best	way	to	figure	out	juicy	info	is	to	look	into	the	tabs	separately	instead	of
looking	into	the	details	tab	because,	as	we	discussed,	it	can	be	time	consuming
and	can	lead	to	various	misunderstandings.	Users	like	you	are	not	supposed	to
rely	completely	on	Expert	Infos;	sometimes,	the	file	you	trace	will	contain
anomalies	that	won't	be	listed	in	the	Expert	Infos	dialog.	May	be,	manual
analysis	will	be	required	as	well.

The	protocol	field	that	is	shown	in	the	details	pane	of	the	selected	packet	will	be
colored	as	per	the	severity	level	of	the	Expert	Infos	dialog;	take	a	look	at	the
following	screenshot	for	further	reference:	

Figure	3.21:	Colorization	rules	in	protocol	field

	

We	can	easily	identify	from	the	preceding	screenshot	that	for	this	particular
packet,	there	is	an	entry	in	the	Error	and	Chat	sections	(red	color	denotes	Error
and	blue	denotes	Chats).	It	is	also	possible	that	a	single	packet	is	listed	in	two
sections	of	the	Expert	Infos	dialog.

Command	Line-fu
With	the	default	installation	of	Wireshark,	there	are	couple	of	command-line
tools	that	get	installed.	These	command-line	tools	are	some	sort	of	protocol
analyzers,	which	can	be	taken	advantage	of	when	you	don't	have	a	GUI	interface
to	work	with	or	you	don't	have	an	option	to	install	the	GUI.	There	are	good
number	of	tools	available	in	Wireshark	to	do	this,	which	are	Capinfos,	Dumpcap,
Editcap,	Mergecap,	Rawshark,	Reordercap,	Text2pcap,	and	Tshark.

The	most	common	and	widely	used	command-line	tool	for	protocol	analysis
purposes	is	Tshark,	which	is	capable	of	capturing	data	through	listening	to	a	live
wire,	and	it	can	even	analyze	your	already	saved	trace	files.	The	captured
packets	are	translated	into	an	understandable	form	and	printed	to	the	standard
output,	or	you	can	save	them	to	the	file	of	your	choice.	Dissectors	that	are	used
by	Wireshark	the	same	Tshark	utilizes.

Tshark	uses	the	pcap	library	to	capture	and	translate	the	packets	from	the	live
wire	or	from	the	already	saved	files.	Just	like	Wireshark's	filtering	option,	we
can	enable	filters	in	Tshark.	There	are	multiple	customizable	options	present	in
Tshark	that	can	be	leveraged	to	use	it	in	a	more	advanced	fashion.

Wireshark	has	a	CLI	version,	which	is	almost	similar	to	Tshark	in	terms	of	the
syntax	and	various	options	that	both	of	them	support	equally.	Let's	understand
this	topic	better	with	an	example.	Say,	for	instance,	we	have	an	Apache	web
server	and	FTP	running	on	a	Windows	XP	box	located	at	172.16.136.128	and	a
Macintosh	client	running	at	172.16.136.1.	Using	our	custom	infrastructure,	we
will	generate	some	network	packets	and	try	to	use	Tshark	for	capturing	and
analysis	purposes.

When	working	on	a	Windows	PC,	you	might	have	to	create	the	environment
variable	before	you	can	start	using	Tshark.	The	following	screenshot	belongs	to
Tshark,	displaying	tshark	–h	(help	options)	within	the	CLI:

Figure	3.22:	Tshark	help

We	will	start	with	the	basics	and	eventually	move	toward	the	creation	of	filters,
and	then	we	will	collect	statistics	using	the	CLI-based	tool	Tshark:

The	first	thing	we	should	know	is	how	many	interfaces	do	we	have
available	to	capture	packets.	Use	the	following	command	to	check	tshark
-D:

Figure	3.23:	Interfaces	available

If	you	do	not	specify	any	interface	for	capturing,	tshark	will	choose	the
first	interface	that	is	available	on	its	own.	Interfaces	can	be	chosen	by	their

names	and	also	by	the	sequence	number	they	appear	in.	Refer	to	the
preceding	screenshot,	which	shows	all	the	interfaces	that	are	available.
I	have	a	custom	interface	pktap0	that	will	listen	to	the	connection	between
my	client	and	the	server.	So,	the	command	to	initiate	the	capture	process
will	be	tshark	–i	pktap0	or	tshark	–i	5:

Now,	let's	generate	some	HTTP	traffic	by	visiting	the	web	page	hosted	on
our	server	from	the	client	(I	am	using	the	curl	command-line	tool	for
browsing	purpose):

As	soon	as	the	preceding	command	has	been	issued,	a	couple	of	packets	are
captured	by	tshark	on	the	pktap0	interface.	And	a	summary	of	translated
packets	for	better	understandability	can	be	seen.	Refer	to	the	following
screenshot	that	illustrates	the	same:

Figure	3.24:	Packets	captured	at	pktap0

If	you	want	to	stop	the	capture	process	at	any	point,	press	Ctrl	+	C.
To	save	the	translated	packets	to	a	file,	we	need	to	specify	the	–w	switch,
along	with	the	command	that	will	save	the	raw	data	packets	to	the	specified
file:

A	total	of	11	packets	have	been	captured,	and	a	text	file	is	being	created	on
the	desktop	with	the	name	http.txt,	which	will	contain	raw	data	as	shown
in	the	following	screenshot:

Figure	3.25:	Raw	data	stored	in	file

If	you	want	to	save	the	normal	translated	form	(like	the	one	shown	in	the
list	pane	in	Wireshark),	as	shown	in	the	standard	output,	then	just	redirect
the	output	of	the	tshark	command	to	a	file	of	your	choice,	as	shown	in	the
following	screenshot:

As	you	can	see,	11	packets	are	captured	and	redirected	to	the	text	file
http2.	Let's	see	what	is	stored	in	the	http2.txt	file:

Hopefully,	by	now	you	must	have	clearly	understood	the	difference
between	both	ways	of	saving	the	raw	data	packets	and	translated	packets.
Both	of	the	techniques	can	be	used	in	multiple	scenarios.
The	next	big	thing	you	will	learn	is	the	different	filters	(Capture,	Read,	and
Display)	available	in	Tshark.	We	know	about	Capture	and	Display	filters
already,	but	here	we	have	one	more	category,	that	is,	the	Read	filter.	The
Read	filter	is	closely	similar	to	the	Capture	filter,	as	both	of	them	can	filter
packets	from	the	live	network.	However,	the	Read	filter	is	also	capable	of
filtering	packets	out	of	a	saved	file.	Using	the	Read	filter	could	be	processor
intensive,	and	things	like	packet	loss	can	happen,	so	think	twice	before
using	it.	To	display	the	filter,	the	–f	switch	is	used;	–R	is	used	for	the	Read
filter;	and	–Y	is	used	for	the	display	filter.	Now,	I	am	going	to	capture	only
FTP	packets	using	the	following	syntax:

While	applying	a	filter,	there	is	a	restriction	that	the	filter	expression	must
be	specified	as	a	single	argument	if	it	has	spaces	in	between.	Then,	we	need
to	write	the	expression	within	double	quotes.	Refer	to	the	preceding
screenshot	that	illustrates	the	same.
Now,	let's	try	to	create	one	display	filter	using	the	http.pcap	file.	I	want	to
filter	all	packets	originating	from	the	web	server	located	at	172.16.136.128

using	the	http	protocol.
First	I	captured	the	communication	between	the	client	and	server.	And	save
the	traffic	in	file	HTTP.pcap.

Once	I	have	enough	packets	to	work	with,	I	will	apply	display	filters,	as
shown	in	the	following	screenshot:

Figure	3.26:	Tshark	display	filter

Suppose	you	want	to	quickly	collect	statistics	about	the	http	protocol	from
the	http.pcap	file.	For	such	a	requirement,	we	can	use	this	command:
tshark	–r	<file-name>	-q	–z	<expression>

The	-q	switch	keeps	it	silent	over	the	standard	output	(this	is	generally	used
while	working	with	statistics	in	Wireshark)	and	the	–z	switch	for	activating
various	statistics	options	available.	Both	of	these	switches	are	often	used
together.
Let's	take	one	more	simple	example	before	wrapping	this	up;	from	the
http.pcap	file,	I	want	to	figure	out	how	many	hosts	there	are	in	total	during
the	whole	capture	time.	For	such	a	requirement,	refer	to	the	following

screenshot:

Here,	you	learned	about	the	basic	theoretical	and	practical	concepts	of	the	CLI
utility	Tshark,	along	with	how	to	capture	and	filter	data	as	per	our	requirements.
With	the	help	of	Tshark,	it	becomes	really	easy	to	understand	how	protocols
work;	we	saw	various	techniques	to	collect	and	analyze	the	packets.	Statistical
features	in	Tshark	are	rich,	which	helps	a	moderate	user	become	advanced	with
an	better	understanding	of	how	to	analyze	network	packets.

Summary
The	Statistics	menu	in	Wireshark	contains	options	that	can	give	us	insight	from	a
unique	perspective.	In	this	chapter,	we've	discussed	features	such	as	Summary,
Conversations,	Endpoints,	and	Graphs.

Summary	is	an	informational	feature,	which	offers	a	granular	form	of	data,
filters,	and	the	trace	file	that	you	are	working	with.	The	Conversations	window
details	data	regarding	the	communication	that	happens	between	two	or	more
hosts.	The	Endpoints	dialog	gives	an	overview	of	the	devices	connected	to	the
network	and	communicating.	The	Protocol	Hierarchy	window	gives	an	idea
about	the	protocols	being	used	in	the	communication,	that	is,	it	gives	us	a	picture
of	the	distribution	of	protocols	used	by	the	hosts	for	communication.

Graphs	are	a	pictorial	way	of	representing	the	statistics	regarding	packets.	We
can	easily	figure	out	if	something	is	wrong	with	our	network;	we	can	match
network	performances	and	troubleshoot	general	day-to-day	problems	that	occur.

IO	graphs	tell	us	the	basic	status	of	a	network,	and	let	us	create	filters.	Matching
network	performances	and	differentiating	a	specific	protocol	becomes	easy	due
to	these.	The	Flow	graph	depicts	the	flow	of	data	in	a	column-based	manner	and
creates	a	simple	interface	to	understand	the	flow	of	packets	in	a	network.	TCP
stream	graphs	are	a	couple	of	types,	but	their	objective	is	to	depict	the
throughput	of	our	network,	that	is,	to	know	how	much	data	is	traveling	over	a
particular	period	of	time.

Using	the	Follow	TCP	Stream	option,	you	can	reassemble	the	packets	listed	in	a
raw	data	form,	which	can	be	easily	read.	There	are	different	options	that	are
available	to	change	the	form	to	ASCII,	Hex,	and	many	others.

The	Expert	Infos	dialog	tells	you	the	information	that	can	be	usual	and	unusual.
All	of	them	are	related	to	your	packets;	information	is	generated	with	the	help	of
protocol	dissectors,	which	translate	the	packets	to	a	normal	form,	and	if	they	find
something	unusual,	then	it	will	be	listed	in	a	section	and	under	a	category	inside
the	dialog.

Command-line	tools	also	get	installed	when	you	install	Wireshark.	The	most

common	tool	used	is	Tshark,	which	works	in	a	similar	way	to	Wireshark	and
tcpdump.	It	uses	the	pcap	library	that	is	used	by	other	major	protocol	analyzers.
With	tshark,	you	can	listen	to	live	networks	or	work	along	with	an	already	saved
capture	file.	The	Filtering	and	Statistical	features	are	really	efficient	when
dealing	with	any	network	analysis	process.	In	the	next	chapter,	we	will	dive	into
analyzing	the	commonly	used	application	layer	protocols.

Exercise
Q.1.	What	is	the	purpose	of	the	Statistics	menu	and	what	tools	does	it	contain?

Q.2.	Using	the	Conversations	dialog,	can	you	figure	out	the	busiest	host	on	the
network?	If	yes,	how?

Q.3.	Think	of	a	scenario	where	using	the	Endpoints	window	can	be	useful.

Q.4.	Is	it	possible	to	create	a	display	filter	using	the	Endpoints	window?

Q.5.	Switch	the	name	resolution	feature	off	while	viewing	the	conversations
window.	What	difference	does	it	make	if	it	is	switched	on?

Q.6.	Can	using	the	Summary	option	from	an	already	saved	capture	file	help	you
figure	out	the	total	number	of	ignored	packets	after	you	apply	a	display	filter?

Q.7.	Describe	the	benefits	of	using	different	graphing	techniques	while
analyzing	data.

Q.8.	Using	an	IO	graph,	create	a	filter	to	plot	the	DNS	traffic	in	a	green	line.

Q.9.	Create	an	IO	graph	and	show	UDP	traffic	in	red	along	with	general	TCP
traffic.	Then,	change	the	y	axis	unit	to	per	bytes.

Q.10.	Create	a	display	filter	for	FTP	packets,	and	apply	the	same	in	a	Flow
graph.	Then,	customize	it	to	check	the	SEQ	number	and	ACKs	instead	of	details.

Q.11.	Using	a	previously	captured	file,	create	a	Round	Time	Trip	graph	and
figure	out	the	packet	whose	RTT	is	the	highest.	Then,	check	the	sequence
number	of	that	packet	and	verify	its	sequence	number	by	comparing	it	with	the
graph.

Q.12.	Create	a	Throughput	graph	between	a	server	and	your	client.	Try	to	figure
out	at	what	time	the	throughput	was	at	its	peak	and	also	try	to	check	the	average
throughput	in	bytes/seconds.

Q.13.	If	you	have	a	requirement	to	view	TCP	packets	in	a	raw	data	form,	then

which	option	will	you	opt	for	to	customize	the	same	window	in	order	to	view
just	the	responses	from	the	server	side?

Q.16.	Point	out	at	least	5	benefits	of	using	the	Follow	TCP	Stream	dialog.

Q.17.	Explain	the	significance	of	the	Expert	Info	dialog	and	figure	out	how
many	categories	are	there	in	a	Warnings	section.

Q.18.	Using	a	command-line	protocol	analyzer,	start	sniffing	your	currently
working	network	interface	and	save	all	traffic	to	a	file	named	traffic.pcap
(capture	traffic	at	least	for	a	minute).

Q.19.	Capture	only	DNS	traffic	using	tshark	and	save	all	the	capture	packets	to	a
file	named	DNS.pcap.

Q.20.	Create	a	display	filter	to	filter	HTTP	and	SSL	traffic	from	the	traffic.pcap
file	we	created	earlier	and	save	the	filtered	traffic	to	a	new	file	called	HTTP.txt.

Q.21.	Using	the	statistical	features	available	in	tshark,	figure	out	the	total
number	of	hosts	in	the	traffic.pcap	file	and	save	all	the	IP	addresses	that
belong	to	one	single	host	of	your	choice	(Google,	Yahoo,	Apple,	and	so	on)	to	a
file	named	hosts.txt.

Q.22.	Using	the	statistical	feature	available	in	tshark,	check	the	Ethernet	address
of	the	hosts	participating	in	the	communication	process	from	the	traffic.pcap
file	and	figure	out	the	most	communicating	host	from	the	list.

Q.23.	View	the	protocol	distribution	using	tshark	statistical	functions	for	the
traffic.pcap	file.

Chapter	4.	Inspecting	Application
Layer	Protocols
This	chapter	will	lead	you	through	the	common	application	layer	protocols	and
will	make	it	easy	for	you	to	find	any	anomalies.	You	will	understand	and	analyze
the	normal	behavior	of	application	layer	protocols	by	looking	at	the	most
common	protocols	and	understand	their	usual	and	unusual	behaviors.

DNS—normal	and	unusual
Lab	Up—DNS
FTP—normal	and	unusual
Lab	Up
HTTP—normal	and	unusual
Lab	Up—HTTP
SMTP—normal	and	unusual
Lab	Up—SMTP
SIP—normal	and	unusual
Lab	Up—SIP
VoIP—normal	and	unusual
Lab	Up—VoIP
Decrypting	encrypted	traffic
Practice	questions

We	will	cover	some	of	the	most	common	application	layer	protocols	that	govern
today's	networks,	whether	small	or	big.	Without	spending	too	much	time,	let	me
take	you	on	this	wonderful	journey	of	protocols.

Domain	name	system
Imagine	a	world	of	Internet	where	you	have	to	type	a	random	numerical	value
(IP	address),	instead	of	a	name,	to	visit	a	website.	Also,	assume	that	each
numerical	figure	is	different.	Considering	this,	how	many	IP	addresses	can	you
memorize?	5?	10?	Perhaps,	50	at	max?	So,	now,	you	are	confined	to	visiting	just
50	websites.	This	doesn't	really	sound	feasible.

Suppose	instead	of	just	memorizing	the	IP	addresses,	you	note	down	each	of
them,	followed	by	the	name	that	you	want	to	give	to	the	website	to	figure	out
which	website	is	for	what	purpose.	Now,	you	can	create	an	Excel	file	for
yourself,	consisting	of	the	IP	addresses	written	next	to	the	name	of	the	website
you	gave.	This	way,	probably,	you	can	collect	more	than	a	thousand	website
addresses	for	later	use.

For	the	sake	of	your	unlimited	web	experience,	DNS	comes	to	your	rescue,	and
it	does	exactly	what	you	did	in	the	preceding	example.	DNS	creates	a	database
of	websites	with	their	IP	addresses,	along	with	the	name	of	the	domain,	A	single
row	of	record	is	often	termed	as	resource	records	in	a	zone	file.	Each	entry	in	the
zone	file	is	termed	as	a	resource	record.	DNS	uses	TCP	and	UDP,	both	for
different	purposes,	over	the	port	53	by	default.

As	a	client,	when	you	try	to	visit	a	website	from	your	LAN	environment,	your
request	is	being	sent	through	an	internal	DNS	server	that	looks	up	the	resource
records	it	contains.	The	request	is	termed	as	a	DNS	query.	If	your	DNS	server
has	already	saved	the	IP	address	for	the	domain	you	are	looking	for,	your	client
machine	will	get	a	reply	from	the	internal	DNS	server	that	contains	the	IP
address	of	the	website	you	are	trying	to	visit.	Thus,	you	can	form	IP	packets	and
start	communicating.	This	reply	is	termed	as	a	DNS	response.

Dissecting	a	DNS	packet
A	DNS	packet	consists	of	a	couple	of	unique	fields	that	are	briefly	discussed
here:

Transaction	ID:	This	is	a	number	that	keeps	the	dots	connected	between	a
particular	domain	query	and	it's	corresponding	response.
Query/response:	Every	DNS	packet	is	marked	as	a	query	or	a	response,
depending	on	the	details	it	contains.
Flag	bits:	Each	query	and	response	contains	different	flag	bits	set,	which
are	as	follows.

Response:	The	message	is	a	query	or	a	response.
Opcode:	This	determines	the	type	of	query	contained.	Opcode	ranges
between	0–15.	Refer	to	the	following	table:

Opcode Description

0 Standard	query

1 Inverse	query

2 Server	status	request

3 Unassigned

4 Notify

5 Update

6-15 Unassigned

Truncated:	This	determines	whether	the	packet	is	truncated	if	its	size	is
large	(greater	than	512	bytes).
Recursion	desired:	The	query	sent	by	your	client	is	supposed	to	go	on	a
recursive	search	procedure	from	one	DNS	server	to	another	if	the	resource
record	you	are	looking	for	is	not	present.
Recursion	available:	If	this	bit	is	set,	then	it	means	the	recursion	that	your

client	requested	is	available,	and	if	what	you	are	looking	for	is	not	present
on	one	server,	then	your	query	would	be	transferred	to	another	DNS	for
lookup	procedure.
Reserved	(z):	.As	defined	by	RFC	1035;	Reserved	for	future	use,	must	be
set	to	zero	for	all	queries	and	responses.
Response	code:	The	values	in	this	field	signifies	the	response.

Response	code:	This	field	is	used	to	signify	whether	errors	and	the	type	of
error.	Here	are	the	possible	code	values	that	you	can	receive:

Code Description

0 No	error

1 Format	error

2 Server	failure

3 Name	error

4 Not	implemented

5 Refused

Questions:	Indicates	the	number	of	queries	present	in	the	packet.
Answers:	Indicates	the	number	of	answers	in	response	to	the	query	sent.
Authority	RRs:	Indicates	the	number	of	authority	resource	records	sent	as

response.
Additional	RRs:	Indicates	the	number	of	additional	resource	records	sent	as

response.
Query	section:	The	query	sent	to	the	DNS	Server,	it	should	be	the	same	in	the

response	received	as	well.
Answer	section:	The	answer	that	came	as	a	response	to	our	query.	The

response	can	be	multiple	too.	The	answer	basically	consists	of	the	resource
records	that	came	in	response	to	our	query.
Type:	This	field	indicates	the	type	of	query	sent.	Refer	to	the	following	table

for	common	query	types.

Type Description

A Host	address

NS Name	server

MX Mail	exchange

SOA Start	of	zone	authority

PTR Pointer	record

AAAA IPv6	address

AXFR Full	zone	transfer

IXFR Incremental	zone	transfer

Additional	info:	This	field	includes	additional	info	containing	resource
records.	It	is	not	required	to	answer	the	query.

Dissecting	DNS	query/response
A	client	sends	a	query	to	the	DNS	server	that	possesses	the	name	resolution
information.	Using	this	information,	the	client	can	start	IP-based
communication.	Sometimes,	the	information	the	client	is	looking	for	is	not
available	with	the	DNS	server	it	requested.	In	this	case,	the	DNS	server	itself
transfers	the	query	to	any	neighbor	DNS	it	knows	about,	if	recursion	is	desirable.
The	whole	query	and	response	thing	is	completed	within	two	packets	only.	Refer
to	the	following	Figure	4.1	where	I	am	trying	to	visit	https://www.google.co.in.
A	request	from	my	client	located	at	192.168.1.103	is	sent	to	the	default	gateway
at	192.168.1.1.	This	gateway	will	forward	my	query	to	the	DNS	server	it	knows
about:

Figure	4.1:	DNS	query

	

If	you	notice,	here,	DNS	is	using	UDP	as	an	underlying	protocol.	If	you	want	to
know	more	about	the	DNS	query	being	generated,	just	expand	the	flags	section.
This	section	will	list	various	details	such	as	whether	recursion	is	available,
whether	recursion	is	desired,	whether	the	query	is	truncated,	what	the	response
code	is,	what	the	Opcode	for	the	query	is,	and	so	on.	Please	refer	to	the
following	screenshot.

https://www.google.co.in

	

The	expanded	Flags	section	depicts	that	the	type	of	DNS	packet	is	a	query,	the
packet	data	is	not	truncated,	and	recursion	is	desirable	if	available.

In	response	to	this	query,	you	will	be	seeing	one	more	packet	with	the	same
transaction	ID	that	denotes	the	association	of	a	particular	query.	It	is	the	response
packet.	Response	for	our	query	will	usually	consist	of	IPv4	address	for	the
domain	we	are	trying	to	look	for.	We'll	be	returned	with	a	single	IP,	or	maybe
multiple	IPs	available	to	it.	If	the	domain	we	are	looking	for	is	not	available,
then	its	probable	CNAME's	will	be	returned	in	as	favor.

Refer	to	Figure	4.2	to	understand	this:

Figure	4.2:	DNS	response

	

As	I	said,	we	could	get	multiple	replies.	If	you	notice	the	Answer	RRs	section,
we	have	received	5	replies	for	the	www.google.com	domain.	For	verification
that	the	response	received	belongs	to	the	previous	query	only,	just	match	the
Transaction	ID.	Expand	any	section	in	the	answers	category	to	view	more
details.	Refer	to	the	following	image:

	

http://www.google.com

Unusual	DNS	traffic
Name	resolution	problems	can	have	a	significant	impact	on	the	performance	of	a
network.	One	of	the	most	common	DNS	problems	you	can	face	is	when	looking
for	something	that	does	not	exist	in	the	DNS	server's	database.	Sometimes,	you
are	trying	to	visit	a	website	that	exists,	but	your	DNS	server	is	not	able	to	resolve
the	domain	you	gave.	It	could	also	be	a	timed-out	situation	where	your	client
waited	more	than	the	expected	time	for	a	DNS	response.

In	the	following	Figure	4.3,	I	am	trying	to	check	the	type	A	record	for	the
http://google.com	domain,	which	is	actually	an	incorrect	syntax.	Hopefully,	it
won't	be	resolved:

Figure	4.3:	Type	A	record	for	http://google.com

	

As	expected,	we	got	a	Not	Found	error.	I	only	tried	once,	but	the	client	tried	it
twice	to	resolve	the	domain	given.	What	got	captured	is	depicted	in	Figure	4.4
here:

Figure	4.4:	DNS	Response-No	Such	Name

	

There	can	be	multiple	situations	where	you	can	get	stuck.	The	best	option	is	to
first	have	a	benchmark	set	for	your	own	network,	and	then	try	comparing	your
problem	with	the	benchmark	you	created.	For	example,	check	the	name	you	are
trying	to	resolve,	launch	a	protocol	analyzer,	and	dig	into	the	name	resolution
queries	and	responses.	Understand	how	long	it	is	taking	to	complete	the	query,

http://google.com
http://google.com

the	response	process,	and	so	on.	Every	device	on	the	network	maintains	a	local
DNS	cache	(host	file),	which	is	initially	used	to	resolve	any	domain	you	request.
If	the	local	DNS	cache	does	not	have	the	entry	for	that	domain,	then	the	request
will	be	forwarded	to	the	local	network's	DNS	server,	which	will	perform	the
lookup.	If	found,	their	response	will	be	sent.	Otherwise,	the	request	from	the
local	DNS	server	will	be	forwarded	to	an	external	DNS	server,	which	the	local
DNS	server	is	configured	to	look	for.

File	transfer	protocol
Since	the	Internet	came	into	existence,	we	have	been	working	with	FTP.	It	was
in	the	limelight	even	when	the	Internet	was	still	a	closed	network	used	by	the
government	and	other	corporate	organizations.

FTP	uses	the	TCP	protocol	to	initiate	and	transfer	files	over	a	designated
channel.	There	will	be	two	channels	created;	one	is	the	command	channel,	and
the	other	one	is	specifically	a	data	channel.	The	command	channel	will	be	used
to	send	and	receive	the	commands	and	their	responses.	The	data	channel	is	used
to	send	data	between	the	client	and	the	server.

Commonly,	port	21	is	used	by	the	FTP	server	to	listen	for	the	connection,	and
any	random	port	on	the	client	to	send	and	receive	data.	As	per	the	standard,	port
21	will	be	used	for	the	command	channel	and	port	20	for	the	data	channel.
However,	you	will	observe	random	port	numbers	used	to	transfer	TCP	data
segments.

Dissecting	FTP	communications
There	are	two	types	of	mode	a	client	uses	to	communicate	with	the	server:	active
and	passive.	Both	of	them	have	a	different	approach	to	send	and	receive	data.	In
earlier	versions,	active	mode	was	in	use	by	default,	but	these	days,	you	can	see
passive	mode	in	use	by	default.	I	will	discuss	each	of	them	using	my	own	virtual
network	where	I	have	a	FTP	server	(VSFTPD)	configured	on	the
172.16.136.129	IP	and	a	client	at	172.16.136.1.	The	following	sections
described	the	flow	and	show	how	the	client	and	server	will	behave	in	the	active
and	passive	modes.

Passive	mode
The	client	sends	a	SYN	request	to	the	server	running	at	port	21.
The	client	receives	SYN/ACK	from	the	server	over	a	temporary	port	used.
The	client	sends	ACK	to	the	server	to	confirm	that	the	channel	will	be	used
for	sending	commands.	Refer	to	the	following	screenshot:	

Now,	the	client	will	be	shown	a	welcome	banner	and	will	be	asked	for	the
assigned	credentials:	

Figure	4.5:	Server	showing	welcome	banner	and	asking	for	credentials

Normally,	passive	mode	must	be	on	by	default.	Performing	a	directory	listing
will	tell	you	that	the	Extended	passive	(ESPV)	mode	is	in	use.	In	this	mode,	the
client	requests	the	server	to	listen	on	the	data	port	and	wait	for	the	connection.	In
return,	the	server	informs	the	client	about	the	TCP	port	number	used	for	the
connection.	Please	refer	to	the	below	screenshot.

Figure	4.6:	client	sends	ACK	to	the	server

In	frame	42,	the	server	informs	about	the	IP	address	and	the	port	number	that	the
client	has	to	use	while	creating	any	data	connection	to	the	server.
In	frame	42,	the	server	informs	us	about	the	IP	address	and	the	port	number

that	the	client	has	to	use	while	creating	any	data	connection	to	the	server.
Followed	by	a	sequence	of	SYN,	SYN/ACK,	and	ACK,	packets	which	us	required	to
create	a	data	channel	between	both	the	devices.	After	this,	the	LIST	command	is
executed	as	seen	in	frame	46.	Then	data	is	transferred	using	the	temporary	ports
used	by	both	the	client	and	the	server.
As	soon	as	the	data	transfer	is	complete,	the	sending	host	closes	the

connection	by	transmitting	a	FIN	packet	which	is	addressed	by	the	receiving	side
using	an	ACK	packet.	The	receiving	side	also	sends	a	FIN	packet	that	is
acknowledged	too.	If	both	the	devices	want	to	share	more	data,	then	a	new	data
channel	will	be	created	using	random	port	numbers.
Active	mode

The	client	sends	a	SYN	request	to	the	server	running	at	port	21.
The	client	receives	SYN/ACK	from	the	server	over	a	temporary	port	used	by
the	client.
The	client	sends	ACK	to	the	server	to	confirm	that	the	channel	will	be	used
to	send	commands.	Refer	to	the	following	screenshot:	

Now,	the	client	will	be	shown	a	welcome	banner	and	will	be	asked	for	the
assigned	credentials:	

Figure	4.7:	Client	is	shown	a	welcome	banner	and	asked	for	credentials

Now,	we	have	to	turn	passive	mode	off,	because,	as	usual,	it	will	be	on	by
default.	Once	done,	we	can	create	a	data	channel	for	transferring	purposes,	refer
to	the	following	screenshot:	

Figure	4.8	Creating	data	channel	for	transferring	purpose

Frame	40	shows	that	the	client	is	requesting	to	switch	the	passive	mode	off	using
the	EPRT	|1|172.16.136.1|57197|	command.	Extended	Port	(EPRT)	helps	in
specifying	an	extended	address	that	can	be	used	for	data	connection.	The
command	accepts	three	arguments:	network	protocol,	network	address,	and	the
port	number.
Now,	whenever	the	client	tries	to	initiate	a	connection,	it	has	to	be	destined	for

the	particular	address	specified	by	the	EPRT	command.	Before,	every	data
connection	server	informed	the	client	about	the	temporary	port	to	be	used.

You	learned	about	the	active	and	passive	modes	of	communication	that	the	FTP
servers	support.	You	also	learned	how	they	behave.	Whenever	troubleshooting
any	FTP	connection,	checking	the	mode	will	be	useful	and	saves	time.

Dissecting	FTP	packets
In	general,	every	request	sent	from	the	client	is	a	specific	command	set	to	which
the	server	responds	with	a	numerical	value	followed	by	a	text	message.	See	the
following	screenshot:

	

As	you	can	see,	the	server	requested	for	the	password,	which	the	client	provides.
It	can	be	seen	over	the	wire	in	plain	text	in	the	list	pane	itself.	Once	the	server
receives	and	verifies	that	the	password	is	correct,	the	respective	message	will	be
shown.	In	our	case,	the	password	is	correct,	so	the	client	receives	230	as	a
response	code	followed	by	a	Login	Successful	message.

The	command	issued	from	the	client	side	can	have	arguments	or	no	arguments,
and	the	data	flowing	across	between	the	devices	can	be	simply	seen	in	the	TCP
header	of	the	packet.	Refer	to	the	following	Figure	4.9:

Figure	4.9:	FTP-DATA	returned

	

Frame	43	shows	that	the	client	issued	the	LIST	command	that	was	processed	by
the	server,	and	262	bytes	of	data	was	returned	back	to	us.	Select	frame	50	to

further	investigate	the	contents	of	the	TCP	header.	One	of	the	biggest
disadvantages	of	using	FTP	is	that	all	data	travels	in	plain	text,	even	the
usernames	and	passwords.

Reassembling	the	FTP	data	stream	is	easy	because	except	the	data,	there	is
nothing	that	travels	around.	There	is	no	code	or	command	that	gets	appended	to
the	packets	travelling,	thus	making	it	easy	for	Wireshark	and	the	user	to
understand	things	easily.	To	reassemble	the	TCP	stream	of	FTP	packets,	just
right-click	on	the	selected	packet,	choose	the	Follow	TCP	Stream	option,	and
view	it	in	raw	form.	Refer	to	the	following	Figure	4.10:

Figure	4.10:	FTP	stream

	

The	entire	communication	between	the	client	and	the	server	that	happened	over
the	data	and	command	channels	is	translated	into	human-readable	format.	Text
in	red	color	is	what	the	client	sent,	and	text	in	blue	color	is	what	the	client
received.	These	days,	we	have	a	couple	of	advanced	protocols	that	can	create	an
encrypted	channel.	One	of	them	is	Secure	File	Transfer	Protocol	(SFTP).

Unusual	FTP
There	can	be	multiple	scenarios,	which	generate	FTP	traffic	of	an	unusual	type.	I
will	use	a	couple	of	scenarios	to	explain	this	and	will	show	you	how	a	certain
traffic	type	looks.	An	example	would	be	brute	force	attacks	where	a	malicious
user	tries	different	passwords	again	and	again,	until	the	exact	password	is
matched.	This	is	the	most	common	traffic	type	that	you	will	see	while	working
with	FTP.	Applying	a	ftp.request.command=="PASS"	filter	will	show	all	the
password	attempts	that	have	been	made	to	your	server.	If	you	see	an	unusual
number	of	attempts	in	a	short	span	of	time,	then	it	can	be	a	brute-force	attempt
against	your	server.	Refer	to	the	following	screenshot:

Figure	4.11:	FTP	brute	force

	

I	applied	the	same	display	filter	mentioned	earlier,	and	you	can	see	the	results.
Someone	was	trying	to	brute	force	my	FTP	server.	To	secure	your	server	from
such	brute	force	or	dictionary	attacks,	you	can	limit	the	server	to	maximum	login
attempts,	after	which	the	server	should	lock	down	the	respective	account	for	a
particular	amount	of	time.

You	could	also	colorize	the	brute	force	traffic	if	you	want.	This	will	eventually
give	you	a	better	overview	of	your	capture	file	or	live	traffic.	Try	it	out	using	the
code	that	the	server	sends	back	to	the	clients	in	response.

Another	example	is	a	malicious	device	that	is	infected	by	some	malware.	Due	to
the	malware,	the	device	is	trying	to	contact	a	command	and	control-center	server

to	download	some	payload,	perhaps	for	privilege	escalation	purpose	or	to	launch
further	attacks.	There	is	even	a	possibility	where	an	attacker	sitting	on	the	other
side	is	trying	to	download	or	upload	something.	Let	me	take	an	example	to
explain.	I	have	a	Kali	Linux	box	running	at	192.168.1.105	and	a	Windows	box
at	192.168.1.104.	Through	Kali,	I	created	a	small	malware	that	was
downloaded	and	installed	by	the	victim	(Windows).	Once	executed,	we	will	get
the	shell	from	the	device.	Then,	we	can	launch	FTP	from	within	the	shell	to
connect	our	Kali	box	for	privilege	escalation	purposes.

Refer	to	the	following	screenshot	that	captures	the	FTP	traffic	between	the
attacker	and	the	victim:

Figure	4.12:	victim	FTP	capture

	

As	you	can	clearly	see,	the	attacker	connected	to	the	FTP	server	and	downloaded
the	payload.txt	file,	which	might	be	used	to	gain	root	privileges	over	the	box.

If	something	of	this	nature	is	able	to	bypass	your	firewalls	and	other	security
appliances	in	place,	then	consider	improvising	the	configuration	you	created	and
try	to	avoid	these	things	in	future.	Sometimes,	activity	of	this	kind	can	be
legitimate	as	well,	but	it	should	not	stop	you	from	investigating	further.	A	small
file	of	a	few	kbs	is	enough	to	compromise	your	whole	network.

Hyper	Text	Transfer	Protocol
Data	on	the	web	is	transferred	using	the	HTTP	application	layer	protocol.
Normal	communication	in	HTTP	is	a	request/response	model	where	the
communication	between	a	client	and	a	server	is	coordinated	by	a	set	of	rules.
The	client	requests	for	a	certain	resource	to	the	server	and	then	receives	a	status
code	that	specifies	the	current	status	of	the	requested	resource.	If	available	then,
the	resource	is	also	sent	along	with	the	status	code.	HTTP	is	one	of	the	most
popular	and	most	widely	used	protocols	to	transfer	data	requested	by	browsers
from	the	respective	servers.	The	world	of	Internet	is	mostly	governed	by	HTTP
that	runs	on	the	transport	layer.

How	it	works	–	request/response
Every	time	you	visit	a	website,	this	smart	protocol	takes	care	of	your	web-
browsing	experience.	Web	server	utilizes	the	HTTP	protocol	to	serve	web	pages
they	contain	to	the	requesting	clients.	At	the	beginning	of	every	HTTP	session,
the	TCP	three-way	handshake	takes	place.	It	creates	a	dedicated	channel	between
the	communicating	hosts	followed	by	HTTP	and	data	packets,	which	are	sent	in
and	received	while	the	session	is	active.	For	instance,	you	are	visiting	a	web
server	located	at	http://172.16.136.129	and	the	client	at	172.16.136.1.	Using
our	client-server	infrasrtucture,	we	will	try	to	capture	the	requests	sent	and
responses	received.

I	will	try	to	visit	the	home	page	located	at	the	server	mentioned	earlier	and	will
capture	the	traffic	generated	for	the	whole	session,	that	is,	requests	sent	and
responses	received.	Follow	the	actions	mentioned	here	to	replicate	the	scenario.

Request
Open	your	browser,	and	type	the	Uniform	Resource	Locator	(URL)	of
any	website	that	you	want	to	visit.	In	my	case,	the	website	is	located	at
http://172.16.136.129	(Don't	get	confused	because	of	the	IP	address	I
am	using	to	visit	a	webserver.	While	studying	DNS	remove,	we	discussed
that	it	is	just	a	way	to	locate	a	webserver	that	is	assigned	with	an	IP
address.).	Press	Enter	to	go	to	the	home	page.	Here	is	the	screenshot	of	the
home	page	I	am	visiting:	

	
Due	to	the	our	preceding	actions,	a	couple	of	packets	are	generated	that	are

captured	by	Wireshark.	Let's	have	a	look	at	the	list	pane	shown	in	the	following
screenshot:	

Figure	4.13:	Packets	captured	by	Wireshark

	

All	these	packets	get	generated	as	soon	as	you	press	Enter.	As	you	can	see,	the
first	three	packets	are	TCP	three-way	handshake	packets	where	our	client	is
requesting	the	server	to	create	a	dedicated	channel.	In	our	case,	the	connection
was	successful.	However,	if	the	server	daemon	wasn't	running	or	because	of	any
reason	the	server	is	not	accepting	our	requests,	then	we	could	have	seen	RST	ACK
packets,	like	the	one	shown	here:	

Figure	4.14:RST	and	ACK	packets,	as	server	not	accepting	the	requests

	

This	error	states	that	the	server	is	out	of	service	or	perhaps	the	server	is	not
supposed	to	respond	to	our	requests.
After	the	TCP	packets,	you	can	see	the	first	HTTP	request	sent	by	our	client.

Every	request	comprises	a	couple	of	elements	that	are	sent	to	the	server:	

Figure	4.15:	HTTP	request

	
This	is	how	a	request	looks.	In	the	first	line,	there	are	three	things	passed	on	to

the	server	as	the	arguments,	which	are	HTTP	method	and	requested	resource
location	"/"	(root	directory)
The	second	line	specifies	the	Host	argument	that	is	required	by	the	HTTP/1.1

protocol	requests.	The	value	of	this	field	is	the	webserver's	address	that	you
typed	in	the	address	bar	of	the	browser.
The	fourth	line	is	the	ACCEPT	parameter	that	mentions	what	kind	of	content	is

acceptable	by	the	requesting	client	in	response.

The	If-modified-since	parameter	is	sent	from	the	client	to	the	server,	which
includes	the	date	and	time	of	your	previous	request	made	to	the	server.	If	the
server	contents	have	been	changed	since	your	previous	request,	then	you	will
receive	the	new	updated	page.	Otherwise,	your	system	will	present	you	with	the
locally	cached	page	that	will	eventually	save	some	resources.
The	next	field	is	User-Agent,	which	specifies	the	browser-related	information

that	you	are	using	to	visit	the	webpage.	This	information	will	be	used	by	the
server	to	present	you	with	browser-compatible	content.
Parameters	such	as	Accept-Language	and	Accept-Encoding	are	passed	on	to

the	server	to	inform	us	of	what	type	of	content	is	acceptable	to	the	client.	So,
while	the	server	prepares	the	response	material,	these	things	should	be	taken	into
consideration.
The	Connection-Alive	parameter	specifies	that	the	client	wishes	to	keep	the

connection	working	after	this	particular	request	has	been	processed.

All	the	HTTP	packets	are	sent	most	commonly	to	the	webserver	at	port	80	(other
common	webserver	ports	are	8080,	3132,	8088	and	so	on.	which	are	being
dissected	by	Wireshark	as	per	HTTP	protocol	preferences).

Response
As	you	can	see,	after	the	fourth	packet,	the	server	acknowledges	the	client's
request	to	get	to	the	server's	web	root	directory.	The	server	starts
transmitting	the	resource	that	client	requested	for.	The	sixth	packet	in	the
list	pane	is	what	the	client	received,	a	status	code	followed	by	a	short
message,	including	the	content	of	the	resource	requested.	Refer	to	the
following	Figure	4.16	illustrating	the	HTTP	response:	

Figure	4.16:	HTTP	response

	
As	a	part	of	TCP	communication,	the	client	will	acknowledge	every	packet

sent	by	the	server.	It	can	be	seen	in	the	seventh	packet	that	the	client	is	trying	to
send	an	ACK	for	the	resource	it	received.
Let's	dissect	the	response	elements	for	packet	number	six.	The	first	line

consists	of	three	arguments	sent	in	response.	They	denote	the	HTTP	protocol
version	in	use,	the	status	code	(304	in	our	case,	which	specifies	that	the
requested	resource	did	not	change	since	the	time	mentioned	in	the	Date
parameter),	and	finally,	a	brief	description	about	the	status	code	(Not	Modified
in	our	case).
In	the	third	line,	the	Server	parameter	mentions	the	name	and	version	of	the

web	server	running.	We	can	see	that	Apache/2.2.22	is	the	server	that	is	located
at	172.16.136.129.
The	fourth	and	fifth	lines	state	that	the	server	wishes	to	keep	the	connection

alive.	The	duration	for	which	the	server	wishes	to	do	so	is	also	mentioned	in	the
next	line	of	the	parameters	sent	in	response	to	us.	Rest	of	the	content	is

mentioned	in	the	next	few	lines	are	some	configuration	parameters.

This	is	a	very	basic	example	to	check	out	the	request	and	responses	exchanged
between	the	client	and	the	server.	However,	this	basic	thing	is	what	actually
happens	every	time	you	visit	a	website.	As	stated	earlier,	we	receive	a	status
code	followed	by	a	brief	description	in	response.	With	every	tab	you	open	in
your	browser,	there	will	be	a	new	socket	created	between	a	client	and	a	server
connected	through	an	IP	address	and	the	port	number	on	which	the	web	server
runs.

Unusual	HTTP	traffic
All	the	details	mentioned	earlier	are	part	of	a	normal	traffic	pattern.	What	we	are
about	to	witness	is	some	unusual	traffic	pattern	that	you	might	face	while	dealing
with	HTTP.	I	will	try	to	mention	some	do's	and	don'ts,	which	might	prove
helpful	to	you	while	troubleshooting	and	analyzing	HTTP.	Most	of	the	HTTP
problems	revolve	around	errors	such	as	404,	some	kind	of	redirection,	DNS
resolution	problems,	and	server-related	issues.	Let	me	explain	each	scenario	in
detail.

For	instance,	you	are	visiting	a	web	server,	and	you	are	looking	for	something
that	is	currently	not	available	or	the	requested	resource's	location	has	been
changed.	In	such	cases,	you	will	receive	a	404	status	code,	which	denotes	that
the	requested	resource	is	not	found	on	the	server.	Refer	to	the	following
screenshot	where	I	tried	to	request	for	a	file	named	abc.txt	on	a	web	server	that
does	not	exist:

Figure	4.17	:	HTTP	404

	

On	the	list	pane,	you	can	see	that	the	requested	resource	is	not	available.	So,	we
get	404	Not	Found	Error.	Such	errors	could	be	malicious	too	if	someone	is
trying	to	perform	directory	listing	on	your	webserver.	Changing	the	coloring
rules	of	such	404	packets	to	something	different	other	than	the	normal	HTTP
packets	rules	will	get	our	attention	quickly.	As	you	can	see,	packet	number	eight
is	a	HTTP	packet,	applied	with	a	different	coloring	scheme.

Redirection	of	the	user's	request	is	often	done	when	a	certain	requested	resource
location	has	been	changed	to	another	address	or	the	resource	isn't	available.
Now,	to	make	you	understand	redirection,	I	have	made	some	changes	in	our
infrastructure	that	can	be	easily	seen	in	the	diagram	shown	here:

	

Now,	the	request	from	the	client	sent	to	the	original	server	at	192.168.1.104
will	be	redirected	to	a	new	server	located	at	192.168.1.103	without	any	further
efforts	by	the	client.	To	configure	redirection,	you	have	to	modify	your	server's
configuration	file.	The	following	captured	packets	depict	the	redirection
happened.	Refer	to	the	next	list	pane	in	Figure	4.18:

Figure	4.18:	HTTP	redirection

	

As	you	can	see,	a	TCP	handshake	was	initiated	with	the	old	server	at	104
followed	by	an	HTTP	GET	request.	The	server	at	104	responded	with	a	302
Found	response	in	packet	21,	which	is	an	indication	of	redirection.	Our	request
was	sent	to	the	new	server	located	at	103	with	whom	we	again	initiated	the	TCP
three-way	handshake	(packet	31).	After	packet	31,	the	destination	field	was
changed	to	the	new	server's	address.

On	investigating	packet	21	further,	we	can	see	the	content	that	redirected	our
request	to	the	new	server.	Expand	the	Line-based	text	data	section	under	the
HTTP	section	of	the	details	pane	for	packet	21.	Refer	to	the	following
screenshot:

	

We	have	already	discussed	DNS	resolution	problems	in	the	DNS	protocol
section.	For	example,	if	the	requested	web	server	is	not	able	to	resolve	your
request	using	your	internal	DNS	server	as	well	as	other	external	servers,	then
you	won't	be	able	to	visit	the	website.	Even	if	the	DNS	servers	are	working	fine
and	you	are	not	able	to	visit	the	site,	then	congestion	can	be	the	problem,	where
a	server	is	not	able	to	process	multiple	requests	at	the	same	time.	This	will	result
in	errors	such	as	408	time-out	requests,	429	Too	Many	requests,	or	even
404	not	found.	The	world	of	HTTP	is	enormous,	and	day-to-day	situations	can
differ	from	person	to	person.	The	most	important	fact	that	you	should	keep	in
mind	is	that	if	all	your	basic-level	concepts	are	clear,	then	only	it	would	be	an
easy	to	do	the	job	you	have	been	assigned.	Nothing	can	beat	common	sense	with
out-of-the-box	thinking.

Simple	Mail	Transfer	Protocol
SMTP	is	used	widely	to	send	and	receive	emails	over	small,	as	well	as	large,
infrastructures	(can	be	public	or	private).	The	protocol	uses	the	Sender-SMTP
process	to	send	e-mails	and	the	Receiver-SMTP	process	to	receive	emails.	This
makes	SMTP	a	client-server-based	protocol	that	runs	over	port	25.	However,
many	mail	server	admins	follow	the	secure	practice	of	changing	the	default	port
number	for	SMTP	to	any	other	random	port	that	prevents	the	server	from
sending	any	spams	out	there	in	the	wild	and	even	keep	the	server	out-of-reach
from	malicious	users.

Most	commonly,	an	SMTP	channel	for	mail	transfer	is	created	using	a	TCP
three-way	handshake	that	happens	between	two	hosts,	which	is	followed	by	a
series	of	SMTP	packets.	For	illustration	purpose,	I	configured	one	SMTP	server
on	192.168.1.105	and	a	client	on	192.168.1.104.	The	client	will	request	the
server	to	send	an	e-mail	to	an	address	known	to	the	client.	The	server	will
respond	to	this	request	with	numerical	code,	followed	by	a	brief	response
parameter.	For	understanding	the	real	functioning	of	the	protocol,	I	will	be	using
the	following	architecture.

	

Usual	versus	unusual	SMTP	traffic
Using	the	netcat	client	from	Kali	Linux,	I	will	try	connecting	to	the	SMTP	mail
service	running	on	a	Windows	machine.	Once	a	dedicated	channel	is	created
between	the	server	and	the	client,	the	server	indicates	that	it	is	ready	to	accept
any	commands	sent	in.	Also,	the	server	will	respond	with	numerical	codes	with	a
short	summary.	I	followed	these	steps	to	connect	and	send	an	e-mail:

1.	 Open	a	connection	using	netcat	nc	–nv	192.168.1.105	25.
2.	 Initialize	an	SMTP	session	using	the	HELO	testmail	command.
3.	 Specify	the	from	address	using	the	MAIL	FROM:<abc@charit.com>

command.
4.	 Specify	the	recipient's	address	using	the	RCPTS	TO:<efg@charit.com>

command.
5.	 To	enter	data	into	the	mail	body,	type	DATA	and	press	Enter.	Now,	type	the

message	you	wish	to	send.	Once	you	are	finished	writing	your	email,	type	a
.	to	mark	the	ending	and	press	Enter.

6.	 Now,	your	message	will	be	sent.	If	you	wish	to	send	more	emails,	follow
the	same	procedure;	or	else,	you	can	close	your	connection	with	the	mail
server.	Type	QUIT	to	do	so.

The	series	of	commands	I	followed	generated	a	couple	of	packets	that	contain
details	about	the	session	in	a	very	granular	form.	I	also	created	a	capture	filter,
which	captured	only	the	packets	associated	with	the	client	and	server	that	would
help	me	in	closely	analyzing	the	packets	related	to	the	session;	and	preventing
other	packets	entering	the	list	pane.	All	of	these	commands	mentioned	will	only
work	when	the	server	is	configured	to	permit	clear	text	message	communication
without	any	authentication,	refer	to	the	following	screenshot	depiction	for
similar	behavior.

Figure	4.19:	SMTP	session

	

Packets	from	1-3	are	TCP-handshake	packets.	The	handshake	is	happening
between	the	client	and	the	server.	In	the	fourth	packet,	the	client	receives	a
message	stating	220	as	the	response	code.	This	means	the	server	is	ready	and
available	to	respond	to	the	client's	request.	In	the	sixth	packet,	the	client
initializes	the	standard	SMTP	session	using	the	HELO	command	(You	must	be
wondering	why	most	of	the	packets	listed	in	the	list	pane	start	with	C	or	S.
Requests	sent	from	the	client	are	marked	with	the	character	C,	and	server
responses	are	marked	with	character	S.).	Then,	enter	the	sender's	and	recipient's
e-mail	addresses,	which	were	confirmed	to	be	correct	by	the	server,	with
response	code	250	in	packets	10	and	13.	After	that,	enter	the	e-mail	body	using
the	DATA	command,	which	was	successfully	received	by	the	server	in	packet	23.
In	the	end,	the	user	gracefully	closes	the	connection	by	issuing	the	QUIT
command,	which	the	server	confirmed	in	packet	26,	thus	sending	the	FIN,	ACK.

Now,	I	will	introduce	you	to	the	dark	side	of	SMTP	that	you	might	have
witnessed,	or	you	will	someday.	By	dark	side,	I	meant	the	packets	that	are	not
supposed	to	pop	up	inside	the	list	pane	usually.	However,	if	they	do,	then	you

have	to	look	into	your	protocol	configuration.	For	this,	I	would	like	to	introduce
you	to	some	quite	common	scenarios	that	you	should	be	aware	of.

The	first	and	foremost	case	I	can	think	of	is	when	the	server	and	the	client	are
not	able	to	create	a	dedicated	channel	for	communication;	in	short,	the	TCP
handshake	did	not	go	well.	This	can	happen	because	of	many	reasons,	such	as
the	mail	server	daemon	is	not	running,	the	mail	server	is	not	running	on	the
default	port,	the	mail	server	daemon	has	reached	the	maximum	simultaneous
client	connections	allowed	or	connections	from	a	particular	subnet	are	not
allowed	there	can	be	multiple	scenarios	related	to	this.	The	following	list	pane
depicts	two	kinds	of	traffic	abnormalities:

Figure	4.20:	SMTP	unusual	traffic

	

The	first	two	packets	were	generated	due	to	an	error,	which	stopped	the	TCP
handshake	from	occurring.	This	error	can	be	generated	due	to	many	factors,
some	of	which	are	mentioned	here:

Mail	server	daemon	is	not	running
Mail	server	daemon	default	port	is	changed
Mail	server	daemon	has	reached	the	maximum	simultaneous	connections
limit	(DDoS	attack).
Mail	server's	configuration	has	been	tampered	with

Let's	suppose	now,	that	the	client	came	to	know	about	the	correct	port	number	to
which	the	connection	should	be	initiated,	but	still,	the	session	was	not	created
successfully.	Observe	the	traffic	starting	from	packet	3	to	the	packet	10,	the	last
packet.	A	TCP	three-way	handshake	happened,	but	then,	suddenly,	the	client	was
kicked	off	from	the	session.	What	could	be	the	possible	reason	for	such	a
response	from	the	server?	Perhaps	the	client	is	not	allowed	to	get	connected
because	of	some	restrictions	in	place,	such	as	IP	or	MAC	filtering.

Figure	4.21:	Client	not	allowed	to	get	connected	due	to	some	restrictions

	

Another	type	of	abnormal	traffic	that	can	be	seen	widely	these	days	is	harvesting
of	e-mails	used	by	spammer	and	spamming	botnets	roaming	in	the	wild.	A
spammer	tries	to	harvest	emails	from	the	publicly	accessible	mail	servers	to
verify	which	email	address	is	valid	and	which	isn't.	For	example,	look	at	the
following	screenshot	(Figure	4.15)	where	a	malicious	user	tries	to	verify	the
existence	of	an	e-mail	ID	using	the	E-mail	From	field,	verification	of	e-mail
addresses	can	alos	be	done	using	VRFY	command.	Depending	on	the	response,
the	user	will	come	to	know	whether	the	email	is	valid	or	not.	Observe	packet
number	13	for	the	server's	response.	These	kinds	of	attacks	are	done	using	a
custom-made	dictionary	file,	which	matches	the	current	domain	requirements.
Once	an	email	is	verified,	the	spammer	can	perform	various	forms	of	social-
engineering	attacks.	A	response	code	greater	than	350	in	SMTP	protocol	is
probably	some	kind	of	error	that	can	reduce	your	network	performance,	thus
increasing	the	latency.

Session	Initiation	Protocol	and	Voice	Over
Internet	Protocol
SIP	is	a	part	of	the	VOIP	protocol	family	that	is	just	a	signaling	protocol	used	to
create,	manage,	and	terminate	voice	over	IP	sessions	in	a	networking
environment.	Examples	of	SIP	can	be	a	two-way	phone	call	or	a	conference	call,
including	multimedia	sessions	where	multiple	hosts	can	be	present.	This
protocol	is	generally	discussed	in	regards	to	the	initiation	of	the	session	between
the	remove	parties	;	hosts/nodes	that	intend	to	communicate.	After	the	initiation
is	completed,	the	data	is	transferred	over	the	dedicated	channel	where	the	Real
time	Transport	Protocol	(RTP)	helps.	Basically,	the	family	of	RTP	governs	the
transport	and	the	flow	control	of	all	of	the	multimedia	items	(RTCP	controls	the
flow).

The	two	most	used	tools	while	working	with	this	protocol	are	the	Statistics
menu,	under	which	we	will	cover	Protocol	Hierarchy,	Packet	Lengths,	and	flow
graphs,	which	will	give	you	an	idea	of	data	travelling	back	and	forth	between
two	hosts.	Under	the	Telephony	menu,	you	will	see	the	RTP	and	VOIP	Calls
options	that	can	facilitate	us	in	assembling	the	VOIP	call	streams.	We	can	then
play	them	back	to	hear	the	conversation,	this	is	what	makes	me	really	excited
about	Wireshark.

SIP	runs	over	the	UDP	protocol	and	commonly	uses	port	5060.	All	of	this
together	in	an	IP-based	environment	makes	it	possible	for	us	to	dial	instantly	to
our	friends	over	a	VoIP-enabled	device.	SIP	makes	it	easy	for	the	VOIP
telephony	server	to	establish	user	locations.	It	facilitates	us	with	different	call-
managing	features	such	as	initiating	calls,	disconnecting	calls,	adding	someone
to	a	conference	call,	transferring	calls,	and	various	others.	SIP	is	not	going	to
help	you	maintain	the	quality	of	calls,	yet	SIP	is	one	of	the	most	important
standards	used	by	various	services.	Before	we	jump	directly	into	looking	and
listening	to	the	traffic,	let's	get	ourselves	acquainted	with	how	the	traffic	moves
in	a	voice	over	IP	call.

There	will	be	three	parties	we	will	consider:	two	of	them	are	clients	and	one	is
the	IP	telephony	server	that	helps	in	transferring	the	required	and	necessary
packets	back	and	forth	between	the	two	communicating	hosts.	The	following

figure	depicts	a	small	infrastructure	telephony	architecture	and	lists	the	various
steps	taken:	

	
Client	1	sends	an	Invite	request	to	initiate	the	session	using	SIP.
The	telephony	server	in	between,	transfers	the	request	to	Client	2.
The	telephony	server	acknowledges	Client	1	with	the	100	TRYING
packet.
Client	1	receives	a	180	RINGING	packet	as	soon	as	Client	2	starts
ringing.	When	Client	2	on	the	other	side	received	the	call,	it	sends	the	200
OK	packet,	which	is	forwarded	to	Client	1.
Now,	the	client	sends	the	ACK	packet	to	acknowledge	the	receipt	of	the
200	OK	packet.
Now,	both	parties	are	connected	with	a	dedicated	channel	over	which	the
RTP/RTCP	packet	starts	flowing	back	and	forth.
Once	both	of	them	are	done,	there	will	be	a	BYE	packet	sent	from	by	the
hosts	communicating,	which	is	acknowledged	by	the	other	end.
If	you	observe,	most	of	the	packets	are	passing	through	the	telephony
server.	Because	the	telephony	server	only	knows	about	the	exact	location	of
the	connected	hosts.
Once	the	connection	is	successfully	created,	all	the	packets	are	sent	and
received	directly	by	the	clients	without	the	server's	intervention.

I	have	configured	a	small	VoIP	telephony	infrastructure	using	Asterisk	PBX	that
you	can	download	freely	from	the	vendor's	website.	VOIP	server	is	located	at
192.168.1.107,	client	1	at	192.168.1.104,	and	client	2	at	192.168.1.107.
Then,	I	downloaded	X-Lite	client	using	which,	I	tried	calling	client	2	from	client
1.	Now,	using	the	real	SIP	traffic	captured,	it	becomes	easy	for	us	to	analyze	and
learn.	Interestingly,	there	is	an	option	using	which,	we	can	play	back	the
communication	captured	(this	can	be	really	dangerous	and	more	amazing).

Here	is	example	traffic	captured	as	seen	in	the	list	pane	of	Wireshark:	

Figure	4.22:	SIP	traffic

	

One	thing	you	should	consider	is	place	the	analyzer	close	to	the	telephony	server
so	that	you	can	easily	capture	every	bit	of	packet-level	information	moving
around.	While	capturing,	if	you	cannot	see	any	SIP	packets,	then	you	won't	be
able	to	capture	VOIP	packets	as	well.	You	would	end	up	capturing	UDP	packets
only	in	the	list	pane,	which	won't	prove	very	fruitful	for	your	analysis.

Analyzing	VOIP	traffic
Just	for	the	sake	of	curiosity,	I	want	to	show	you	the	protocol	distribution	for	SIP
traffic	that	can	be	seen	using	the	Protocol	Hierarchy	dialog	from	the	Statistics
menu.	Refer	to	the	following	Figure	17:

Figure	4.23:	Protocol	Hierarchy

	

Major	traffic	generated	during	the	session	is	UDP	based,	and	as	seen	in	the
preceding	screenshot,	SIP	traffic	is	a	very	small	part	of	it.	If	you	observe	closely,
it	is	just	1	percent	roughly,	whereas	RTP	has	a	major	role	here	with	82	percent.
This	gives	an	overview	about	the	session	we	captured	and	tells	us	which
protocol	participates	in	what	percentage.	As	we	already	know,	SIP	is	used	only
to	create	and	manage	sessions	that	occur	between	two	users,	or	it	can	be	a
multiuser	conference	call.

Flow	graphs	are	one	more	way	of	getting	a	summary	of	the	traffic.	They	help	in
understanding	the	movement	of	request	and	acknowledgements	sent	or	received.
Refer	to	the	following	Figure	4.24:

Figure	4.24:	Flow	graph

	

There	are	three	IPs	listed	just	below	the	title	bar	in	the	center	section.	These	IPs
belong	to	the	server	and	the	two	clients	that	are	trying	to	communicate.	The
entire	request	and	the	responses	with	their	status	codes	and	summary	messages
can	be	seen	clearly	here.	Requests	sent	are	colored	in	orange	and	the	responses
with	green.	This	makes	every	element	look	more	precise	and	easy	to	understand.

Reassembling	packets	for	playback

Yes,	this	is	possible.	You	can	assemble	the	VOIP	packets	back	to	listen	to	either,
or	both	sides	of	the	communication	in	parallel.	Let's	suppose	I	want	to	listen
what	message	client	1	sitting	at	192.168.1.104	sent	to	the	client	2.	We	can	use
the	Telephony	menu	in	Wireshark	to	reassemble	the	packets	and	choose	the
VOIP	Calls	option	from	the	list.	The	following	screenshot	illustrates	the

resulting	dialog.

Figure	4.25	:	VOIP	Calls	dialog

	

Now,	choose	which	side	of	communication	you	want	to	listen	to.	Then,	click	on
the	Player	button,	which	will	then	ask	you	to	provide	maximum	Jitter	(Jitter	is
the	variance	in	packet	rate	at	which	the	packets	are	being	sent	and	received.	If
jitter	is	high,	then	there	is	a	chance	your	network	is	dealing	with	congestion.
Calls	having	high	jitter	values	are	not	feasible	to	listen	to.)	in	our	communication
session.	The	maximum	jitter	value	is	22.	So,	by	default,	there	will	be	50	ms
value	given	in	the	box.	You	can	change	this	value	if	your	jitter	is	higher	than
that;	otherwise,	just	click	on	Decode:

Figure	4.26:	Player	dialog

	

I	did	not	change	the	default	value	and	clicked	directly	on	the	Decode	button,
which	reassembled	all	the	VoIP	packets	for	the	side	of	communication	I	chose.
Refer	to	the	following	screenshot:

Figure	4.27:	RTP	Player

	

If	you	want	to	play	the	message,	check	the	box	just	below	the	scrollbar	and	click
on	Play.	Various	useful	details	related	to	the	assembled	VOIP	stream	are	listed.

Unusual	traffic	patterns
Wireshark	has	numerous	tools	that	help	a	user	in	maintaining	QS	for	a	certain
networking	infrastructure	and	also	consists	of	a	tool	that	helps	in	identifying
various	day-to-day	traffic	anomalies.	A	common	type	of	traffic	when	dealing
with	an	SIP	server	is	INVITE	requests	that	are	sent	from	one	client	to	initiate	the
connection	with	another	client.	As	you	might	already	know,	this	process	is	a
three-way	handshake	where	the	client	who	initiated	the	request	is	supposed	to
acknowledge	when	the	session	creation	is	completed.	What	if	the	client	who
requested	does	not	respond	with	ACK	and	sends	another	INVITE	request?
Normally,	the	server	will	try	to	connect	the	client	to	the	requested	client
machine,	meanwhile	waiting	for	the	ACK	response	for	the	previous	request.	Now,
let's	suppose	the	client	sent	100	INVITE	requests	through	different	clients	on	the
network	and	did	not	even	bother	to	send	ACK	for	any	one	of	those	sessions
created.	This	can	result	in	a	DOS	attack	(INVITE	flood	attack)	where	the	SIP
server	won't	be	able	to	process	any	further	requests	(the	buffer	size	for	INVITE	is
100).	To	resolve	this,	you	can	apply	a	display	filter	to	view	the	INVITE	requests
sent	from	a	client	or	apply	a	filter	where	the	status	code	is	200:OK.

Other	than	DOS	attacks,	there	is	a	chance	that	your	network	may	slow	down	due
to	packet	congestion,	or	you	might	not	be	able	to	get	connected	to	another	client
on	your	network.	In	other	words,	your	call	cannot	get	through,	if	there	is	lag	in
setting	up	the	call	(the	average	call	setup	time	is	high).	You	will	witness	multiple
cases	once	you	work	in	a	production	environment.	So,	Wireshark	and	the	various
powerful	tools	it	contains	comes	to	our	rescue.

For	instance,	if	some	client	is	trying	to	make	a	call	to	an	invalid	extension,	they
will	get	an	error,	and	the	call	won't	get	through.	Such	a	scenario	will	generate
packets	as	shown	here:

	

I	would	suggest	that	you	filter	SIP	packets	consisting	of	error	codes	greater	than

399	and	create	a	display	filter	using	sip.Status-Code	>	399.	See	the	following
screenshot	that	lists	multiple	errors	generated	while	client	1	was	trying	to	call:

Figure	4.28:	SIP	error

	

Decrypting	encrypted	traffic	(SSL/TLS)
Yes,	it	is	possible	to	decrypt	your	online	TLS	traffic	into	a	plain	text	SSL	stream
using	Wireshark.	Google	Chrome	and	Firefox	look	for	a	log	file,	which	stores
the	TLS	session	keys.	Follow	these	steps	to	decrypt	encrypted	traffic:

1.	 Create	an	environment	variable	with	the	name	SSLKEYLOGFILE	that	will
point	to	a	text	file.	Your	browser	will	look	for	this	file	every	time	it	starts
up.	To	create	environment	variables,	right-click	on	My	Computer	|	Go	to
Advanced	Settings	|	Environment	Variables	|	New	|	Specify	Name:
SSLKEYLOGFILE	and	Value:	C:/Users/username/sslkeylog.txt	and	click
on	Ok.

2.	 I	have	created	a	blank	text	file,	C:/Users/username/sslkeylog.txt	(make
your	new	environment	variable	point	to	this	file).

3.	 Now,	open	your	browser	and	visit	a	website	enabled	with	TLS/SSL.	For
demonstration	purpose,	I	have	my	own	SSL	webserver	located	at
192.168.1.105	and	a	client	located	at	192.168.1.105.

The	certificate	I	created	is	self-signed;	that's	why	you	are	seeing	a	red
diagonal	line	across	https	in	the	address	bar.	After	you	visit	any	secure
website	enabled	with	SSL,	your	sslkeylog.txt	will	be	populated	with	some
random	numbers,	as	shown	in	the	following	screenshot.	If	not,	cross	check
your	settings	before	moving	on:	

I	captured	the	whole	traffic	between	my	client	and	server	in	Wireshark.	Now,
go	to	Edit	|	Preferences	|	Protocol	tree	|	SSL	|	(Pre)-Master-Secret	log

filename	|	/path/to/sslkeylog.txt	|	Ok.	Then,	right-click	on	the	SSL	packet
(Make	sure	you	select	Decrypt	packet	data.	The	option	should	be	present	in	the
bytes	pane)	and	follow	the	SSL	stream.	Now,	you	will	see	something	like	Figure
4.29	here:	

Figure	4.29:	Decrypt	SSL	traffic

This	is	one	of	the	easiest	ways	by	which	you	can	go	ahead	and	decrypt	SSL
traffic	with	just	a	few	clicks.	One	more	way	is	to	feed	the	RSA	private	key	of	the
server	into	the	Wireshark	SSL	preferences,	which	will	give	you	the	same	result.

Summary
Domain	name	system/Service	is	a	protocol	used	to	resolve	website	names	to	an
IP	address.	Using	this	domain	name	service,	your	machine	can	communicate	on
an	IP-based	network.	Using	zone	transfer	(if	enabled),	unauthenticated	malicious
users	can	ask	for	zone	data	form	name	servers,	which	is	considered	highly
malicious	and	dangerous.

File	transfer	protocol	has	been	used	to	transfer	files	from	one	machine	to	another
since	the	Internet	came	into	existence	and	is	still	being	used	in	today's	modern
networks.	The	most	unsecure	part	about	FTP	is	that	the	data	is	passed	in	plain
text	and	can	be	easily	captured	using	protocol	analyzers,	unless	you	are	using
some	encrypted	form	of	the	FTP	client-server	infrastructure.

The	web	browsers	are	used	to	present	and	transfer	the	web-based	content	back
and	forth	uses	hypertext	transfer	protocol.	It	is	commonly	also	referred	to	as	the
request/response	model,	where	a	host	requests	for	a	certain	resource	and	the
server	responds	with	a	status	code	and	the	resource	if	available.	Status	codes
greater	than	399	should	be	watched	closely,	I	would	suggest	is	to	apply	different
colorization	schemes.

SMTP	protocol	is	used	to	send	e-mails.	It	is	an	unencrypted	protocol	where
commonly	authentication	mechanism	is	not	used.	Every	SMTP	command	and	its
corresponding	arguments	are	passed	over	the	wire	in	plain	text	that	can	be	easily
sniffed	using	Wireshark.

VoIP	traffic	is	made	up	of	two	things:	RTP	for	data	transfer	and	SIP	protocol
used	to	create	the	session.	Signaling	protocol	creates	and	manages	a	session
where	real-time	transport	protocol	is	used	to	carry	the	voice	itself.	Using
Wireshark,	anyone	can	capture	and	reassemble	the	packets	back	to	listen	to	a
communication	session.	One	should	take	care	of	congestion,	jitter,	lag,	and
echoing	problems	while	dealing	with	these	protocols	in	order	to	maintain	the
quality	of	service.

Practice	questions
Q.1	What	is	the	significance	of	the	DNS	protocol	while	you	surf	the	Internet?

Q.2	How	would	you	define	zone	transfers	and	recursive	DNS	queries?

Q.3	What	is	the	difference	between	recursion	desired	and	recursion	available	in
DNS	queries?

Q.4	How	many	DNS	record	types	exist?	Explain	the	purpose	of	the	AAAA
record	type	and	what	does	non-authoritative	answer	mean?

Q.5	Differentiate	between	active	and	passive	modes	of	FTP.	Explain	which	mode
is	better.

Q.6	What	solution	can	you	come	up	if	you	are	being	asked	to	make	your	FTP
session	encrypted?	Explain	the	difference	it	would	make.

Q.7	Using	a	virtual	infrastructure	or	a	physical	one,	install	the	FTP	server	on	any
of	the	machines	and	then	try	to	communicate	with	it	while	capturing	live	packets
in	Wireshark.

Q.8	Find	out	how	you	can	limit	the	maximum	number	of	login	attempts.	How
can	such	limitation	affect	the	overall	security	of	your	FTP	server?

Q.9	Why	do	we	refer	to	HTTP	communication	as	a	request/response	approach
and	what	is	the	purpose	of	the	three-way	handshake	while	initiating	the
connection?

Q.10	Which	version	of	HTTP	are	we	currently	using	and	what	is	the	difference
between	the	old	and	new	ones?

Q.11	While	your	browser	makes	an	HTTP	request,	various	other	parameters	are
also	sent	in	your	request.	Why	is	it	so?	What	is	the	purpose	of	Accept-Encoding
and	Accept-Language	parameters	sent	with	your	request?

Q.12	Visit	websites	of	your	choice	and	browse	a	couple	of	pages	while	capturing
all	the	packets	in	Wireshark.	Then,	create	a	display	filter	to	check	whether	any

redirection	was	present	in	your	whole	session.

Q.13	For	what	purpose	is	SMTP	on	client	side	used?	To	send	e-mails	or	receive
them?	Which	protocols	are	popularly	used	to	receive	e-mails?

Q.14	Is	it	possible	to	perform	a	brute	force	attack	on	an	SMTP	server?	If	yes,
then	how	and	how	do	you	identify	such	traffic	pattern?

Q.15	What	do	you	understand	by	e-mail	harvesting	and	how	you	can	perform	an
e-mail	harvesting	attack	on	an	SMTP	server?	Is	there	any	kind	of	specific
response	you	will	look	for?

Q.16	Read	about	the	difference	between	various	email	protocols	and	SMTP?

Q.17	What	is	the	significance	of	SIP	in	a	VOIP	session?	What	percentage	of
traffic	do	you	think	SIP	will	have	in	a	whole	VOIP	session?

Q.18	What	is	the	difference	between	RTP	and	RTCP	protocols?

Q.19	Download	a	SIP	traffic	capture	file	(sippcap)	from	Wireshark's	website
and	analyze	the	session	using	a	flow	graph.	Are	you	able	to	the	see	the	process
flow	we	discussed?

Q.20	Filter	out	all	the	wrong	password	attempts	using	specific	code	for	such
responses	and	apply	a	different	coloring	scheme	(use	the	aaa.pcap	capture
file).

Chapter	5.	Analyzing	Transport
Layer	Protocols
This	chapter	will	help	you	understand	TCP	and	UDP	protocols,	how	they
communicate,	the	problems	you	can	face	with	these	protocols,	and	how	you	can
use	Wireshark	to	assist	them.	You	will	also	learn	how	to	analyze	TCP	and	UDP
protocols	and	look	for	any	anomalies	that	may	follow.	The	following	are	the
topics	that	we	will	cover	in	this	chapter:

Understanding	the	TCP	header	and	how	it	communicates
Understanding	the	TCP	analysis	flags
Lab	up—TCP
How	to	check	for	different	analysis	flags	in	Wireshark
Understanding	UDP	traffic
Lab	up—UDP
Practice	questions

We	will	discuss	TCP	and	UDP	protocols	using	various	practical	examples	that
can	give	you	an	insight	about	how	low-layer	protocol	packets	communicate	and
travel	in	your	network	in	order	to	transmit	data	successfully.	We	will	also	look	at
some	common	anomalies	that	you	might	witness	in	your	day-to-day	operations.

The	transmission	control	protocol
A	TCP	is	a	connection-oriented	protocol	used	by	various	other	application-layer
protocols	to	ensure	data	delivery	without	any	loss	of	packets	during	transition.
On	the	basis	of	sequence	numbers	and	acknowledgement	numbers,	a	TCP
ensures	fail-proof	delivery	of	packets	between	the	hosts	that	intend	to
communicate.	A	TCP	is	supposed	to	provide	an	end-to-end,	reliable	form	of
communication,	which	should	be	robust	at	all	times.	It	sits	in	between	the
network	layer	and	the	application	layer	and	uses	the	IP	datagram	to	transfer	data
packets	between	the	sender	and	receiver.	Because	of	this	approach,	the	TCP	and
IP	are	used	by	various	application	layer	protocols	for	their	reliable	delivery.

A	TCP	is	like	a	two-way	communication	process	where	not	only	the	sender	is
involved	in	the	communication,	but	even	the	receiver	actively	works	to	make	it	a
successful	connection.	You	can	imagine	it	to	be	like	a	landline	connection,	where
you	dial	a	number;	if	the	number	you	dialed	is	correct,	you	will	hear	a	ringtone
(if	the	other	side	is	open	to	communicate).	Only	when	the	receiver	responds	by
picking	up	the	receiver,	you	can	start	talking.	Likewise,	in	TCP-based
communication,	a	process	called	three-way	handshake	takes	place	between	the
parties	that	are	involved	in	the	communication	to	create	an	independent	channel
between	the	two	hosts.

Understanding	the	TCP	header	and	its
various	flags
The	TCP	header	is	normally	20	bytes	long,	but	at	times,	due	to	the	presence	of
the	options	field,	the	TCP	header	size	can	vary	up	to	60	bytes.	Refer	to	the
following	illustration	of	a	simplified	TCP	header:

Source	port Destination	port

Sequence	number

Acknowledgement	number

Data	offset Flags Window	size

Checksum Urgent	pointer

Options

Now,	let's	get	acquainted	with	the	header	fields	to	get	a	stronger	grasp	over	the
basics	of	a	TCP:

Source	port:	This	is	the	port	number	associated	with	the	sender	side	of	the
communication	or	you	can	say	the	port	responsible	for	listening	on	the
sender	side.
Destination	port:	This	is	the	port	number	associated	with	the	recipient	side
of	the	communication	or	you	can	say	the	port	responsible	for	receiving	the
transmitted	packets.
Sequence	number:	These	are	the	unique	values	that	are	used	to	ensure
reliable	delivery	of	data.	TCP	tracks	each	segment	using	sequence	numbers.
Acknowledgement	number:	These	values	are	sent	in	response	from	the
receiver	side	as	part	of	the	confirmation	process	that	the	packet	was
successfully	received.
Data	offset:	This	indicates	where	the	data	packet	begins	and	the	length	of
the	TCP	header.	The	size	can	vary	due	to	the	presence	of	the	options	field.
Flags:	There	are	various	types	of	flag	bits	present;	each	of	them	has	its	own

significance.	They	initiate	connection,	carry	data,	and	tear	down
connections,	and	on	the	basis	of	their	assigned	purpose,	we've	named	them
as	follows:

SYN	(synchronize):	These	are	the	packets	that	are	used	to	initiate	a
connection	that	is	commonly	known	as	the	handshake	process.
ACK	(acknowledgement):	These	packets	are	used	to	confirm	that	the
data	packets	have	been	received,	and	this	also	confirms	the	initiation
and	tear	down	of	the	connections.
RST	(reset):	These	packets	signify	that	the	connection	you	were	trying
to	create	has	been	shut	down	or	may	be	the	application	we	were	trying
to	communicate	with	is	not	accepting	connections.
FIN	(finish):	These	packets	indicate	that	the	connection	is	being	torn
down	after	the	successful	delivery	of	data	packets.	Both	the	sender	and
receiver	send	the	FIN	packets	to	gracefully	terminate	the	connection.
If	they	want	to	communicate	again,	they	will	start	from	the	beginning,
that	is,	from	the	three-way	handshake	process.
PSH	(push):	These	packets	indicate	that	the	incoming	data	should	be
passed	on	directly	to	the	application	instead	of	getting	buffered.	To
state	this	simply,	the	other	host	should	receive	data	without	waiting	for
it.
URG	(urgent):	Marked	packets	indicate	that	the	data	that	the	packet	is
carrying	should	be	processed	immediately	by	the	TCP	stack	and	the
urgent	pointer	field	should	be	examined	if	it	is	set.
CWR	(congestion	window	reduced):	These	packets	are	used	by	the
sender	to	inform	the	receiver	that	due	to	the	transmit,	the	buffer	is
getting	overfilled,	and	because	of	congestion,	both	the	parties	should
slow	down	the	transmission	process	to	avoid	any	packet	loss	that
might	happen.

Window	size:	This	field	in	the	header	indicates	the	amount	of	data	that	the
sender	can	send,	.	The	amount	is	decided	during	the	handshake	process	where
both	the	hosts	that	communicate	match	the	buffer	size	compatible	for
transmission.	Flow	control	can	be	achieved	through	this	field.
Checksum:	To	cross	check	the	integrity	of	the	data	that	is	being	received,	this

field	is	used,	where	the	contents	of	the	TCP	segments	are	validated.
Urgent	pointer:	This	field	tells	us	about	the	value	that	the	urgent	pointer

contains.	It	specifically	indicates	the	sequence	number	of	the	octet	that	lies
before	the	data.

Options:	This	field	length	can	vary	due	to	the	presence	of	various	options.
This	field	has	three	parts:	the	first	part	specifies	the	length	of	the	option	field,	the
second	part	denotes	the	options	being	used,	and	the	third	actually	contains	the
options	in	use.	One	of	the	important	options	maximum	segment	size	(MSS)	is
also	part	of	this	field.
Data:	The	last	part	in	the	TCP	header	is	the	real	data	that	travels	around.

The	preceding	information	gives	us	an	overview	regarding	TCP	headers	and	the
significance	of	various	parts	of	the	header.	While	analyzing	TCP	sessions,	it
becomes	quite	important	to	know	about	these	details.

How	TCP	communicates
To	understand	and	analyze	the	packets	in	real	time,	I	have	configured	a	server
that	runs	at	172.16.136.129	and	a	client	that	runs	at	172.16.136.1,	as	shown	in
the	following	figure.	Using	Wireshark,	I	will	try	to	illustrate	the	three-way
handshake	process,	which	happens	before	the	actual	data	transfer	as	well	as	the
tear	down	process	(graceful	termination).	The	three-way	handshake	ensures	that
the	server	and	client	are	open	to	making	connections	and	are	ready	with
resources	to	create	a	dedicated	channel	between	each	other	for	a	reliable	delivery
of	packets.

	
How	it	works

The	server	runs	an	HTTP	server	daemon	at	port	80.	On	the	client,	I	will	visit	the
default	webpage	hosted	at	http://172.16.136.1	while	capturing	all	the	packets
taking	part	in	the	communication	process.

	
Note

For	the	sake	of	visibility	and	ease,	I've	created	a	display	filter	to	display	the
traffic	between	these	two	hosts	specifically.

Figure	5.1:	Connection	Process:Three-way	handshake,	data	transfer	and	tear
down	process

	

In	the	packets	282,	283,	and	284,	it	is	clearly	visible	that	the	client	and	server	are
trying	to	create	a	dedicated	channel.	The	client	initiated	the	creation	by	sending	a
SYN	packet	in	the	282	packet	with	the	SEQ	set	to	0.	Since	the	server	was	open	for
communication,	the	server	responded	with	a	SYN/ACK	packet	with	ACK	set	to	1
and	SEQ	set	to	0.	This	is	followed	by	a	confirmation	sent	from	the	client	side	that
is	seen	in	the	packet	number	284	with	SEQ=1	and	ACK=1.	This	is	what	a	three-way
handshake	process	looks	like.	This	can	be	seen	before	any	real	data	transfer	that
happens	that	follows	the	TCP	approach.

After	the	successful	completion	of	channel	creation,	the	client	sends	a	GET
request	to	access	the	contents	of	the	web-root	directory.	The	server
acknowledged	this	in	the	packet	number	287	and	sent	the	requested	content	to
the	client's	machine	with	the	200	OK	status	message,	which	is	acknowledged	by
the	client	in	the	next	packet.	As	seen	in	the	list	pane	again,	the	client	was
requesting	a	new	resource,	which	the	server	wasn't	able	to	find	and	thus	sent	a
404	Not	Found	status	message,	which	was	acknowledged	by	the	client	in	the	the
packet	295.

After	all	the	data	transfer	takes	place,	when	the	client	has	nothing	left	to	request,
or	when	the	server	has	nothing	left	to	send,	the	client	sends	FIN/ACK	packets	to
properly	terminate	the	connection.	The	server	acknowledges	this	and	sends	its

own	FIN/ACK	packets,	which	are	acknowledged	by	the	client	as	well	in	the	packet
number	302.	This	way	of	termination	is	often	referred	to	as	the	teardown
process.	Take	a	look	at	the	following	screenshot	that	illustrates	this	process:

	

This	was	a	small	and	sweet	conversation	that	we	captured	and	through	which
you	learned	about	the	process	flow.	I	think	I've	one	more	interesting	way	to
illustrate	the	process	flow	using	graphs	that	we've	already	seen	in	the	previous
chapters.	Refer	to	the	preceding	screenshot.

From	this	flow	graph,	it	becomes	more	clear	and	concise	to	view	the	requests
and	responses	shared	between	the	two	communicating	hosts.	The	most
interesting	part	that	I	like	in	the	preceding	screenshot	is	the	comment	section	that
lists	out	the	SEQ	and	ACK	numbers,	which	are	sent	and	received	by	the	hosts.

You	must	be	wondering	how	these	are	generated	and	incremented.	Let	me	tell
you	the	trick	behind	this	amazing	world	of	numbers	that	is	used	while
transferring	data.	The	host	that	initiates	a	new	connection	uses	Initial	Sequence

Numbers	(ISN)	that	are	generated	by	the	host's	operating	system.	It	can	be	any
random	number	that	has	no	significance	with	respect	to	the	data.	The	sequence
number	we	see	in	the	packet	one	is	zero	is	actually	a	relative	referencing
technique	used	by	Wireshark	to	ease	the	numbering	system	for	the	sake	of	users.
First	of	all,	you	should	know	that	the	numbers	are	used	to	keep	track	of	how
much	data	is	being	transferred	between	the	two	hosts.

Starting	from	the	packet	1,	where	SEQ=0	(the	relative	sequence	number	in	real	is
704809601),	which	is	received	by	the	server	and	in	return	replies	with	its	own
SEQ=0	and	ACK=1	for	the	client's	SEQ=0.	At	the	end	of	this	three-way	handshake,
the	client	replies	with	SEQ=1	and	ACK=1	without	any	further	increments	as	no	data
is	being	transferred	during	the	process.

Then,	by	the	fourth	packet,	the	client	sends	a	GET	request	with	SEQ=1	and	ACK=1
where	the	data	payload	length	equals	323	(refer	to	the	following	figure),	which
the	server	receives	and	acknowledges	with	SEQ=1	and	ACK=324.	Did	you	see	what
just	happened?	The	server	replied	by	adding	a	total	data	payload	length	into	ACK
to	denote	that	the	data	was	successfully	received.	Hence,	it	sends	the	requested
resource	to	the	client	with	data	payload	length	equals	451,	which	in	return	gets
acknowledged	by	the	client	with	ACK=452	and	SEQ=324.	In	the	same	way,	the
transmission	goes	on	until	the	tear	down	takes	place	using	FIN/ACK	packets	at	the
end.

	
Graceful	termination

We	saw,	in	detail,	the	process	of	TCP	three-way	handshake	using	the	captured
packets	and	the	flow	graph	that	gave	us	insight	about	the	process.	Similarly,	we
should	be	comfortable	about	the	teardown	process,	which	indicates	proper

termination	of	a	session	between	two	hosts.

Considering	the	same	scenario	that	we	discussed	here,	let	me	show	you	the
packets	that	were	generated	to	terminate	the	connection	in	a	proper	standardized
format.	Refer	to	the	following	screenshot	for	this:

	

After	the	successful	delivery	of	all	the	required	packets,	the	server	initiated	the
teardown	process	(as	there	was	nothing	left	to	send	or	the	client	was	just	sitting
idle	and	doing	nothing).	In	the	beginning,	the	server	sent	its	own	FIN	and	ACK
packets	to	the	client	with	SEQ=452	(the	client	acknowledged	the	same	with	ACK)
and	ACK=324	(this	is	the	client	SEQ	number	when	the	data	transfer	was
completed).	These	were	acknowledged	by	the	client	in	the	next	packet.
Following	the	same	approach,	the	client	issued	its	own	FIN	and	ACK	packets
(using	SEQ	and	ACK	numbers	used	in	the	second	round	of	communication,	where
the	client	requested	something	that	wasn't	available.	Refer	to	the	preceding	flow
graph	to	know	more)	to	end	the	connection	from	its	own	side	(as	the	connection
was	bi-directional),	which	was	received	and	acknowledged	by	the	server.	As
soon	as	the	client	received	ACK	from	the	server,	the	connection	between	the	two
hosts	was	closed	completely,	and	the	sockets	and	other	resources	involved
during	the	communication	were	freed	up.

RST	(reset)	packets

Often	times,	there	will	be	situations	when	the	server	daemon	is	not	available,	it
is	not	able	to	process	your	request	due	to	overload,	you	are	restricted	to	interact
with	the	server,	or	the	port	you	are	trying	to	connect	to	is	not	open	for
connections	(not	associated	with	any	service).	There	can	be	a	lot	of	reasons	why
you	will	see	a	RST	packet.	Let	me	replicate	the	scenario	and	capture	the	traffic
between	the	client	and	server	I	have,	which	will	surely	make	it	easy	for	you	to
understand	this.	An	RST	packet	basically	denotes	that	the	connection	you	were
trying	to	initiate	got	closed	abruptly.

In	this	scenario,	the	server	daemon	is	not	running	and	the	client	is	trying	to

communicate;	as	a	result,	it	receives	RST	packets	in	return	for	every	SYN	request
sent.	I	tried	visiting	the	web	server	just	once,	but	you	will	notice	more	than	one
SYN	and	RST	packets	because	every	browser	performs	a	different	number	of
attempts	over	a	non-responding	or	a	closed	socket	at	a	particular	interval	of	time.
Hence,	in	our	case,	I	am	using	the	Apple	Safari	browser,	which	made	at	least
three	attempts	to	connect	back	in	a	max	time	of	3-4	minutes.	I	tried	requesting
Google	Chrome	as	well,	which	made	approximately	7	attempts	to	connect	back
in	merely	10	minutes	(the	browser	will	continue	to	make	a	request	at	a	particular
interval	of	time).	Refer	to	the	following	screenshot	that	illustrates	the	packets
captured	in	the	process:

Figure	5.2:	RST	packets	captured

	

Relative	verses	Absolute	numbers
Wireshark	purposefully	translates	real	SEQ/ACK	flag	numbers	to	a	simpler	format,
which	makes	it	significantly	easier	for	us	to	keep	track	of	data	sent	across	the
wire.	For	instance,	I've	a	web	server	at	172.16.136.129	and	a	client	at
172.16.136.1.	Using	a	web	browser,	I	will	try	to	visit	the	server	that	will
generate	a	couple	of	packets,	which	will	be	captured	by	Wireshark.	Refer	to	the
following	screenshot	illustrating	the	same	packets	generated	for	the	session.

I	have	selected	the	first	packet	generated	for	the	session	in	the	list	pane	and	its
corresponding	details	in	the	packet.	The	details	pane	and	bytes	pane	can	be	seen
highlighted	as	follows:

1:	In	the	list	pane,	it	can	be	observed	that	the	SEQ	number	assigned	for	the
SYN	packet	to	begin	communication	is	zero.
2:	In	the	details	pane,	we	can	see	that	the	number	0	is	a	relative	sequence
number,	which	is	not	the	real	SEQ	number	and	has	been	changed	for	our
perusal	by	Wireshark.
3:	In	the	bytes	pane,	we	can	see	that	the	corresponding	hex	value	for	SEQ=0
is	0x2a028a81,	which	is	equivalent	to	704809601	in	decimal.

So,	the	real	SEQ	number	is	704809601,	which	was	converted	to	0	to	make	our
analysis	easy.

	

According	to	our	analysis,	the	ACK	value	that	we	must	receive	should	be
704809602	(incremented	SEQ	value	with	1).	Let's	verify	the	same	using	the	next
packet	and	its	corresponding	related	information	using	the	details	and	bytes
pane.	Refer	to	the	following	screenshot	for	illustration:

	

Refer	to	the	following	list	to	understand	what	each	pointers	highlights:

The	second	packet	I	selected	is	the	SYN,	ACK	packet	that	the	client	received
from	the	server.	It	contains	the	SEQ=0	and	ACK=1	(relative	numbers)	servers.
The	related	information	for	the	packet	2	in	the	communication	is	shown	in
the	details	pane	and	the	bytes	pane.	If	you	observe,	in	the	details	pane,	the
ACK	server	sent	for	the	client's	request	is	1.
The	hex	value	for	the	ACK	received	is	0x2a028a82,	which	is	equivalent	to
704809602	in	decimal.	This	is	the	same	value	that	we	should	be	expecting.

Now,	it	would	be	easy	for	you	to	check	the	absolute	numbers	translating	them
from	their	given	hex	values.	There	is	one	more	interesting	way	by	which	we	can
customize	the	numbering	system,	where	we	can	view	the	real	absolute	numbers
directly	in	the	list	pane	and	the	details	pane.	Follow	these	steps	to	activate	and
deactivate	it:

1.	 Navigate	to	Edit	|	Preferences	in	the	menu	bar.
2.	 Expand	the	Protocol	tree	and	look	for	TCP.

3.	 Remove	the	checkmark	from	the	Relative	sequence	numbers	option,	as
shown	in	the	following	figure:

	
4.	 Navigate	to	Apply	|	Ok.	That's	it.	Refer	to	the	following	screenshot:

	

As	we	analyzed,	the	first	packet	in	the	TCP	handshake	process	has	an	SEQ
number	704809601	as	an	decimal	equivalent.	Now,	after	deactivating	the
Relative	sequence	numbers	options,	we	can	observe	the	same	in	the	list	and
details	panes.

There	are	a	few	more	options	that	are	enabled	by	default	in	the	TCP	Protocol
Preferences	window,	which	makes	the	analyses	more	systematic	and	advanced.
For	example,	validating	the	checksum	whenever	possible	and	A=analyzing	the
TCP	sequence	numbers.

Checksums	are	generally	used	during	the	transmission	to	ensure	the	integrity	of
the	data	being	sent	and	received.	As	discussed,	there	is	an	extra	field	in	the	TCP
header.	What	actually	happens	is	when	the	sender	prepares	the	packet	that	needs
to	be	transmitted,	the	checksum	of	the	packet	that	contains	data	is	calculated	and
sent	along	with	the	packet.	Now,	the	receiving	side	will	receive	the	packet	and
recalculate	the	checksum	using	the	same	algorithm	used	by	the	sender.	If	the
checksum	value	that	came	along	with	the	packet	is	identical	to	the	one	that	the
receiver	calculated,	then	the	packet	is	accepted;	otherwise,	the	packet	that
contains	the	error	(checksum	not	matched)	is	discarded	and	the	sender	side	is	not
even	informed	about	the	error	that	has	taken	place.	The	sender	is	supposed	to
know	about	this	by	himself.	The	validation	of	the	checksum	is	not	100%
guaranteed,	and	even	this	reduces	the	performance	as	TCP	packets	reassembly
won't	take	place	now.

Checksum	offloading	is	a	feature	that	only	new	network	drivers	support,	where
the	packets	that	are	ready	to	be	transmitted	are	passed	on	to	the	network
hardware	that	are	captured	by	Wireshark	with	an	empty	checksum	field	that
generates	the	checksum	offloading	error.	The	reason	is	that,	even	before	the
actual	packet	transfer	happens,	Wireshark	captures	the	packet	(the	packets	will
contain	the	valid	checksum	once	the	actual	transfer	happens).	This	might	lead	to
several	confusion.	So,	the	best	approach	would	be	to	switch	off	the	offloading
feature	from	your	interface	if	available,	or	to	disable	the	Validate	checksum
feature	for	TCP	protocol	preferences.	Refer	to	the	following	figure	that
illustrates	this:

	

The	packets	with	invalid	checksums	are	displayed	with	a	black	background	and
red	foreground	color.	Look	at	the	error	highlighted	in	red	color	in	the	details
pane;	this	states	that	the	checksum	is	incorrect,	and	this	might	be	because	the
checksum-offloading	feature	is	activated.	The	packets	with	an	invalid	checksum
cannot	be	reassembled,	and	it	doesn't	look	nice	(a	lot	of	invalid	errors	on	the
screen),	so	the	best	option	is	to	deactivate	this	feature	if	not	required.

Another	option	that	you	should	know	about	is	the	Analyzing	TCP	sequence
numbers	feature,	which	keeps	track	of	the	SEQ	and	ACK	numbers	and	keeps	you
aware	of	the	various	types	of	errors	that	can	take	place	during	transmission,	for
example,	lost	frames,	duplicate	ACK,	retransmissions,	window	scaling,	and
several	others.	Turning	this	feature	off	will	also	affect	the	Expert	Info	dialog,
where	any	of	the	warnings	related	to	transmission	errors	and	other	useful
information	won't	be	populated.

Unusual	TCP	traffic
One	of	the	scenarios	that	commonly	falls	under	this	category	is	the	lost
connection	or	unsuccessful	connection	attempt	scenario,	which	we	have	already
analyzed	in	the	RST	packets	section.	You	might	observe	several	other	examples,
such	as	high	latencies,	due	to	long-distance	communications	or	queuing	up	of
the	traffic.	To	make	the	analysis	easy	and	to	sort	out	such	problems,	use	the	time
column	by	sorting	it,	and	then,	you	will	be	able	to	figure	out	large	time	gaps
between	the	packets	at	the	top	of	the	list	pane.

Another	example	can	be	where	a	malicious	user	is	trying	to	perform	a	port	scan
on	your	network	and	your	firewall	responds	with	RST	packets	to	the	user	to	avoid
such	attacks,	or	it	might	also	be	possible	that	the	port	that	the	malicious	user	is
looking	for	is	closed.	A	normal	scan	can	generate	a	lot	of	traffic	and	which	is
quite	noisy.	This	can	be	easily	observed	in	the	list	pane	of	Wireshark.	Refer	to
the	following	screenshot	where	I've	tried	scanning	my	machine	using	nmap	from
another	device,	and	it	seems	quite	visible	and	hence	is	easy	to	track:

	

Observe	Frame	19,	where	the	port	scan	initiated	by	the	malicious	user	sent	a	SYN

packet	in	order	to	check	whether	the	port	is	open	or	closed.	As	a	result,	in	our
case,	port	21	(FTP)	was	closed;	hence	our	machine	sent	a	RST	packet,	which	will
be	used	by	the	port	scanner	on	the	other	side	to	display	statistics.	If	the	port	was
open,	the	malicious	user	will	be	notified	with	SYN	and	ACK	(refer	to	the	following
screenshot),	which	signify	that	our	machine	is	open	to	a	connection	over	the	port
21,	and	this	might	become	an	entry	point	to	the	user's	malicious	attacks.

Figure	5.3:	Port	21	open,	an	entry	point	for	malicious	attacks

	

Take	a	look	at	Frame	45,	where	the	client	sent	a	SYN	request	to	the	server	at
172.16.136.1,	and	by	this	time,	the	port	was	open	so	our	server	sent	SYN	and
ACK	packets	(Frame	46),	acknowledging	the	connection	initiation	attempt	with	a
positive	confirmation	that	the	server	is	open	to	connection	over	port	21.

There	can	be	various	scenarios	other	than	this	half-open	scan	(the	scan	shown	in
the	preceding	screenshot	is	called	half	open	because	the	client	who	initiated	the
connection	attempt,	would	never	complete	the	connection	by	sending	ACK,	which
the	server	will	be	expecting).	If	your	basics	regarding	the	packet	behavior,
connection	initiation,	completion	process,	TCP	headers,	flags	in	packets,	and
SEQ-ACK	numbers	are	clear,	then	it	would	be	quite	easy	for	you	to	point	out	any
unusual	form	of	traffic	that	is	flowing	around.	There	is	no	such	automated	tool
that	can	point	out	these	abnormalities	until	you	customize	your	environment
about	how	to	react	or	alarm	you	to	such	traffic	anomalies.	These	are	some	traffic
patterns	that	you	can	expect	to	happen	on	a	regular	basis.

How	to	check	for	different	analysis	flags	in
Wireshark
The	analysis	of	the	flags	present	in	TCP	packets	is	quite	simple	while	using
Wireshark,	there	is	an	individual	section	that	is	available	in	the	details	pane	for
every	TCP	packet.	Let's	take	a	TCP	packet	from	our	previous	handshake	process
that	we	captured	and	see	how	flags	are	presented	in	the	details	pane.	Then,	we
will	try	to	create	a	display	filter	corresponding	to	the	same.	Refer	to	the
following	screenshot	that	illustrates	this:

	

Now,	we	will	see	what	each	pointer	signifies:

Here,	the	SYN	packet	sent	from	the	client	to	the	server	to	initiate	the	three-
way	handshake	can	be	seen	in	the	list	pane.
Here,	the	flags	related	to	the	same	packet	are	set	and	the	hex	equivalent	of
000000000010	is	set	to	0x002.
For	the	corresponding	TCP	packet,	the	SYN	flag	bit	is	set	to	1;	the	same	can
be	seen	in	the	details	pane.	The	rest	of	them	are	still	0.

Now,	if	you	wish	to	create	a	display	filter	to	see	only	the	SYN	packets	that	you
have	in	the	trace	file,	then	apply	the	filter	shown	here.	As	a	result,	you	will	see
only	SYN	packets	present	in	your	trace	file.	The	following	figure	illustrates	the
same:

	

Let's	try	to	create	one	more	filter	to	view	the	SYN	and	ACK	packets	only	in	the	list
pane.	Follow	these	steps	to	create	the	filter:

1.	 Open	your	trace	file.
2.	 Choose	any	TCP	SYN,	or	ACK	packet.
3.	 Note	the	corresponding	SYN	and	ACK	hex	equivalent	values	for	the	flags	set.
4.	 Create	your	filter	using	the	hex	equivalent	that	you	have.	Your	filter	must

look	something	like	what	is	shown	here.

The	User	Datagram	Protocol
As	defined	in	RFC	768,	a	UDP	is	a	connection-less	protocol,	which	is	great	for
transmitting	real-time	data	between	hosts	and	is	often	termed	as	an	unreliable
form	of	communication.	The	reason	for	this	is	that	UDP	doesn't	care	about	the
delivery	of	packets,	and	any	lost	packets	are	not	recovered	because	the	sender	is
never	informed	about	the	dropped	or	discarded	packets	during	transmission.
However,	many	protocols	such	as	DHCP,	DNS,	TFTP,	SIP,	and	so	on	rely	only
on	this.	The	protocols	that	use	a	UDP	as	a	transport	mechanism	have	to	rely
upon	other	techniques	to	ensure	data	delivery	and	error-checking	capabilities.
And	these	protocols	are	inbuilt	with	such	features,	which	can	provide	some	level
of	reliability	during	the	transmission.	A	point	that	we	should	not	to	forget	is	that
a	UDP	provides	faster	transmission	of	packets	as	it	is	not	concerned	about	the
initiation	of	the	connection	or	graceful	termination	as	seen	in	the	TCP.	That's
why	a	UDP	is	also	referred	to	as	a	transaction-oriented	protocol	and	not	a
message-oriented	protocol	like	a	TCP.

A	UDP	header
The	size	of	a	usual	UDP	header	is	8	bytes;	the	data	that	is	added	with	the	header
can	be	theoretically	65,535	(practically	65,507)	bytes	long.	A	UDP	header	is
quite	small	when	compared	to	a	TCP	header;	it	has	just	four	common	fields:
Source	Port,	Destination	Port,	Packet	Length,	and	Checksum.	Refer	to	the
UDP	header	shown	here:	

Source	port:	This	is	the	port	number	used	by	the	sending	side	to	receive
any	replies	if	needed.	Most	of	the	time,	in	a	TCP	and	UDP,	the	port	number
chosen	to	be	the	part	of	the	socket	is	ephemeral.	On	the	other	side	of	the
communication,	the	port	number	comes	in	the	category	of	well-known	port
numbers.
Destination	port:	This	field	of	the	header	identifies	the	port	number	used
by	the	server	or	receiving	side,	and	all	data	will	be	transmitted	to	this	port.
This	port	number	is	assigned	to	a	particular	service	by	IANA,	and
definitely,	it	is	permanently	assigned	to	the	same	service	specifically.	For
example,	port	53	is	for	DNS	and	cannot	be	assigned	to	any	other	service
(not	advisable).
Packet	length:	This	field	specifies	the	length	of	the	packet,	starting	from
the	header	to	the	end	of	the	data;	the	minimum	length	you	will	observe	will
be	8	bytes	every	time,	that	is,	the	length	of	the	UDP	header.
Checksum:	As	discussed	earlier,	checksum	is	performed	over	data,	that	is,
the	packet	of	the	packet	to	ensure	data	integrity	that	is	what	is	sent	from	the
sender	side	is	the	same	what	receiver	got	and	to	verify	this	there	are	couple
of	checksum	algorithms	which	comes	to	the	rescue.	Sometimes,	while
working	with	a	UDP,	you	will	see	that	the	checksum	value	is	0	in	the	packet
we	received.	This	means	that	the	checksum	is	not	required	to	be	validated.

How	it	works
To	understand	the	way	a	UDP	works,	let's	go	ahead	and	analyze	some	of	the
protocols	that	use	a	UDP	as	a	delivery	protocol.	First,	I	would	like	to	discuss
DHCP,	and	then	we	will	see	DNS	traffic	as	well.	We	actually	saw	UDP	traffic
before	as	well	while	we	were	going	through	VOIP	and	SIP	analysis.

For	analysis	purpose,	I	have	a	default	gateway	configured	at	192.168.1.1	and	a
client	at	192.168.1.106.	Using	the	client,	I	will	try	to	generate	DHCP	and	DNS
traffic,	which	will	be	captured	in	Wireshark,	and	then,	I	will	try	to	dissect	each
protocol's	communication	process	as	well	as	the	different	components	utilized
during	the	whole	session.	Refer	to	the	following	network	architecture	that	I
have:

	
The	DHCP

The	most	common	and	important	protocol	that	assigns	IP	addresses	to	devices
and	makes	them	network	compatible	is	Dynamic	Host	Configuration	Protocol
(DHCP).	Now,	from	the	client,	I	will	try	to	release	the	IP	address	that	the	client
already	holds,	which	will	generate	a	DHCP	packet,	and	the	same	will	be
captured	by	our	sniffer.	Look	at	the	following	figure	to	understand	this:

	

In	the	list	pane,	we	can	see	a	DHCP	release	packet	that	was	generated	implicitly
by	the	client	in	order	to	release	the	current	IP	address	(I	used	the	dhclient	–v	–
r	command	on	the	Linux	terminal	to	release	the	IP	address,	but	be	careful	while
using	this	command	as	it	may	disconnect	your	machine	from	the	network,	hence
making	it	incompatible	for	network	communication).	The	client	from	the	IP
address	192.168.1.106	to	the	server	at	192.168.1.1	initiates	the	request.	The
port	numbers	used	by	the	client	and	server	in	case	of	DHCP	are	permanent,	these
won't	be	changed	in	your	case	either	unless	they	are	manually	configured.

The	DHCP	server	port	number	is	67	and	the	DHCP	client	port	number	is	68	by
default;	you	can	see	the	same	in	the	preceding	figure	(highlighted	as	3).	There	is
a	fourth	field	that	I	have	highlighted,	the	packet	length	field,	which	specifies	the
length	of	the	packet	starting	from	the	first	byte	until	the	end	of	data	in	the
packet.	However,	out	of	308	bytes,	8	bytes	show	the	length	of	the	UDP	header
and	the	remaining	300	bytes	represent	the	application	data	that	is	appended.
Interestingly,	if	a	machine	is	power	cycled,	it	will	request	the	DHCP	server	to
allocate	an	IP	address.	This,	as	a	result,	will	generate	a	couple	of	packets	related
to	the	DHCP	request,	release,	and	offer	and	various	others	that	will	also	use	the
UDP	as	a	transport	mechanism.

	

I	filtered	the	packets	listed	to	show	only	DHCP	packets	using	the	udp.port==67
filter;	as	a	result,	only	DHCP	packets	will	be	listed	in	the	list	pane.

The	TFTP

The	Trivial	File	Transfer	Protocol	(TFTP)	is	a	lightweight	version	of	the	FTP
that	is	used	to	transfer	between	hosts.	Unlike	the	FTP	protocol,	TFTP	does	not
ask	users	for	any	credentials.	A	TFTP	uses	a	UDP	as	a	transport	mechanism.
Most	commonly,	a	TFTP	is	used	in	LAN	environments,	and	when	dealing	with
manageable	devices	such	as	switches	and	routers,	network	administrators	do	use
TFTP	servers	to	take	a	back	up	of	configuration	files	and	to	update	the	firmware
running	in	those	devices.	A	TFTP	is	also	used	by	security	professionals	to
transfer	files	from	their	system	to	yours	in	order	to	escalate	the	privileges
(gaining	more	rights	on	a	compromised	system).

I	have	a	TFTP	server	running	at	192.168.1.106	and	a	client	running	at
192.168.1.104.	There	is	a	text	file	abc.txt	that	I've	created	on	the	server,	and
the	client	will	try	to	download	the	same.	And	our	sniffer	in	place	will	capture	the
traffic	that	is	generated.

	

The	traffic	generated	due	to	the	transaction	that	takes	place	between	two	hosts	is
successfully	captured	and	the	packets	corresponding	to	it	are	shown	in	the
following	figure:

	

Now,	let's	see	what	each	pointer	signifies:

This	shows	that	the	transfer	of	the	packet	is	initiated	as	soon	as	the	client
requests	the	abc.txt	file.	The	request	frame	can	be	seen	in	the	list	pane.
As	discussed,	a	TFTP	uses	a	UDP	for	a	transport	mechanism.	The	related
details	for	the	request	are	shown	in	the	details	pane,	which	states	that	the

request	was	initiated	from	a	ephemeral	port	number	from	the	client	destined
to	port	69	on	the	server	(69	is	a	well-known	port	to	the	TFTP	protocol).
The	request	was	specific	to	the	abc.txt	file	that	is	also	shown	in	the	details
pane	in	the	TFTP	protocol	section.

You	must	be	wondering	about	the	acknowledgement	packets	that	are	shared
between	the	two	hosts.	As	we	discussed,	a	UDP	is	an	unreliable	form	of
communication,	so	why	are	we	seeing	ACKs	in	a	UDP?	The	reason	is	that	the
TFTP	server	I	am	using	has	some	kind	of	inbuilt	reliability	feature.	Even	on	the
client	side,	over	the	standard	console,	after	initiating	the	request,	I	received	quite
interactive	messages	from	the	server,	such	as	the	file	of	size	3	bytes	has	been
transferred	successfully,	and	various	other	details	were	listed	along	with	the
message.	The	interesting	thing	to	know	here	is	that	port	69	was	only	involved	in
the	first	packet,	and	the	rest	of	the	packets	were	sent	and	received	by	the
acknowledging	feature	that	the	server	is	embedded	with.	So,	the	statement	that
some	protocols	use	a	UDP	as	a	transport	protocol	and	have	their	own	inbuilt
feature	to	ensure	delivery	is	true,	as	we	have	just	witnessed.

Unusual	UDP	traffic
Suppose	that	the	resource	we	are	looking	for	is	not	available	on	the	server.	How
will	traffic	look	like	then?	Refer	to	the	following	screenshot	to	understand	this:

	

As	seen	in	the	preceding	screenshot,	the	client	requested	an	invalid	resource	that
the	server	wasn't	able	to	locate	and	hence	returned	with	an	error	code	and	the
summary	message	File	not	found.	The	same	message	was	shown	over	the
standard	console	to	the	client.

Sometimes,	it	is	also	possible	that	the	server	daemon	may	not	run	and	the	client
may	request	a	certain	resource.	In	such	cases,	the	client	would	receive	the	ICMP
destination	unreachable	error	with	the	error	code	3.	Refer	to	the	following
figure	for	the	same:

	

Now,	we	will	see	what	each	pointer	signifies:

The	server	returned	with	an	ICMP	destination	unreachable	message
when	the	TFTP	server	daemon	was	not	functional
The	client	received	an	error	code	of	type	3
The	details	regarding	the	request	were	mentioned	in	the	reply	under	the
UDP	protocol	section,	which	stated	that	the	request	was	sent	to	port	69,
which	was	currently	nonfunctional
The	requested	resource	was	shown	under	the	TFTP	protocol	section

Unusual	DNS	requests	are	also	very	often	seen	when	a	client	initiates	a	request
to	look	for	name	servers	associated	with	an	address.	It	would	look	similar	to	the
one	shown	in	the	following	figure:

	

Now,	we	will	see	what	each	pointer	signifies:

1:	As	seen	in	the	list	pane,	the	client	at	192.168.1.106	initiated	a	request	to
look	for	the	address	8.0.0.0	and	received	a	response	in	Frame	2
2:	The	request	was	sent	to	the	default	gateway	that	holds	the	DNS	cache
3:	The	gateway	responded	with	a	No	such	name	error

There	can	be	multiple	scenarios	where	you	will	see	unusual	traffic	related	to	a
UDP.	The	most	important	thing	to	look	for	is	TFTP	traffic,	which	might	be
generated	because	of	a	the	TFTP	client	in	your	network.	It	may	be	malicious
traffic	that	you	would	like	to	make	a	note	of.

Summary
TCP	is	a	reliable	form	of	communication	that	has	features	like	a	three-way
handshake	and	a	tear	down	process	ensures	the	connection	is	reliable	and
interactive.

A	TCP	header	is	20	bytes	long	and	consists	of	various	fields	such	as	source	and
destination	port,	SEQ	and	ACK	numbers,	offset,	window	size,	flag	bits,	checksum,
and	options.	The	presence	of	various	flags	and	header	fields	let	the	sender	and
receiver	be	sure	about	the	delivery	as	well	as	the	integrity	of	the	data	being	sent.

The	SEQ	and	ACK	numbers	are	used	by	TCP-based	communications	to	keep	track
of	how	much	data	is	being	sent	across	between	the	hosts	taking	part.

A	UDP	is	a	connection-less	protocol	that	is	a	nonreliable	means	of
communication	over	IP,	where	the	lost	and	discarded	packets	are	never
recovered.	A	UDP	does	provide	us	with	faster	transmission	and	easier	creation	of
sessions.	A	UDP	header	is	8	bytes	long,	which	has	very	few	fields	such	as	source
and	destination	port,	packet	length,	and	checksum.	At	the	end	application,	the
data	is	appended.

Common	protocols	such	as	DHCP,	TFTP,	DNS,	and	RTP	mostly	use	a	UDP	as	a
transport	mechanism,	and	these	services	are	some	of	the	major	services	that	we
deal	with	in	our	everyday	life.	To	make	the	connection	reliable,	some	of	these
protocols	support	their	own	version	of	acknowledging	features	that	comes
inbuilt.

In	the	next	chapter,	you	will	learn	the	basics	of	wireless	traffic,	how	to	decrypt
wireless	traffic,	and	the	anomalies	that	may	follow.

Practice	questions
Q.1	List	at	least	five	differences	between	TCP	and	UDP	protocols.

Q.2	Capture	a	three-way	handshake	and	tear	down	packets	using	your	own	FTP
server.

Q.3	Explain	the	purpose	of	window	scaling	and	checksum	offloading	and	state
their	corresponding	significance	in	terms	of	TCP	communications.

Q.4	In	what	way	can	TCP-based	communication	can	recover	from	a	packet	loss
or	unexpected	termination?	Imitate	any	scenarios	that	can	generate	such	traffic.

Q.5	Create	a	display	filter	to	show	only	TCP	FIN	and	ACK	packets	sent	to	your
machine	from	your	default	gateway	in	the	list	pane.

Q.6	What	is	the	difference	between	the	absolute	and	relative	numbering	system
used	by	Wireshark	in	order	to	keep	track	of	packets?

Q.7	What	is	the	purpose	of	the	options	field	at	the	end	of	the	TCP	header	and
what	kind	of	arguments	does	it	contain?

Q.8	There	is	one	more	way	through	which	you	can	create	filters	to	view	a	packet
with	a	specific	flags	set.	Without	providing	the	HEX	equivalent,	figure	out	what
it	is	and	how	you	can	filter	a	packets	set	with	a	PSH	flag	set	using	the	same
technique.

Q.9	Find	out	why	the	length	of	data	can	only	be	65507	bytes	while	working	with
a	UDP.

Q.10	What	kind	of	packets	you	will	see	in	a	list	pane	if	the	server	daemon	for	a
TFTP	is	not	running?

Q.11	Try	performing	a	zone	transfer	on	your	locally	configured	DNS	and	capture
the	traffic	for	analysis.	What	interesting	facts	did	you	notice	about	the	packets?
Explain	them	in	brief.

Chapter	6.	Analyzing	Traffic	in	Thin
Air
In	this	chapter,	you	will	learn	how	to	analyze	wireless	traffic	and	pinpoint	any
problems.	You	will	also	learn	how	to	analyze	wireless	traffic	using	Wireshark.
The	following	are	the	topics	we	will	cover	in	this	chapter:

Understanding	IEEE	802.11	traffic
Analyzing	normal	and	unusual	behavior
Lab	up—wireless	communication
Decrypting	encrypted	wireless	traffic
Lab	up—decrypting	WEP	and	WPA	traffic
Practice	questions

We	start	from	the	basics	such	as	how	WLAN	traffic	gets	generated	and	various
essential	elements	responsible	for	handling	the	wireless	transmission	between
hosts.	Then,	moving	ahead,	we	will	analyze	the	usual	and	unusual	forms	of
packets	that	can	be	seen	in	Wireshark.	Side	by	side,	we	will	identify	anomalies
and	regular	traffic	patterns.	We	will	also	discuss	how	you	can	decrypt	wireless
(WEP)	traffic	using	Wireshark,	which	can	definitely	give	an	advantage	while
auditing	WLAN	environment.

What	we	are	going	to	witness	is	not	much	different	from	the	wired	networking
that	we	saw	earlier;	here,	we	will	be	quite	concerned	with	the	medium	through
which	packets	are	flying	around	us.	The	two	layers	at	the	bottom	of	the	OSI
model	are	important	as	they	represent	the	data	link	and	the	physical	layer.	The
data	link	layer	is	divided	into	two	parts:	Logical	Link	Control	(LLC)	and
Media	Access	Control	(MAC).

Understanding	IEEE	802.11
At	the	Institute	of	Electrical	and	Electronics	Engineer	(IEEE),	there	are
several	committees	working	together	on	several	projects,	and	one	of	these	is	802,
which	is	responsible	for	developing	LAN	standards.	A	free	white	paper	can	be
downloaded	from	the	IEEE	website	based	on	802	standards.	Specifically,	802.11
contains	WLAN	standards.	If	you	want	to	analyze	what	normal	traffic	looks	like,
you	should	be	aware	of	the	standards	and	the	present	working	technologies
within	802.11.

There	are	a	couple	of	802.11	standards,	but	the	few	important	ones	that	we
should	know	about	are	802.11b,	802.11a,	802.11g,	and	802.11n,	which	are
explained	in	the	following	list:

802.11:	This	only	supports	a	network	bandwidth	of	1-2	Mbps.	This	is	the
reason	why	many	802.11-compatible	devices	have	become	obsolete.	Hence,
it	became	necessary	to	develop	other	802.11	standards.
802.11b:	This	specification	uses	a	signaling	frequency	of	2.4	Ghz	that	is
similar	to	the	802.11	standard.	A	maximum	of	11	Mbit	transmission	rate
can	be	achieved	over	a	2.4	Ghz	band	using	b	specification.	As	most	of	the
home	appliances	(microwave,	cordless	phones,	and	so	on)	work	over	a	2.4
Ghz	spectrum,	it	causes	quite	dense	interference	and	congestion	during
WLAN	packets	transmission.	To	avoid	the	interference,	the	access	points
can	be	installed	at	a	reasonable	distance.	The	802.11b	band	is	divided	into
14	overlapping	channels,	where	every	channel	has	22	Mhz	widths.	In	one
instance,	there	can	be	a	maximum	of	three	non-overlapping	channels
operating	at	the	same	time.	This	space	separation	is	necessary	and	required
in	order	to	let	the	channels	operate	individually.	One	device	can	be	part	of
one	channel	at	a	time;	the	same	follows	when	you	listen	to	the	packets.
Practically,	it	is	possible	now	to	sniff	more	than	one	channel	at	a	time,
which	is	facilitated	through	various	tools	that	are	now	available;	one	of
them	is	Kismet,	which	can	sniff	up	to	10	channels	at	regular	short	intervals.
802.11a:	This	is	based	on	Orthogonal	Frequency	Division	Multiplexing
(OFDM)	that	was	released	in	1999	and	supports	a	maximum	transmission
rate	up	to	54	Mbps,	which	also	gives	us	an	advantage	over	802.11b
congested	bands.	This	specification	was	developed	as	a	second	standard	to
802.11	standards.	It	is	commonly	used	in	business	environments,	but

because	of	its	high	cost,	the	b	specification	is	not	best	suited	for	home
environments.	Though	it	supports	higher	speeds	around	5	Ghz	spectrums
than	802.11b,	the	range	of	devices	falls	short	if	it	is	configured	with	a
specification.	The	capability	of	bypassing	the	obstructions	that	comes	in
between	is	not	better	than	802.11b.	There	is	no	channel	overlap	that
happens	in	802.11a.	A	higher	regulated	frequency	helps	in	preventing	the
interferences	caused	by	devices	that	work	on	2.4	Ghz	spectrums.
802.11g:	Somewhere	around	the	middle	of	2002,	this	specification	came
into	existence,	and	this	tried	combining	the	best	features	of	802.11a	and
802.11b.	The	signaling	frequency	used	here	is	2.4	Ghz,	and	the	bandwidth
it	supports	is	upto	54	Mbps.	Due	to	the	2.4	Ghz	frequency	in	use,	the	range
parameter	that	suffered	a	decline	was	improvised.	The	802.11g	also
supports	backward	compatibility,	which	means	that	all	802.11g	access
points	will	support	network	adapters	using	802.11b	and	vice	versa.	A	strong
point	in	this	specification	is:	it	won't	get	easily	obstructed.
802.11n:	To	improve	further,	the	wireless	N	was	introduced.	The	key	area
where	the	improvement	was	carried	on	is	the	range	and	the	transfer	rates.
The	base	technology	that	is	implemented	to	make	all	this	possible	is
Multiple-Input	Multiple-output	(MIMO)	communication.	There	are
multiple	antennas	fitted	into	the	access	point	that	are	used	to	send,	receive,
and	bounce	off	the	signals.	This	enables	a	channel	frequency	of	40	Mhz.
The	final	version	of	this	specification,	which	was	released	in	2007,	stated	a
transfer	rate	up	to	600	Mbps.	It	can	be	configured	with	2.4	or	5	Ghz	(if	the
access	point	is	compatible	with	both);	it	can	use	both	frequencies	at	the
same	time,	thus	enabling	backward	compatibility	with	network	adapters.	A
maximum	of	four	antennas	can	be	used	with	the	MIMO	technology.	Once
all	of	this	starts	working	together,	users	can	experience	fastest	speed	and
maximum	signaling	range,	and	it's	not	much	affected	by	another	device
working	on	the	same	frequency	band.	If	this	network	type	gets	inferred,
then	it	will	other	specifications	such	as	802.11b/g.

Various	modes	in	wireless	communications
WLANs	uses	the	Carrier	Sense	Multiple	Access	and	Collision	Avoidance
protocol	(CSMA/CA)	to	manage	the	stations	sending	data,	where	every	host	that
wants	to	send	data	is	supposed	to	listen	to	the	channel	first,	that	is,	if	it	is	free,
then	the	host	can	go	ahead	and	send	the	packet;	if	not,	then	the	host	has	to	wait
for	its	turn.	This	is	because	the	same	medium	is	being	shared	by	every	host,	thus
avoiding	collisions	that	might	happen	if	two	hosts	start	transmitting	at	the	same
time,	as	a	result	making	the	performance	of	the	network	go	slow	and	more	prone
to	errors.	The	802.11	architecture	is	composed	of	several	components	such	as	a
station	(STA),	a	wireless	access	point	(AP),	basic	service	set	(BSS),	extended
service	set	(ESS),	independent	basic	service	set	(IBSS),	and	distribution
system	(DS).

There	are	four	common	modes	of	association	between	the	STA	and	the	AP,
which	are	as	follows:

Infrastructure/managed	mode:	A	wireless	network	environment	where
two	devices	wish	to	connect	an	STA	and	an	AP	to	share	data	and	network
resources	is	termed	as	the	infrastructure	mode.	An	AP	is	defined	with	a
Service	Set	Identifier	(SSID),	which	is	actually	just	a	name	given	to	the
access	point	for	identification	purpose	(for	security	reasons,	sometimes,
broadcasting	an	SSID	can	be	disabled,	which	will	prevent	your	wireless
network	from	being	discovered	by	unintended	users).	For	example,	once
you	start	scanning	for	available	Wi-Fi	networks	around	you	to	connect	to,
you'll	be	shown	multiple	network	names,	from	which	you	are	supposed	to
choose	a	network	that	you	know	about.	All	these	names	of	networks	are
called	SSID.	Another	useful	term	to	know	is	Base	Service	Set	Identifier
(BSSID),	that	is,	the	access	point's	MAC	address.	By	default,	every	access
point	is	supposed	to	broadcast	the	SSID	and	transmit	a	beacon	frame	10
times	in	a	second	to	let	devices	know	that	they	are	ready	to	accept
connections.	Refer	to	the	following	diagram	that	illustrates	this	example:	

	
Ad	Hoc	mode:	In	this	kind	of	network,	a	peer-to-peer	network	is	formed

where	two	clients	are	connected	to	each	other.	The	packets	sent	and	received	by
the	wireless	clients	are	not	relayed	to	the	access	point.	The	clients	taking	part	in
this	communication	now	handle	the	process	of	sending	beacons	and	processing
authentication	that	a	WAP	handles	in	normal	scenarios.

	
Master	mode:	When	the	NIC	card	in	your	machine	lets	you	become	an	AP,

this	is	what	the	master	mode	is	all	about.	Higher-end	devices	have	a	capability	to
act	like	access	points,	and	this	is	possible	when	NIC	cards	start	working	together
with	a	special	driver.

	
Monitor	mode:	For	the	purpose	of	this	chapter,	this	mode	is	very	important.

This	mode	is	used	to	listen	to	the	packets	that	are	flying	around;	when	the
monitor	mode	is	activated,	your	device	will	stop	transmitting	and	receiving	any
packets	and	it	will	just	sit	silently	and	sniff	live	traffic.	If	you	want	to	capture

packets	from	the	wireless	network	concerning	802.11	protocols,	then	your	NIC
and	the	driver	that	is	being	used	must	support	the	monitor	mode.	It	is	quite	easy
to	activate	the	monitor	mode	on	an	OS,	such	as	Linux	and	MAC;	however,	with
Windows,	it	becomes	quite	troublesome	to	activate	the	monitor	mode.	This
mode	is	often	termed	as	the	Radio	Frequency	Monitor	Mode	(RFMON).

	

After	learning	the	basics	of	different	forms	of	wireless	networking
infrastructures	that	you	might	note	in	a	production	environment	very	casually,	it
would	definitely	become	a	bit	easier	for	you	to	choose	between	the	various
modes	available	as	per	your	requirements.

Wireless	interference	and	strength

To	better	understand	the	normal	traffic	pattern,	we	should	be	aware	of	the
various	usual	factors	that	govern	the	performance	of	a	wireless	network.	For
example,	data	packets,	associations,	and	disassociations,	signal	strength
with/without	interferences.	Our	objective	while	analyzing	preceding	parameters
is	to	form	a	baseline	that	can	prove	worthy	when	comparing	the	traffic	patterns
with	unusual	ones.	The	factor	that	affects	the	network	performance	the	most	is	a
different	form	of	interference,	which	is	caused	due	to	various	factors	such	as
physical	obstructions	such	as	thick	walls,	roofs;	and	electronic	appliances,	such
as	microwave,	cordless	phones,	and	so	on.

While	dealing	with	wireless	networks,	the	integrity	of	data	becomes	more
important	because	the	packets	are	simply	traveling	in	the	air,	and	anyone	with
some	basic	hardware	and	knowledge	of	how	wireless	networks	work	can	sniff

and	capture	these	packets	easily.	Wireless	networks	don't	have	any	rescue
options	to	protect	the	integrity,	so	using	them,	you	cannot	be	100%	assured
regarding	the	security	of	data.

Let's	say,	for	example,	you	are	listening	to	a	particular	channel	in	the	spectrum.
Normally,	you	can	sniff	only	one	channel	at	a	time,	but	if	the	channels	start
overlapping	each	other,	than	it	is	quite	possible	that	you	will	see	other	channel
packets	in	the	list	pane.	As	per	the	normal	functioning	of	a	wireless	spectrum,
the	networks	that	operate	close	to	each	other	are	supposed	to	choose	non-
overlapping	channels	such	as	1,6,11,14	to	avoid	any	issues.	Refer	to	the
following	figure	that	best	illustrates	channel	overlapping	(I	used	from	the	same
from	Wikipedia):	

	

The	strength	of	the	wireless	network	is	totally	dependent	on	Radio	Frequency
(RF)	signals	that	carry	the	traffic.	Once	the	wireless	signal	starts	traveling,	the
strength	is	supposed	to	lessen	eventually,	as	it	travels	farther	because	of	the
obstructions	that	come	in	between.	The	device	that	works	over	the	same	RF
energy	is	also	responsible	for	reducing	the	wireless	signal	strength.	If	you	are
also	dealing	with	such	issues,	then	just	using	Wireshark	to	listen	on	an	interface
in	the	monitor	mode	won't	solve	the	purpose.	You	need	a	spectrum	analyzer,
such	as	Wi-Spy+Channelyzer,	that	is	paired	with	a	USB	(refer	to
http://metageek.com)	adapter	and	gives	you	an	extra	eye	over	the	RF	energy
form;	otherwise,	you	won't	be	able	to	see	them.	Most	of	the	time,	the	device
emitting	high	RF	energy	can	be	the	cause	of	poor	network	performance.

To	inspect	the	environment	for	RF	energy,	you	need	to	walk	down	the	office	on
your	own	with	your	laptop	running	a	spectrum	analyzer,	which	would	be	able	to
detect	the	RF	anomalies	that	can	affect	your	wireless	network	performance.	The

http://metageek.com

placement	of	these	analyzers	does	play	an	important	role	in	solving	the	problem.
If	a	host	in	your	office	is	not	able	to	connect	then	the	best	option	is	to	place	your
analyzer	as	close	to	the	host	as	possible	in	order	to	perceive	the	situation	from
the	host's	perspective.	If	various	hosts	in	your	office	experience	a	similar
problem,	then	the	best	option	would	be	to	place	the	analyzer	near	the	access
point	they	are	trying	to	connect	to.	Depending	on	the	scenario	you	are	dealing
with,	you	can	dynamically	decide	and	even	manually	scan	through	the	office
premises	to	get	to	know	whether	there	is	any	RF	energy	interfering.

I	don't	have	any	special	hardware	to	show	you	RF	energy,	but	I	will	use	an
inbuilt	tool	from	the	Kali	Linux	OS,	which	will	help	us	fetch	various	granular
details	regarding	different	WLANs	available	around	my	premises	and	all	the
devices	that	are	connected	to	Wi-Fi	(if	paired	with	a	hardware	used	for	spectrum
analysis,	this	can	prove	really	useful).	The	name	of	the	tool	is	Kismet,	and	it	is
quite	efficient	in	representing	details	in	graphical	and	various	available	statistical
formats,	thus	enabling	us	to	know	more	about	the	neighborhood	(use	it	for
ethical	purposes).	Follow	these	steps	to	use	the	Kismet	tool	on	Kali	Linux:

1.	 First	I	enable	the	monitor	mode	using	the	airmon-ng	start	wlan0
command	(wlan0	is	my	wireless	interface).

2.	 Open	the	terminal	and	type	Kismet.	You	will	be	asked	to	set	various
customization	options—do	not	change	any	default	settings.

3.	 Once	you're	asked	for	the	source	(interface	name)	for	the	Kismet	server	to
capture	the	packets,	specify	your	interface	running	on	the	monitor	mode	(in
my	case,	this	is	mon0.	You	can	check	your	interface	using	the	iwconfig
command).

4.	 Now,	let	the	tool	run	on	its	own	for	a	few	minutes;	gradually,	you	will	start
noticing	that	a	graph	is	getting	plotted	for	the	live	traffic	captured.	You	will
see	various	wireless	networks	around	you	and	most	of	the	associated
devices	connected	with	it.

5.	 In	the	network	section,	you	will	see	specific	details	for	the	wireless
network,	such	as	BSSID,	SSID,	encryption	algorithm	used,	and	so	on.

6.	 The	clients'	section	will	show	various	devices	associated	with	the	network.
Refer	to	the	following	figure	of	the	tool	that	lists	my	network	and	various
clients	connected	to	it:	

	

Now,	let's	see	what	does	each	pointer	in	the	preceding	screenshot	signifies:

In	this	part,	just	below	the	menu	bar,	the	number	of	networks	that	my	Wi-Fi
adapter	is	able	to	scan	is	shown.	The	first	row	shows	my	home	network
Anonymous	and	its	BSSID,	when	the	network	was	last	seen,	the	algorithm
used,	and	the	manufacturer	of	the	device.
In	this	second	section,	Kismet	lists	out	various	devices	that	are	currently
associated	with	the	Anonymous	network,	their	type	(is	it	an	access	point	or
a	wireless	client),	the	frequency	that	the	devices	are	using	for	transmission,
the	total	number	of	packets	a	particular	device	has	transmitted,	the	size	of
all	packets,	and	the	manufacturer	of	the	device	(interestingly,	Kismet	was
able	to	identify	one	device	manufacturer	that	is	currently	associated	with
my	network,	as	shown	in	the	first	row).	Refer	to	the	following	screenshot
that	shows	the	device	section	separately:	

	
In	the	third	section,	there	is	a	graph	that	shows	the	current	rate	at	which	the
packets	are	traveling	around	and	the	total	amount	of	data	packets	that	are
shown	with	red	bars.
In	the	fourth	section,	we	can	see	a	lot	of	details	that	are	listed,	such	as	the
hostname	(Kali),	total	number	of	networks	my	NIC	is	able	to	see,	for	how
long	Kismet	is	running,	the	total	number	of	packets	captured,	and	an
average	rate	of	packets	seen	per	second.	Using	such	simple	tools	without
any	special	configuration,	we	were	able	to	collect	a	good	amount	of	specific
details.

In	the	bottom-right	corner	of	the	window,	the	interface	used	to	capture	details	is
shown:	mon0	(a	monitor	mode	activated	interface).	Through	this	tool,	we	are	not
able	to	capture	any	RF	energy	that	can	distort	the	traffic	shape,	which	lessens	our
network	performance.	But	the	same	tool,	when	paired	with	Wi-Spy	or	Ubertooth
hardware,	will	show	the	RF	energy	spectrum.	If	you	are	one	of	those
professionals	who	needs	to	deal	with	Wi-Fi	troubleshooting	in	day-to-day
working,	then	you	should	use	this—if	not	now,	then	someday	you	will.

The	RF	energy	emitted	from	the	devices	won't	be	the	problem	every	time;
sometimes,	you	would	be	required	to	look	at	the	packet	level	like	checking
authentication	and	association	packets,	that	is,	you	can	match	your	normal	traffic
pattern	with	the	anomaly	you	might	be	facing.

The	IEEE	802.11	packet	structure
The	medium	used	by	the	packets	to	travel	from	one	host	to	another	is	changed
for	now,	but	the	basic	protocols	that	work	on	the	preceding	layers	are	still	the
same.	As	we	already	discussed,	layer	2	(data	link)	is	of	great	importance	here.
Understanding	packets	traveling	in	detail	is	obviously	a	good	thing;	we	will
discuss	various	types	of	frames,	header	structures,	and	information	an	802.11
packet	contains.

There	are	basically	three	types	of	frames	that	you	will	see	while	analyzing
wireless	packets.	All	the	packets	listed	are	almost	similar	to	the	one	we	saw
earlier;	the	only	difference	here	is	the	extra	information	that	is	appended	because
of	the	802.11	header.	The	following	are	the	header	types	that	you	will	see:

Management:	To	form	a	connection	between	the	hosts	at	the	data	link
layer,	these	frames	are	used.	These	frames	are	used	to	join	or	leave	a
network,	associations/disassociation/reassociation	and	to	broadcast	beacon
packets	and	a	few	administrative	tasks.	Management	frames	are	responsible
for	a	lot	of	activities	that	take	place	while	the	connection	between	the	hosts
is	established.

The	beacon	frame:	The	AP	sends	beacon	frames	every	10th	of	a
second	to	let	the	STA	know	that	the	AP	is	available	for	connection.
The	authentication	frame:	This	type	of	frame	is	sent	by	the	STA	to
the	AP	containing	its	identity.	If	the	AP	follows	an	open	system
authentication,	then	STA	would	send	just	one	authentication	frame	that
AP	acknowledges	to	understand	whether	the	connection	is	accepted	or
rejected.	If	the	AP	follows	shared	key	authentication,	then	the	STA
sends	a	request	to	the	AP	to	get	connected.	Now,	AP	sends	a	challenge
text	to	the	STA.	After	this,	STA	completes	the	challenge	and	encrypts
the	challenge	text	requested	using	the	same	algorithm	that	the	AP	is
using,	and	then	it	sends	it	to	the	AP.	AP	receives	and	decrypts	the	text
using	it's	own	key	value,	and	no	matter	what	the	result	is,	it	determines
the	status	of	the	connection	request.
The	association	request	frame:	This	frame	is	sent	from	the	STA	to
the	AP	to	provide	details	of	the	allocation	of	resources	and	for	syncing
purpose.
The	associate	response	frame:	This	frame	is	sent	in	response	to	the

AP	for	the	STA	request	that	is	sent.
The	deauthentication	frame:	This	is	sent	by	the	STA	to	terminate	the
connection	with	the	AP/STA.
The	disassociation	frame:	This	frame	is	a	graceful	way	of	terminating
the	connection	so	that	the	AP	can	free	up	the	resources	allocated	for
the	STA.
The	probe	request	frame:	This	frame	is	sent	by	the	STA	to	another
STA/AP	to	request	for	its	details;	this	is	basically	used	to	find	nearby
APs.
The	probe	response	frame:	This	frame	is	sent	in	response	to	the
request	that	AP/STS	might	have	received	from	another	device	in	the
network.
The	reassociation	(request/response)	frame:	This	frame	is	sent	to	the
new	AP	when	an	STA's	association	with	the	current	AP	gets	dropped.
In	response,	the	AP	acknowledges	the	acceptance/rejection	for	the
reassociation	request.

Monitoring	the	time	gap	between	each	beacon	frame	sent	from	the	hosts
can	be	useful	when	dealing	with	high	latencies.	Due	to	these	beacon
packets	broadcasted	from	the	AP,	the	devices	know	that	they	are	available
to	connect	to.
Control:	This	is	to	ensure	that	the	delivery	of	the	packets	between	the	hosts
manages	the	level	of	congestion	in	your	channel	and	uses	packets	such	as
clear-to-send	and	request-to-send.	In	short,	we	can	say	that	these	frames	are
used	for	maintenance	tasks.	These	control	packets	ensure	the	integrity	of
the	packets	that	are	transmitted.	Likewise,	the	management	frame	several
kinds	control	frame	has	just	three	kinds:

Request-to-send	(RTS):	This	frame	is	sent	by	the	STA	to	request	for
gaining	the	control	of	the	medium	for	a	particular	duration.
Clear-to-send	(CTS):	This	frame	is	sent	by	the	AP	from	where	it
received	the	RTS	to	specify	when	the	medium	will	be	allocated	to	the
STA	for	transmission.	This	frame	is	often	used	for	protection	from
older	stations	that	want	to	gain	access	to	the	medium	again.
Acknowledgement	(ACK):	This	frame	is	sent	by	the	receiving	STA	to
tell	the	sending	station	that	the	data	packet	was	received	successfully.
If	the	sending	station	does	not	receive	this	packet,	then	after	a	definite
period	of	time,	the	sending	station	will	resend	the	data	packet	to	the

same	recipient	to	ensure	the	delivery	of	the	packet.
Data:	These	frames	contain	the	data	that	is	actually	sent	between	the	hosts.

These	are	the	only	frames	that	get	transmitted	between	the	wireless	and	the
wired	domain.

The	802.11	packets	are	similar	to	the	wired	network	packets	that	we	saw;	the
terminologies	do	differ	a	little	bit,	but	the	basic	concept	is	identical.	Let's	take	a
look	at	a	beacon	frame.	Refer	to	the	following	screenshot	for	that:	

	

Now,	let's	see	what	all	the	pointers	in	the	preceding	figure	signify:

1:	The	packet	describes	it	all;	the	beacon	frame	is	sent	to	the	broadcast
address	from	the	Wi-Fi-enabled	device	or	any	device	that	is	currently
listening	can	connect	to	it	using	the	right	credentials.
2	and	3:	Here,	the	type	of	the	frame	is	management	and	the	subtype	is
beacon.
4:	As	we	discussed	earlier,	beacon	frames	are	transmitted	every	10	seconds.
You	can	verify	the	same	from	the	packet	itself,	to	be	precise;	the	next
beacon	frame	was	sent	after	an	average	time	of	0.102385000	seconds	(this
is	just	the	time	gap	I	calculated	between	the	two	packets	seen	in	the	list
pane).
5:	The	SSID	broadcast	is	enabled,	and	hence,	the	packet	is	shown	with	the

broadcasted	SSID	Anonymous,	which	will	be	visible	when	you	try	to	scan
nearby	Wi-Fi	hotspots	that	you	wish	to	connect	to	(you	need	to	use	the
monitor	mode	to	capture	this	packet).	Various	other	details	are	included	in
the	beacon	frame	that	is	part	of	the	header	and	is	quite	necessary	to	know
about.	Refer	to	the	following	frame	structure	that	shows	how	a	layer	2
datagram	looks	like	in	theory	and	in	Wireshark:

Frame	Control Duration/ID Address1 Address2 Address3 Sequence	Control Address4

	

Let's	take	a	look	at	the	fields	present	in	the	frame	in	detail:	This	is	the	first
section	in	the	frame	header	that	lists	out	quite	a	good	amount	of	info	in	it.

Frame	Control
Protocol	Version:	This	represents	a	2-bit	value	that	is	used	to	verify	the
version	of	the	protocol	in	use;	the	current	version	is	0	at	the	time	of	writing.
Type:	This	identifies	the	type	of	the	frame;	in	our	case,	we	are	dealing	with
a	management	frame	(beacon).
Subtype:	This	represents	the	subtype	of	the	header;	for	us,	it	is	a	beacon
frame	for	which	we	are	seeing	a	numerical	code	8.
DS	Status:	This	represents	whether	a	data	frame	is	heading	to	a
distribution	system	(DS)	or	working	in	which	mode.	If	the	bit	is	set	to	1,
then	this	must	be	a	data	frame;	if	this	is	set	to	0,	then	this	frame	is	probably

a	management/control	frame.
More	Fragments:	If	this	bit	is	set	to	1,	this	means	that	the	frame	has	been
distributed	into	couple	of	parts	and	is	being	sent	one	by	one.
Retry:	This	bit	is	set	to	1	when	there	is	a	requirement	upon	retransmission
of	the	frame.
PWR	Management:	If	this	is	set	to	1,	it	represents	the	current	power
management	state	of	the	STA	whether	it	is	active:0	or	in	the	power-
save:1	mode.
More	Data:	This	bit	is	set	to	1	if	the	AP	is	trying	to	tell	the	STA	in	the
power-save	mode	that	it	has	more	frames	to	send.	In	case	of	control	frames,
this	will	always	be	0.
Order:	If	this	bit	is	set	to	1,	this	means	that	the	frame	is	forcefully	lined	up
and	would	be	sent	in	a	sequence.	Usually,	this	bit	is	not	set	because	it	might
cost	transmission	performance.
Duration	ID:	This	denotes	the	time	the	sender	might	require	for	frame
exchange;	this	is	usually	seen	in	an	request-to-send	(RTS)	frame,	which
requests	to	occupy	the	medium	for	a	certain	amount	of	time.
Address	1/2/3:	This	is	the	physical	address	of	the	communicating	device
(receiver,	transmitter,	and	destination	address).
Sequence	Control:	This	is	composed	of	two	subfields:	a	12-bit	sequence
number	and	a	fragment	number	of	4	bit.	A	sequence	number	field	is	used	to
identify	the	sequence	of	the	frames	that	arrive	and	for	their	proper
reassembly	(this	ranges	between	0-4,095).	The	fragment	number	field	is
used	to	denote	the	number	of	fragments	for	each	frame	(this	ranges	between
0-15).
Address	4:	This	represents	the	sender's	physical	address	and	would	only	be
present	in	a	wireless	distribution	mode.
Data/Payload:	This	field	is	not	part	of	the	header,	but	at	the	end,	it	will	be
appended	when	data	is	being	sent	across.	The	size	of	this	field	can	be	up	to
2,324	bytes.
FCS:	The	frame	check	sequence	field	is	used	to	perform	a	data	integrity	test;
you	must	have	heard	about	the	cyclic	redundancy	check	(CRC),	which
helps	in	calculating	a	value	related	to	the	data	we	received.	If	the	FCS	value
is	identical	to	the	one	we	calculated,	then	the	packet	is	received	without
errors.

RTS/CTS

These	are	one	of	those	essential	components	of	WLAN	data	transfers	that	avoid
collisions	from	happening	and	ensure	the	integrity	of	the	data	that	is	sent.	The
following	illustration	determines	the	four-step	process	that	takes	place	to	follow
a	100%	fail-proof	delivery:	

	

First,	the	AP	sends	a	request	to	the	STA	to	gain	medium	access;	once	the	STA
approves	the	AP's	request,	the	AP	starts	sending	data.	As	soon	as	the	data
transfer	is	completed,	the	STA	sends	an	ACK	packet	to	acknowledge	error-free
delivery.	If	the	ACK	is	not	sent,	then	then	the	AP	will	start	retransmission	after
some	time.

Usual	and	unusual	WEP	–
open/shared	key	communication
Here,	we	will	discuss	two	types	of	Wired	Equivalent	Privacy	(WEP)
authentication	procedures:	open	and	shared	keys.	As	a	matter	of	fact,	discussing
WEP	is	really	unnecessary,	but	we	should	be	aware	of	how	it	works	because	you
never	know	when	you	might	be	asked	to	troubleshoot	an	old	router	whose
firmware	is	still	not	upgraded	and	just	supports	WEP	as	an	authentication
mechanism.

WEP-open	is	way	better	than	WEP-shared	because	even	when	the	password	that
you	provide	turns	out	to	be	wrong,	you	will	get	connected	to	the	network;	here,
it	reduces	the	chance	of	getting	the	router	brute	forced.	If	you	are	using	WEP-
shared	communication,	then	an	experienced	hacker	won't	take	more	than	2
minutes	to	crack	your	strongest	key,	and	because	of	the	small	pool	of	keys	that
WEP	supports,	your	password	won't	last	long.

So,	to	begin	with,	we	need	the	infrastructure	to	capture	packets	that	are	required
for	WEP-open.	A	key	point	to	note	here	is	that	the	infrastructure	I	am	using
consists	of	three	different	machines:	the	access	point	on	the	192.168.1.1	IP,	the
station	on	the	192.168.1.105	IP,	and	Kali	Linux	running	Wireshark	on	the
192.168.1.104	IP.	Refer	to	the	following	illustration	to	understand	this:

1.	 First,	let's	activate	the	monitor	mode	over	my	interface:

In	the	bottom-right	corner	of	the	preceding	screenshot,	you	can	see	the
message	that	the	monitor	mode	is	enabled	over	the	mon0	interface.	This	is
the	same	interface	that	we	will	use	to	capture	802.11	packets	from	our	AP
and	STA.

2.	 Next,	to	confirm	the	channel	over	which	my	channel	is	working,	I	used	the
airodump-ng	mon0	command.

3.	 Now,	once	we	have	figured	out	that	the	channel	is	6,	we	can	go	ahead	and
make	our	interface	listen	specifically	to	this	channel,	thus	avoiding	any
noise	from	other	channels.	To	do	so,	I	used	the	iwconfig	mon0	channel	6
command.

Figure	1:	Configuring	mon0	interface	to	channel	6

4.	 Once	you	have	completed	all	these	steps,	go	ahead	and	launch	Wireshark.	If
the	output	of	the	commands	you	issued	gives	any	error,	then	please	rectify	it
before	you	proceed.

WEP-open	key
Once	the	interface	starts	working	fine	and	you	are	able	to	see	the	beacon	frames
broadcasted	from	your	access	point	and	probe	request	or	response	to	and	from
your	station,	then	you	can	simply	launch	a	WEP-open	authentication	session.
When	asked	for	a	password,	just	give	any	random	password	which	will	let	you
get	connected	to	the	network,	but	it	might	be	possible	that	you	won't	be	able	to
access	the	Internet	connection	shared	by	the	AP	with	other	STAs.	Refer	to	the
following	screenshot	depicting	a	WEP-open	authentication	session.

To	capture	the	normal	traffic	pattern,	I	will	use	a	Linux	distribution	(Kali)
running	on	an	independent	machine	that	has	a	feature	to	activate	the	monitor
mode	(without	the	monitor	mode,	you	can	not	capture	802.11	packets.)	First,
activate	the	monitor	mode	on	our	WLAN	adapter	using	a	basic	set	of	commands,
and	we	will	also	configure	the	same	adapter	to	listen	to	a	specific	channel.

After	launching	Wireshark,	make	sure	that	you	choose	the	mon0	interface	only;
then,	you	will	be	able	to	capture	relevant	traffic	(keep	the	promiscuous	mode	on
as	well).

	

As	clearly	visible	in	the	details	pane	of	the	first	authentication	frame	selected	in
the	list	pane,	the	authentication	system	is	Open-System	(numeric	code	0)	and
the	connection	attempt	is	successful	as	well.	Following	this,	we	can	see	an

association	request/response	and	then	some	QOS	and	Null	function	data	frames.

An	association	request/response	is	sent	and	received	by	the	STA/AP	to
associate	a	dropped	connection,	which	the	client	was	already	a	part	of	before,
and	to	allocate	the	resources	STA	might	require	for	communication	over	the
channel.

A	QOS	data	packet	is	a	subtype	of	the	control	frame	types,	which	depicts	the
quality	of	service	and	the	over	all	performance.

Null	Function	packets	are	used	to	inform	AP	that	the	STA	is	going	in	the	power-
save	mode.	This	packet	does	not	carry	any	data,	just	some	flag	information.

And	for	every	kind	of	information	being	shared	between	hosts,	there	are	ACK
packets	that	are	sent	across	to	determine	the	delivery	of	every	packet	in	the
communication.

The	shared	key
Before	we	start	configuring,	I	want	you	to	understand	the	process	of	WEP-
shared	key	authentication,	that	is,	the	steps	involved	in	the	whole	session.	Refer
to	the	following	illustration	to	understand	this:

	

In	short,	the	STA	tries	to	connect	to	the	AP	by	sending	an	authentication	request,
which	the	AP	acknowledges	by	sending	a	text	challenge	that	the	STA	is
supposed	to	complete	and	before	sending	an	encrypt	using	the	key	algorithm	AP
knows	about.	Once	STA	has	completed	the	challenge	process	over	his	end,	STA
sends	the	challenge	response	which	is	being	evaluated	by	the	AP	and	determines
the	success	or	failure	of	the	connection	and	the	same	is	acknowledged	to	the
STA	in	another	authentication	frame.

So,	for	a	normal	WEP	authentication	session,	you	will	observe	at	least	four
authentication	frames.	If	the	authentication	is	successful,	then	the	authentication

frames	will	be	followed	by	an	association	request/response	along	with	some	data
transfer.	And	if	the	authentication	is	not	successful,	then	after	four	authentication
frames,	the	session	between	the	STA	and	the	AP	will	end.	Follow	the	next	steps
to	capture	WEP	management,	control	and	data	frames	from	your	WLAN.

As	discussed,	you	will	note	that	the	same	pattern	of	packets	is	captured.	Refer	to
the	following	screenshot	depicting	a	successful	WEP	authentication	session	that
was	captured	by	Wireshark:

	
For	the	fourth	authentication	frame,	I	have	expanded	the	details	section	to
confirm	whether	the	connection	attempt	was	successful	or	not.	And	from
the	preceding	screenshot,	we	can	verify	that	it	was	successful.	The
authentication	type	used	for	the	communication	can	also	be	seen	here.
As	we	know,	now	if	the	connection	attempt	between	the	STA	and	AP	fails,
the	whole	session	will	be	terminated	after	the	fourth	authentication	frame
and	we	will	see	a	failure	message.	To	verify	the	same,	I	tried	duplicating	the
scenario	while	Wireshark	was	listening	through	an	interface	in	the	monitor
mode	on	an	individual	system.
Refer	to	the	following	figure	that	illustrates	a	failed	WEP	connection
attempt.	In	the	list	pane,	we	can	see	the	same	authentication	frame	pattern
(just	four	authentication	frames),	but	the	last	frame	that	the	STA	received
from	the	AP	acknowledges	the	connection	status.	As	is	clearly	visible	in	the

details	pane,	the	connection	attempt	failed	due	to	an	incorrect	challenge
response	text	sent	by	the	STA.

	

We	witnessed	two	types	of	authentication	procedures	that	WEP	supports,	but
what	is	really	important	to	know	is	that	WEP	is	now	obsolete,	so	I	would	never
recommend	to	any	of	you	to	use	this	as	an	authentication	protocol.	If	you	have
any	old	devices	that	only	support	WEP,	then	kindly	upgrade	to	the	latest
hardware.

WPA-Personal
We	talked	about	a	crappy	authentication	algorithm	that	has	been	used	since	the
birth	of	wireless	networking,	but	when	we	have	a	better	option,	why	not	use	it.	I
am	talking	about	the	Wi-Fi	Protected	Access	(WPA)	security	algorithm	that	is
stronger	than	WEP	when	we	add	the	corrective	measures	required.	In	2003	when
WPA	was	launched	by	Wi-Fi	Alliance	as	a	measure	to	make	WLAN
communication	stronger	than	the	previous	protocol,	WEP.	Nowadays,	almost
every	WNIC	supports	WPA	authentication	mechanism,	thus	enabling	you	to	take
advantage	of	using	a	better	security	protocol.	The	Temporal	Key	Integrity
Protocol	(TKIP)	lets	the	existing	legacy	hardware	upgrade	easily	to	implement
WPA.	The	key	size	used	by	WEP	was	40/104	bits,	whereas	WPA	uses	a	key	size
of	256	bits,	and	the	interesting	thing	to	know	is	that	every	packet	transmitted
between	the	AP	and	STA	is	encrypted	using	the	256-bit	key,	which	makes	the
situation	quite	tight	for	malicious	users.	One	more	advance	was	done	in	WPA
that	let	the	devices	communicate	with	more	assurance	about	the	integrity	of	the
message.

In	WEP,	the	traditional	CRC	was	implemented,	but	here,	the	popular	Michael
64-bit	Message	Integrity	Check	(MIC)	was	introduced	to	address	the	issue.
WPA	also	uses	the	RC4	algorithm	to	build	a	session	based	on	dynamic
encryption	keys	(you	would	never	end	up	using	the	same	key	pair	between	two
hosts).	If	compared	to	WEP,	it	has	a	larger	IV	size	of	48	bits.	Refer	to	the
following	illustration	of	how	the	cipher	text	is	formed	that	is	transmitted	over	the
medium:

	

The	preceding	illustration	depicts	how	the	whole	process	starts	by	appending	the
IV	and	the	dynamically	generated	256-bit	key.	Then,	is	passed	on	to	the	RC4
algorithm,	which	encrypts	the	packets	with	keys,	and	then	the	resulting
encrypted	key	stream	is	appended	with	the	data	and	voila!	We	have	the	cipher
text.	Now,	I	will	introduce	you	to	the	normal	authentication	session	between	an
AP	and	an	STA.	Refer	to	the	following	figure	for	the	same:

	

In	the	case	of	the	Enterprise	WPA	configuration,	first,	the	Master	Key	Exchange
takes	place.	I	will	later	give	you	a	brief	about	it.	As	of	now,	we	have	an	AP	that
sends	its	nonce	(random	value)	to	the	STA	(initiation	of	connection)	that	will	use
the	AP's	nonce	value	and	its	own	nonce	to	calculate	the	Pairwise	Transient	Key
(PTK)	along	with	the	Pre	Shared	Key	(PSK),	which	was	established	during	the
initial	connection	process.	The	resulting	value	will	be	sent	to	the	AP.	Then,	the
AP	will	calculate	the	PTK	over	its	end	and	append	the	MIC	with	the	receive
sequence	counter	(RSC)	that	helps	in	identifying	the	replayed	messages.	The
resulting	value	will	be	passed	on	to	the	STA.	Now,	the	STA	will	first	verify	the
MIC	in	the	message	to	ensure	the	integrity	and	install	the	keys.	Then,	a	response
will	be	sent	to	the	AP	regarding	the	status.	If	the	status	shows	success,	the	AP
then	installs	the	same	keys	(dynamic	keys)	that	will	be	used	in	further

communication	between	the	hosts.

After	configuring	WPA-Personal	on	my	AP,	I	had	sent	an	authentication	request
from	my	client	and	the	corresponding	communication	was	captured	by
Wireshark,	which	is	shown	in	the	following	screenshot:

	
Note

You	need	the	same	infrastructure	that	we	used	while	capturing	WEP
communication	that	is	an	interface	in	the	monitor	mode	that	is	listening	on	a
separate	machine.

This	is	what	a	normal	WPA	successful	handshake	(authentication)	process	looks
like,	that	is,	four	EAPOL	packets.	To	analyze	the	session	specifically	between
the	AP	and	STA,	I	applied	a	display	filter	to	see	only	EAPOL	packets
(authentication	frames).	Before	the	authentication	frames,	AP's	beacon	frame,
and	STA's	probe,	we	looked	at	authentication	and	association	request/response
packets	that	led	to	the	authentication	session,	following	which	PSK	was	used	to
generate	the	dynamic	keys.	Because	of	a	software	package	error	that	I	installed
on	my	machine,	the	fourth	packet	says	Message	2	of	4,	whereas	it	should	be

Message	4	of	4.

Getting	into	more	detail,	I	would	like	to	show	you	the	flags	marked	in	all	of
these	four	authentication	packets	that	will	definitely	clear	your	thoughts
regarding	the	WPA	handshake	process.	Refer	to	the	following	screenshot	that
illustrates	this:

	

Here	is	the	description	of	the	preceding	authentication	packets:

Packet	1:	The	pairwise	master	key	(pre-shared	key)	and	the	ACK	bit	are	set
(probably	because	of	the	association	request/response	exchanged	earlier),
which	was	sent	by	the	AP	to	STA	to	initiate	the	connection	along	with	the
nonce	value	that	was	chosen	randomly.
Packet	2:	The	pairwise	master	key	and	the	MIC	flag	is	set,	which	STA	sent
to	the	AP	to	for	acknowledging	the	request	received,	along	with	its	own
nonce	value	appended	to	the	AP's	nonce	and	the	MIC	for	integrity	check.

Packet	3:	The	pairwise	master	key,	install,	key	ACK,	and	MIC	flags	are
set,	which	the	AP	tries	to	send	to	the	STA.	The	STA	will	fulfill	the
challenge	text	values	received	and	will	confirm	to	the	AP	along	with	the
encrypted	challenge	text	which	AP	is	going	to	be	crosschecked.
Packet	4:	Here,	the	pairwise	master	key	and	the	MIC	flag	are	set,	which	the
STA	sends	to	the	AP	to	make	the	connection	complete.	Now,	the	AP	is
mutually	ready	to	perform	data	transfer	with	the	STA.

I	hope	these	flags	help	you	understand	the	four-way	handshake	process	in	an
easy	and	realistic	manner.

Next,	we	are	going	to	see	what	happens	when	the	AP	receives	an	incorrect
challenge	text	from	the	STA,	what	the	packets	look	like	in	the	list	pane,	and
whether	there	would	there	be	any	difference	in	the	pattern	of	packets	that	are
captured.

The	STA	will	try	to	connect	to	the	AP	and	the	AP	will	request	the	challenge	text.
The	STA	this	time	is	not	aware	of	the	secret	keys	used	by	other	clients	in	the
network,	so	ending	with	an	incorrect	pass	key	which	won't	be	accepted	by	the
AP,	or	please	check	acknowledged	by	the	STA.	The	STA	will	try	again	to	send
the	challenge	text	and	the	same	process	goes	on.	After	this,	you	will	notice	a
couple	of	similar	packets	in	the	list	pane.	Refer	to	the	following	figure	for	the
same:

Figure	2:	WPA	Failed	authentication

	

As	you	can	see	in	the	preceding	screenshot,	EAPOL	Message	1	and	2	can	only
be	seen	because	when	the	STA	provides	the	challenge	text	response,	the	AP
rejects	it	and	again	the	process	starts	from	beginning.	The	same	thing	will
continue	for	a	couple	of	times,	but	a	packets	pattern	of	such	kind	denotes
unsuccessful	connection	attempts	(may	be	a	brute	force	attack).	The	packets
listed	can	be	associated	with	each	other	using	the	replay	counter	listed	that	we
saw	earlier	in	the	key	nonce	in	details	section.

WPA-Enterprise
I	promised	we	would	be	discussing	the	enterprise	mode	in	brief,	so	here	it	is.	In
the	corporate	infrastructure,	the	key	and	passwords	are	not	kept	with	the	AP,	and
even	the	AP	is	not	responsible	for	authentication	with	the	STA.	There	is	an	extra
entity,	the	RADIUS	server,	that	takes	care	of	authentication	here.	Before	the
four-way	handshake	takes	place,	the	RADIUS	server	and	the	access	point	are
supposed	to	go	through	a	Master	Key	Exchange,	which	gives	an	assurance	to
both	the	communicating	devices	that	the	other	part	is	legitimate.	Let's	have	a
look	at	the	following	figure:

	

Afterwards,	the	pairwise	master	key	is	created	and	passed	on	to	the	AP,	which
will	lead	on	and	complete	the	four-way	handshake	process	and	complete	the

authentication	session.

I've	scrolled	down	the	packet	list	and	look	what	I	found	for	you:	Disassociation
and	Deauthentication	packets	in	action	captured	by	our	sniffer.	So,	before	we
wrap	up,	you	should	take	a	look	at	them.

The	wireless	stations/access	points	use	disassociation	packets	in	order	to	notify
the	access	point	that	the	client	is	now	going	offline	and	the	resources	that	have
been	allocated	by	the	AP	to	wireless	clients	can	now	be	released.	Refer	to	the
following	figure	that	illustrates	the	same:

Figure	3:	The	disassociation	packet

	

As	you	can	observe,	at	first,	the	STA	sends	a	disassociation	frame	and
receives	ACK	(318,319)	for	the	same.	Now,	for	better	understanding	of	the
packets,	we	can	take	a	look	at	the	details	pane	(select	the	disassociation	packet
first),	where	the	Reason	Code	parameter	states	that	the	STA	is	leaving	or	has
already	left.	This	gives	us	a	feature	through	which	we	can	view	and	understand
packet	behavior	efficiently.

The	wireless	stations	or	the	access	points	use	the	deauthentication	frames	to

notify	the	other	side	of	the	communication	that	the	other	device	is	leaving.	There
can	be	several	reasons	for	it.	Refer	to	the	following	figure	to	understand	this:

Figure	4:	The	deauthentication	packet

	

First,	the	STA	sends	a	deauthentication	frame	to	the	access	point,	which	gets
acknowledged	in	the	next	packets	(467,468).	After	expanding	the	details	section
for	the	deauthentication	packet,	we	can	easily	note	that	the	Type/Subtype	field	is
verifying	the	same.	And	at	the	bottom,	we	get	to	understand	why	the
deauthentication	packet	was	generated.	In	our	case,	it	is	Previous
authentication	no	longer	valid,	which	the	STA	tried	to	notify	the	AP	about,
and	if	they	wish	to	communicate	again	in	the	future,	then	the	process	of
authentication	has	to	start	over,	from	the	probe	and	association	frame,	following
the	four-way	handshake.

Decrypting	WEP	and	WPA	traffic
The	technique	to	decrypt	WEP	and	WPA	traffic	is	available	with	the	use	of
Wireshark.	As	we	know,	WEP	is	the	weakest	security	encryption	protocol	and	it
has	been	exploited	for	a	long	time.	Once	you	have	the	key	for	the	wireless
network,	it	becomes	a	matter	of	a	few	clicks	to	decrypt	the	traffic.

To	demonstrate	the	same,	I	have	sanitized	the	wireless	traffic	between	my	access
point	and	a	client	that	is	connected	to	it.	Refer	to	the	following	screenshot	where
the	normal	IEEE802.11	traffic	is	captured	using	Wireshark:	

Figure	5:	WLAN	traffic	before	decryption

	

I	hope	that	by	now	you	must	be	aware	of	the	kind	of	packets	that	we	see	in	the
list	pane,	but	still,	it	does	not	make	much	sense	in	terms	of	network-activity-
related	traffic.	This	is	why	you	need	to	learn	the	technique	to	make	the	entire
traffic	more	readable.	Before	you	proceed,	you	need	to	make	some	changes	in
the	preferences	section	of	the	IEEE	802.11	protocol.

Go	to	Edit	|	Preferences,	expand	protocol	section	and	select	IEEE	802.11	and
make	the	changes.	Refer	to	the	following	screenshot	and	make	the	changes	that
are	highlighted:	

	

Once	you	have	set	the	configuration	as	shown	in	the	preceding	screenshot,	click
on	the	Edit	button	next	to	Decryption	Keys	(to	add	the	WEP/WPA	key).	Refer
to	the	following	screenshot:	

	

Click	on	New	and	you	will	be	presented	with	the	same	dialog	where	you	can	add
the	WEP/WPA	key	in	order	to	decrypt	the	preceding	communication	that	we
saw.	After	all	the	changes	have	been	made,	click	on	OK	under	Apply.	Now,	you
will	be	shown	the	decrypted	traffic	similar	to	the	one	shown	here:	

Figure	6:	WLAN	traffic	after	decryption

	

The	same	list	pane	that	we	saw	in	the	beginning	of	this	section	for	this	capture
file	is	shown	in	a	decrypted	format	now.	Here,	we	are	able	to	see	the	ICMP	and
DNS	packets	(normal	network	traffic);	this	is	the	normal	traffic	I	was	talking
about.	To	manage	the	keys,	there	is	a	more	effective	way	where	you	are	not
required	to	open	the	Decryption	keys	dialog	from	the	Preferences	section	under
IEEE	802.11.	Just	navigate	to	View	|	Wireless	toolbar;	this	will	add	a	new
toolbar	just	below	the	display	filter	area.

	

Once	added,	you	can	easily	mage	the	WEP/WPA	keys.	The	dropdown	showing
Wireshark	is	really	helpful	and	will	enable	you	to	toggle	encryption	on/off.	If
you	choose	None	from	the	list,	the	decryption	will	be	disabled	and	your	traffic
will	be	back	to	normal	from	just	802.11	wireless	traffic.	If	you	choose
Wireshark,	as	in	the	preceding	screenshot,	then	the	decryption	will	be	applied.

Summary
What	we	discussed	here	is	not	going	to	facilitate	you	with	every	scenario	that
can	be	seen	in	wireless	communication,	but	definitely,	it	will	give	you	a	jump
start.

The	IEEE	802.11	standard	works	over	radio	frequencies	for	communication
purpose.	The	protocol	that	works	behind	WLANS	is	CSMA/CD,	which
facilitates	a	collision-free	environment	that	is	required	for	a	wireless
infrastructure.	Under	802.11,	there	are	multiple	standards	that	have	been
developed,	and	this	provides	a	robust	solution	for	different	infrastructure-based
requirements.

Sometimes,	you	need	to	look	at	the	RF	energy	level	too,	which	can	really	play	a
big	role	in	performance	upgrade.	Due	to	various	devices	that	work	over	the	same
spectrum	of	2.4	Ghz,	it	is	possible	that	your	WLAN	signals	may	get	distorted.
What	you	need	in	such	cases	is	a	spectrum	analyzer,	which	lets	you	analyze	and
monitor	the	RF	energy	flowing	around	you.	To	do	so,	you	need	special	hardware
that	can	be	purchased	from	an	online	tech	store,	and	you	need	to	pair	the	same
hardware	with	software	that	lets	you	use	the	same,	for	example,	Metageek's	Wi-
SPY	hardware	paired	with	Channelyzer.

Kismet	is	a	graphical	tool	available	in	Kali	Linux	that	lets	you	collect	various
advanced	details	about	the	wireless	networks	that	are	available	around	you	and
the	devices	connected	to	those	networks.	Kismet	comes	with	various
customization	options	that	can	be	really	helpful	while	you	look	for	specific
information.	Kismet	also	facilitates	users	with	several	graphical	features	to	plot
live	traffic	over	a	graph	for	a	particular	duration.

In	a	conventional	WLAN	environment,	there	is	an	AP	and	an	STA	that
communicate	with	each	other.	Before	the	actual	data	transfer	takes	place,	both
the	devices	are	supposed	to	negotiate	the	session	over	a	key	(password	and
encryption	algorithm),	which	will	be	used	by	both	the	devices	that	are
communicating	to	maintain	the	integrity	of	the	data	that	is	sent.

There	are	commonly	three	types	of	frames	that	you	will	see	while	working	with
Wireshark:	management,	control,	and	data	frames.	These	are	the	packets	that	you

can	see	in	the	details	pane	once	a	packet	is	selected.	Management	frames	control
the	establishment	of	the	connection,	control	frames	control	the	transfer	of
management,	and	data	frames	simply	consist	of	the	actual	data	that	is	sent.

Authentication	protocols	such	as	WEP	and	WPA	take	care	of	how	an	AP	and
STA	negotiate	to	start	communicating.

EAP	is	used	to	let	the	exchange	of	master	keys	take	place.	As	defined	in	RFC
3748,	EAP	is	an	authentication	framework	that	supports	multiple	kinds	of
authentication	methods,	and	to	execute	EAP,	you	do	not	require	an	IP	because	it
runs	over	data-link	layer.

EAP	with	LAN	becomes	EAPOL,	which	is	used	in	802.11	infrastructures
(RADIUS/AAA)	for	the	exchange	of	master	keys.	As	per	the	normal	pattern,	an
AP	broadcasts	beacon	frames	that	STAs	listen	for.	If	not,	then	the	STAs	will	send
a	probe	request	to	get	connected	by	themselves.	Then,	the	AP	and	STA	conduct
an	authentication	session	and	negotiate	until	both	the	hosts	are	convinced	with
each	other.	Once	this	is	done,	the	AP	would	send	a	success	message	to	the	STA.

Using	Wireshark,	it	is	possible	to	decrypt	WEP	communications	by	simply
adding	wireless	network	keys	with	the	protocol	in	use	and	modifying	the
preferences	for	the	IEEE	802.11	protocol.

The	monitor	mode	used	to	capture	the	relevant	packets	can	be	configured	easily
over	a	Linux-based	system,	and	it	is	essential	for	Wireshark	802.11	analysis.

RTS/CTS	are	used	in	contrast	to	CSMA/CA	in	802.11,	which	keeps	the	medium
collision	free	and	easy	to	work	with.

Using	the	hash	function,	Password-based	key	derivation	function	(PBKDF2),
the	256-bit	preshared	key	is	evaluated	using	the	passphrase.

Practice	questions
Q.1	After	reading	the	IEEE	802.11	section	in	this	chapter,	make	an	extensive
note	regarding	this	protocol	and	whatever	you	have	understood—take	help	from
the	respective	RFC	if	you	want	to.

Q.2	Install	any	Linux-based	system	live	on	an	individual	machine	and	try	to
enable	the	monitor	mode	using	the	commands	mentioned	in	this	chapter.

Q.3	Capture	the	packets	with	the	monitor	mode	off	and	the	promiscuous	mode
on	first,	and	then	capture	with	the	monitor	mode	on	and	the	Promiscuous	mode
on.	Analyze	the	difference.

Q.4	Install	the	Aircrack	tool	on	your	Windows	machine	and	try	capturing	the
802.11	traffic	around	you.

Q.5	What	is	the	difference	between	the	various	standards	available	in	802.11
(b/a/g/n/i.)?

Q.6	Suppose	you	have	a	router,	and	over	to	one	end	of	the	router	you	have	a
switch	connected,	which	further	connects	to	multiple	wired	clients.	Over	the
other	end	of	the	router,	you	have	a	wireless	access	point	connect,	which	serves	as
a	medium	to	let	various	wireless	devices	connect	to	the	corporate	network.	Now,
send	a	packet	from	the	wireless	domain	to	the	wired	domain	and	analyze	the
packets	while	they	transit	between	the	domains.	What	difference	would	it	make
in	the	802.11	header?

Q.7	What	can	be	happen	when	your	wireless	NIC	does	not	support	the	monitor
mode	or	the	promiscuous	mode?	Explain	the	importance	of	each.

Q.8	To	view	the	availability	of	the	probe	requests	that	your	device	has	sent	to	the
access	point,	which	display	filter	would	you	use?

Q.9	Configure	your	AP	with	the	WEP-Open	authentication	and	then	try	to
connect	to	it	using	the	AP	while	capturing	the	traffic,	and	do	the	same	with
WEP-Shared	and	analyze	the	difference	in	the	pattern	of	the	packets	that	appear.

Q.10	Which	one	is	better:	WEP-Open	or	WEP-Shared	key	and	why?

Q.11	Use	a	capture	filter	to	capture	traffic	only	from	your	host,	access	point,	and
the	broadcast	address.	Does	this	help	you	to	decrease	the	noise?

Q.12	Configure	your	wireless	interface	in	the	monitor	mode	to	a	specific	channel
and	capture	the	WLAN	traffic	then.

Q.13	What	is	the	difference	between	the	WPA-Shared	key	and	WPA-Enterprise
authentication	protocols?	Elaborate	the	same.

Q.14	Duplicate	the	scenario	where	you	have	a	WEP-Shared	key	configured
access	point	capture,	with	quite	a	good	amount	of	traffic	for	the	same,	and	try	to
decrypt	the	traffic	you	have	using	the	WEP	key.

Q.15	Why	is	WEP-Open	better	than	the	WEP-Shared	key	authentication
mechanism?

Q.16	Can	you	figure	out	a	way	that	you	can	forcefully	disassociate	a	wireless
client	from	it's	own	currently	connected	network?

Q.17	For	deauthentication	packets,	how	many	types	you	do	think	exist?	Modify
the	coloring	rule	for	the	same	to	view	the	packets	uniquely.	In	what	way	are	they
different	from	the	disassociation	packets?

Q.18	While	analyzing	the	WPA	handshake,	do	you	observe	any	open-system-
based	authentication	before	the	actual	handshake?	If	it	is	there,	then	analyze	the
traffic	and	explain	what	is	it	for?

Q.19	Configure	your	access	point	with	the	WEP	protocol	encryption	capture
normal	802.11	wireless	frames.	Then,	using	the	same	approach	that	we
discussed,	try	to	decrypt	your	traffic	using	the	key	for	your	network.

Q.20	Is	it	possible	to	decrypt	the	traffic	using	the	ASCII	format	key	or	you	can
you	also	mention	the	key	in	HEX	format?	If	yes,	in	which	case	can	writing	the
key	in	HEX	format	prove	worthy?

Chapter	7.	Network	Security	Analysis
This	chapter	will	teach	you	how	to	use	Wireshark	to	analyze	network	security
issues,	such	as	analyzing	malware	traffic	and	foot	printing	attempts.	You	will
learn	how	to	use	Wireshark	for	network	security	analysis.	This	chapter	will
cover	the	following	topics:

Analyzing	port	scanning,	foot	printing,	and	attack	activities
Lab	up—port	scanning	with	Nmap
Analyzing	brute	force	attacks
Lab	up—analyzing	brute	force	attacks
Inspecting	malicious	traffic
Lab	up—inspecting	malicious	traffic
Solving	real-world	CTF	challenges
Practice	questions

Up	to	this	chapter,	I	have	tried	to	make	you	aware	of	how	one	should	use
Wireshark	to	analyze	the	packets	flowing	around.	We	have	just	focused	on	how
to	use	this	sniffing	tool	for	basic	analysis	purposes.	However,	what	I	am	about	to
tell	you	is	that	in	most	of	the	places,	Wireshark	is	used	for	security-analysis
purpose,	ranging	from	basic	footprinting	attacks	to	advanced	Trojan-based
attacks.

Using	a	couple	of	scenarios	in	my	virtual	lab,	I	will	try	to	duplicate	the	most
common	one,	along	with	capturing	the	live	traffic	between	the	attacker	and	the
victim.	Later	on,	we	will	dissect	the	trace	file	to	get	an	idea	of	how	malicious
traffic	looks	like.	We	will	use	this	knowledge	base	to	create	IDS/IPS	or	firewall
signatures	in	an	attempt	to	protect	our	internal	critical	infrastructure	by
analyzing	the	traffic	shown	in	Wireshark.

To	achieve	all	this,	you	need	to	change	your	perspective	a	little	bit.	In	other
words,	you	need	to	act	and	think	like	a	security	professional	who	is	in	charge	of
the	corporate	network	and	constantly	working	to	tighten	the	perimeter	that	will
make	the	attack	process	more	complex	for	bad	users.	We	can	start	all	of	this	by
analyzing	the	packets	captured	for	our	daily	usual	traffic	and	also	duplicate
certain	scenarios.

Information	gathering
The	primary	step	in	the	exploitation	process	is	to	collect	as	much	information	as
you	can.	In	today's	world,	gathering	specific	and	relevant	information	about	a
person	or	an	organization	is	not	so	difficult	(using	search	engines),	and	this	is
where	everything	begins.	A	lot	of	security	professionals	will	start	launching
attacks	directly	on	the	targets,	which	is	not	appropriate	in	the	beginning.	Let's
say,	for	example,	there	is	an	ABC	Corp.	Ltd.	located	in	the	next	block,	and	an
XYZ	attacker	is	planning	to	exploit	it	in	terms	of	physical	security	(to	get	entry
to	the	server	rooms	or	any	high-valued	target	available	inside).	To	do	so,	the	first
thing	the	attacker	should	know	is	the	working	hours	and	the	non-working	hours.
Then,	they	should	know	about	the	working	days	in	the	targeted	company.	The
attacker	should	also	know	about	the	physical	layout	of	the	building	the	company
is	located	in,	and	they	should	have	some	basic	knowledge	about	the	security
policy.	With	all	this	information,	the	attacker	should	be	able	to	identify	the	weak
points	inside	the	premises	that	might	be	an	easy	target	and	can	give	access	to
what	they	are	looking	for.	Did	you	notice	what	just	happened	in	the	preceding
scenario?	We	assumed	that	the	attacker	is	collecting	useful	information	and	then
planning	and	figuring	out	the	easy	targets	to	attack,	because	following	this
approach	will	improve	the	chances	of	success.	Footprinting	and	reconnaissance
are	synonyms	for	the	term	information	gathering.	The	chances	of	success	would
be	higher	if	you	are	following	the	planned	approach.

Let's	use	the	same	approach	in	targeting	an	organization	using	networks.	The
first	step	would	be	to	identify	the	public	IP	address	of	the	organization,	the
subnet	it	belongs	to,	and	the	range	of	IP	addresses	allocated	to	the	organization.
This	basic	information	can	be	passively	(without	directly	interacting	with	the
company's	network)	collected	through	the	use	of	DNS	lookup	services	available
online.	We	can	try	to	check	whether	zone	transfer	is	available,	which	can	give
some	juicy	and	granular	details	regarding	the	organization's	infrastructure	we	are
targeting.	After	you	have	collected	the	basic	information	and	have	mapped	the
basic	layout,	you	are	ready	to	perform	a	port	scan.	I	would	prefer	that	you	do	a
ping	sweep	first,	which	will	tell	you	about	the	live	machines	over	the	network,
and	from	where	you	will	get	to	know	more	about	the	network	(while	performing
a	ping	sweep,	you	can	modify	the	TTL	value	to	figure	out	the	internal	LAN
architecture).

Before	we	go	ahead	and	try	duplicating	the	most	common	scenarios,	I	want	you
to	visualize	the	local	virtual	computer	infrastructure	I	have	created	for	practice
purpose.	Refer	to	the	following	figure:

	

Hopefully,	now	you	have	a	rough	idea	about	my	internal	network	that	I'll	be
working	with.	The	access	point	located	at	192.168.1.1	assigns	the	IP	address	to
all	these	devices	using	DHCP	(the	DHCP	range	starts	from	192.168.1.100	and
continues	up	to	192.168.1.110;	it	means	I	can	have	a	maximum	of	10	DHCP
clients	at	one	instance).	For	this	chapter,	the	IP	address	for	our	attacking	machine
is	static	assigned	to	192.168.1.106.

PING	sweep
Let's	begin	with	our	first	scenario	where	an	attacker	would	try	to	perform	a	ping
sweep	attack	over	the	subnet,	and	the	traffic	generated	is	captured	by	our	sniffer
listening	through	its	interface	in	the	promiscuous	mode	Refer	to	the	following
figure	that	displays	the	traffic	pattern	that	was	generated	after	running	a	bash
script	the	script	pings	each	IP	starting	from	100	to	110):

Figure	7.1:	Ping	sweep

	

Starting	from	packet	1–4,	the	Kali	box	started	generating	an	ARP	request
because	of	the	ICMP	ping	command	issued,	but	none	of	those	IP's	are	allocated.
Hence,	we	did	not	receive	any	replies.	In	packet	5,	Kali	box	sent	a	ping	request
to	105,	and	the	reply	for	it	was	received	in	packet	14,	which	means	the	device	is
on.	Then,	in	packet	7,	an	ARP	request	was	sent	to	103,	but	this	IP	might	also	be
unallocated	for	the	instance,	so	no	reply	again.	In	packets	8–10,	Kali	box	sent	an
ICMP	request	packet	to	IP's	102,	101,	and	100.	The	reply	for	the	same	can	be
seen	in	packets	13	and	15	from	IP's	101	and	100.	For	102,	we	did	not	receive
any	reply.	It	might	be	any	device	blocking	our	ping	probes	or	some	mobile
device	not	responding	to	the	ping	probes.	Finally,	in	packet	number	17,	we	can
see	that	the	access	point	is	informing	the	Kali	Machine	about	its	physical
address.	If	you	scroll	down	through	your	trace	file,	you	would	see	various	replies
from	online	devices	describing	their	physical	addresses.

Half-open	scan	(SYN)
The	next	step	in	the	process	would	be	to	scan	any	specific	device	that	you	would
like	to	target.	Let's	suppose	I	want	to	target	my	Win7	machine	running	at	IP
192.168.1.105.	My	next	step	should	be	to	check	for	available	services	running
on	that	box.	By	services,	I	mean	HTTP	daemons,	mail	server	daemons,	FTP
server,	and	so	on.	You	might	be	wondering	what	a	half-open	scan	is?	Look	at	the
process	of	a	TCP	three-way	handshake	we	discussed,	where	the	client	initiates
the	connection	by	sending	a	SYN	packet	if	the	server	is	available.	Then,	the	client
receives	the	SYN,	ACK	packet,	and	in	return,	the	client	sends	an	ACK	packet	to	the
server	for	completing	the	handshake	process.

Now,	what	would	happen	if	the	ACK	packet	sent	in	the	last	step	of	the	TCP
handshake	is	never	sent	to	the	server?	The	server	will	wait	for	a	specific	period
before	terminating	the	handshake	process	initiated	by	the	client,	and	the
connection	to	the	specific	TCP	service	would	never	be	completed.	That's	why
this	type	of	scan	is	called	half-open	scan.	This	is	a	very	common	scanning
technique	used	by	the	majority	of	users	who	are	involved	in	malicious	activities,
being	aware	of	such	traffic	pattern	could	help	us	in	identifying	future	risks.	I
initiated	the	half-open	scan	from	Kali	box	to	target	Win7	box.	I	am	using	Nmap,
which	is	an	open	source	tool	available	for	every	platform	and	can	be
downloaded	for	free	from	http://nmap.org	(to	use	the	tool,	you	can	refer	to
various	tutorials	available	online).	The	traffic	generated	because	of	the	SYN	scan
is	captured	and	shown	in	the	following	screenshot:

Figure	7.2:	Half-open	scan

http://nmap.org

	

There	are	three	kinds	of	replies	that	you	can	see	after	the	scanning	is	completed:
Open,	Closed,	and	Filtered.	Now,	the	point	to	discuss	is	what	these	states	mean
and	what	relation	do	these	states	have	with	the	packet	shown	in	the	preceding
screenshot.	Let's	look	at	the	states	in	more	detail	here:

Open:	If	a	service	is	open,	then	a	SYN,	ACK	packet	will	be	sent	back	to	your
machine	for	taking	the	TCP	handshake	process	to	the	next	step	of
completion.	In	packet	26,	Kali	sent	an	SYN	request	to	port	135	and	received
a	SYN,	ACK	reply	in	packet	28.
Closed:	If	a	service	is	not	available	to	respond,	then	you	would	receive	an
RST	packet	that	confirms	that	the	service/daemon	is	currently	not	running.
In	packet	22,	a	SYN	request	was	sent	destined	to	port	113.	In	packet	25,	the
RST	packet	for	the	same	is	received.	It	states	that	the	service	is	not
available	at	this	moment.
Filtered:	Sometimes,	a	firewall	might	be	configured	between	you	and	your
target	that	might	be	intercepting	your	requests	and	would	be	dropping	them
without	forwarding	them	to	the	target.	In	such	scenarios,	you	might	be
seeing	port	states	such	as	open|filtered,	closed|filtered,	or	just
filtered.
Let's	suppose	you	are	trying	to	scan	an	HTTP	webserver	that	is	outside	your
VLAN	and	is	restricted	by	the	firewall	from	your	machine.	Then,	the
handshake	process	would	never	move	to	the	second	step,	that	is,	you	will
never	receive	a	reply	of	any	kind.	You	will	not	receive	any	SYN,	ACK	or	RST
packet.

Using	this	scan	type,	you	can	identify	the	state	of	the	services	running.	However,
using	this	kind	of	scan	type	will	generate	a	hefty	amount	of	traffic	too.	The	scan
I	initiated	was	completed	in	1.76	seconds,	and	in	such	a	short	time,	it	generated
2024	packets	between	the	two	machines.	Now,	this	proves	disadvantageous.	Any
well-configured	IDS/IPS	can	figure	out	such	activity	very	easily,	which	will	in
turn	trigger	an	alert	to	notify	the	security	admins.	Nmap	has	configurable
switches	that	can	help	you	out	in	these	situations	too.

OS	fingerprinting
Being	aware	of	the	operating	system	running	on	the	target	takes	the	scanning
process	to	the	next	step	in	the	methodology.	If	the	attacker	knows	about	the	OS
you	are	running,	the	patch	level	of	your	OS,	and	the	version	of	your	OS,	then	it
would	be	quite	simple	to	structure	the	attack	process	and	will	increase	the
chances	of	success.

There	are	a	couple	of	tools	available	in	Kali	that	will	let	you	identify	the	target's
OS.	It	is	not	100	percent	accurate,	and	it	is	correct	most	of	the	times.	Now,	how
do	you	think	a	simple	tool	is	available	to	identify	the	remote	machine's	OS?	I
will	tell	you	the	secret.	Every	OS	has	a	different	way	of	implementing	the	TCP
stack.	So,	a	packet	received	from	the	remote	machine	will	have	certain	fields	in
it	such	as	TTL,	fragment	offset,	and	most	importantly	window	size.	By
comparing	the	values	in	the	packet	with	the	database	we	have,	it	will	tell	you	the
OS.	For	example,	if	you	try	to	ping	a	Windows	machine,	the	TTL	value	returned
would	be	128,	and	if	you	ping	a	Linux	machine,	the	TTL	value	would	be	64
most	of	the	time.	Simple,	isn't?

There	are	two	types	of	fingerprinting:	active	and	passive.	They	are	described
here:

Active	fingerprinting:	When	you	are	directly	interacting	with	the	system,
the	requests	and	responses	are	directly	shared	between	you	and	the	target.
This	kind	of	scan	can	be	really	dangerous	and	is	not	stealthy.	The	captured
packets	will	give	you	values	that	can	be	matched	with	the	signature	we
have	to	identify	the	OS	running	on	the	remote	machine.
Passive	fingerprinting:	When	you	are	just	listening	for	the	packets
originated	or	destined	to	the	target,	the	values	in	the	packets	can	be
examined	in	order	to	identify	the	OS	running.	A	disadvantage	off	passive
type	scan	is	that	it	is	not	as	accurate	as	active	fingerprinting.	But	the
process	would	be	stealthier	than	active	scans.

Using	the	nmap	scan,	I	will	try	to	fingerprint	a	machine	at	IP	192.168.1.109	and
192.168.1.104	and	see	what	kind	of	traffic	is	generated	due	to	such	requests.
The	type	of	scan	we	will	witness	is	active	scanning,	and	we	will	be	directly
interacting	with	the	systems.	We	won't	just	rely	on	Nmap's	output	to	confirm	the
OS.	The	packet	that	would	be	returned	to	our	attacking	machine	is	the	base	of	all

necessary	information,	which	I	will	try	to	dissect	for	your	better	understanding.

I	will	use	the	nmap	–O	192.168.1.109,192.168.1.104	command	for	active	OS
fingerprinting,	where	the	–O	switch	is	for	checking	the	OS	and	its	version.	Refer
to	the	following	two	screenshots	to	compare	the	outputs	they	present	to	us:

	

Using	just	the	TTL	field,	we	can	verify	that	the	first	traffic	we	captured	is	from
some	Linux/Macintosh-based	machine,	as	the	TTL	value	is	64.	The	second
traffic	screenshot	belongs	to	a	Windows	machine	as	the	TTL	value	is	set	to	128.

Secondly,	the	maximum	segment	size	highlighted	at	the	bottom	can	also	be	a
deciding	factor	for	OS	fingerprinting.	In	both	cases,	it	is	1460.	The	value	is
correct	if	you	are	talking	about	a	Linux-based	machine,	but	if	it	is	a	Windows
machine,	then	you	might	observe	that	the	value	is	1440	most	of	the	time.

For	both	Linux	and	Windows	platforms,	the	Fragment	Offset	field	should	be	0
(not	set).	See	how,	simply	by	observing	basic	fields	in	the	TCP	header	and	IP
header,	we	were	able	to	fingerprint	on	our	own.	Now	let's	see	what	nmap	has	to
say.

Refer	to	the	following	screenshots	for	illustration:

Figure	7.3:	nmap	output	for	192.168.1.104

	

The	nmap	output	for	the	machine	IP	192.168.1.104	detects	that	the	machine
might	be	one	of	these	OSes	running	(in	the	red	box).	I	think	what	we	figured	out
and	it	is	quite	close.	OS	detection	by	nmap	is	done	by	analyzing	the	requests	and
responses	traffic	that	the	target	machine	generates.

	

The	nmap	output	for	the	machine	at	192.168.1.109	says	that	it	is	a	Windows
server	machine,	may	be	SP1	or	SP2.	This	time,	the	result	is	more	accurate	than
the	previous	one.	We	also	presumed	that	it	would	be	a	Windows	OS,	and	it	is.

The	traffic	generated	from	both	these	scans	would	be	quite	similar	to	the	SYN
scan	traffic	where	the	TCP	handshake	request	and	ICMP	request/replies	can	be
seen.	Once	the	attacker's	machine	running	nmap	receives	the	replies	for	the
requests	made,	it	will	start	analyzing	and	comparing	the	results	with	the	database
of	the	results	it	already	has.	Thus,	in	the	end,	after	comparing	the	values,	Nmap
will	present	you	with	the	most	accurate	results.

So,	if	you	are	seeing	a	lot	of	RST	or	RST,	ACK	packets	sent	from	one	of	your
internal	LAN	machines,	then	it	is	something	that	you	should	be	worried	about.
Better	create	signatures	for	such	traffic	in	your	firewall	so	that	they	can	alert
you.

ARP	poisoning
As	we	all	know,	the	function	of	the	ARP	protocol	is	to	translate	an	IP	address	to
its	corresponding	MAC	address.	By	doing	so,	the	devices	are	able	to
communicate	effectively	in	a	LAN-based	network.	Any	device	that	wishes	to	get
connected	with	the	other	device	on	the	same	network	requires	the	MAC	address
of	the	other	hosts.	Every	OS	maintains	a	list	of	communicating	devices	that	can
be	populated	in	the	terminal	window	using	the	arp	–a	command.	The	same
command	is	used	on	every	platform.	We	have	also	seen	the	ARP	requests	and
reply	packets	that	are	used	by	the	devices	connected	to	the	local	network	to	gain
the	MAC	addresses	of	other	devices.

For	instance,	I	have	a	local	network	too,	which	is	being	governed	by	the	router
(gateway)	located	at	192.168.1.1,	and	there	are	3	devices	connected	to	it.	The
following	table	lists	all	the	required	information	specific	to	the	devices
connected,	which	we	will	use	later:

Device IP	Address MAC	Address

Router	(default	gateway) 192.168.1.1 D0:5B:A8:07:73:6C

Apple	(victim) 192.168.1.103 D8:BB:2C:B9:53:EC

Windows	server	(victim) 192.168.1.109 00:0C:29:B3:CB:B6

Kali	Linux	(attacker) 192.168.1.106 00:0C:29:5D:A7:F7

This	preceding	information	is	listed	in	the	ARP	cache	of	every	host	connected	to
the	local	network.	You	must	be	thinking	exactly	how	this	is	being	populated	in
the	local	cache.	Whenever	any	device	intends	to	communicate	with	the	other
device,	the	requesting	device	sends	a	broadcast	to	the	whole	subnet.	Then,	the
device	to	which	the	IP	address	belongs	replies	with	it's	MAC	address	using	a
unicast	packet.	For	example,	if	the	Apple	machine	wishes	to	communicate	with
the	Windows	machine	located	at	192.168.1.109,	Apple	will	send	a	broadcast
asking	for	the	Windows	MAC	address	stating	Who	has	192.168.1.109?	Tell
192.168.1.103.	Then,	as	soon	as	the	Windows	machine	gets	to	know	about	the

request,	the	ARP	reply	unicast	packet	stating	192.168.1.109	is	at
00:0C:29:B3:CB:B6	will	be	broadcasted.	This	is	how	the	process	works.

The	preceding	packets	transfer	will	only	happen	if	the	Apple	machine	has	the
Windows	MAC	address	in	it's	local	cache.	After	searching	in	the	local	cache,	the
request	is	sent	to	the	default	gateway.	If	the	default	gateway	knows	about	it,	an
ARP	reply	packet	is	sent	by	the	gateway	itself.	If	not,	then	the	request	will	be
forwarded	to	the	subnet	from	where	the	destination	PC	will	reply	with	the
physical	address	using	a	unicast	packet.	After	this,	the	conversation	can	happen
using	TCP/IP.

ARP	poisoning	is	used	to	poison	the	local	cache	of	the	victim	that	enables	the
attacker	to	sniff	the	data	that	is	travelling	between	the	two	victims.	The	attacker
intercepts	the	traffic	and	then	forwards	it	to	the	other	side.	Refer	to	the	following
illustration:	

	

We	can	poison	the	local	ARP	cache	of	both	the	victims	and	can	achieve	the
same.	There	is	one	more	thing	you	need	to	configure:	IP	forwarding	on	Kali	so
that	your	attacking	machine	would	be	able	to	transfer	the	traffic	back	and	forth
without	any	loss	or	without	letting	the	victims	get	suspicious.	Follow	these	steps
to	achieve	ARP	poisoning:

First,	configure	IP	forwarding	using	the	echo	'1'	>

/proc/sys/net/ipv4/ip_forward	command.
Once	this	is	configured,	you	can	go	ahead	and	send	unsolicited	ARP	reply
packets	to	both	the	victims	for	poisoning	the	cache.	Before	we	poison	it,
let's	take	a	look	at	how	they	look	in	normal	form,	for	both	the	victim
machines:	

Figure	7.4:	Windows	server	cache

	

To	populate	entries	in	linux	arp	cache	use	similar	commands;	refer	to	the
following	screenshot	for	reference.

Figure	7.5:	Apple	cache

	
Now,	let's	start	sending	unsolicited	ARP	reply	packets	to	the	Windows
server	machine	that	Apple	machine	is	located	at	00:0C:29:5D:A7:F7.	The
same	packet	would	be	sent	to	the	Apple	machine	that	the	Windows	server
machine	is	located	at	00:0C:29:5D:A7:F7.	If	you	notice,	the	MAC	address
specified	in	the	packets	sent	to	the	Windows	and	Apple	machines	belongs
to	Kali	(the	attacker).	Refer	to	the	following	screenshot	to	check	out	the
command	I	used	for	the	spoofing	fake	MAC	addresses:	

Figure	7.6:	ARP	reply	packets	sent	to	the	Windows	server	on	behalf	of	the
Apple	device

	

Figure	7.7:	ARP	reply	packets	sent	to	Apple	device	on	behalf	of	the
Windows	server

	

Using	a	one-liner	command	with	few	parameters,	we	were	able	to	poison
the	victim's	cache	by	sending	numerous	ARP	reply	packets.
The	traffic	generated	due	to	the	preceding	command	was	also	captured	at
the	same	time.	Let's	see	how	it	looks.	Refer	to	the	following	screenshot:	

	
Once	multiple	number	of	such	packets	are	received	by	both	of	the	victims,
they	will	start	believing	it	and	accordingly	will	update	the	cache.	Let's	have
a	look	at	both	the	machine	caches	to	verify	this.	Refer	to	the	following
screenshots:	

Figure	7.8:	Poisoned	window's	cache

	

Figure	7.9:	Poisoned	Apple's	cache

	
Now,	whatever	traffic	is	sent	between	these	two	devices	will	be	forwarded
through	the	attacking	box.	For	verification	purposes,	I	turned	off	the
Windows	server	machine	and	tried	sending	ICMP	packets	from	the	Apple
machine.	Refer	to	the	following	output	shown	for	the	ICMP	destination
host	unreachable	replies	coming	from	192.168.1.106	(Kali):	

	

The	preceding	output	assures	that	the	packets	are	being	forwarded	through
192.168.1.106,	hence	making	our	ARP	poisoning	attack	a	success.
Now,	the	question	is	how	to	secure	yourself	from	such	attacks.	The	best

thing	I	would	suggest	is	to	make	manual	entries	for	the	device's	MAC
address	in	the	local	cache	of	the	communicating	client.	This	will	definitely
ignore	unsolicited	ARP	reply	packets	while	modifying	the	local	cache.
Refer	to	the	following	screenshot:	

Figure	7.10:	Adding	a	static	entry	to	local	ARP	cache

	

Once	you	add	a	static	entry	in	every	possible	host	in	your	network,	it	won't	be
possible	then	to	modify	the	local	cache	using	the	arp	spoof	tool.	Similarly,	for
HTTPS	traffic,	you	can	use	the	SSL	strip	tool	available	online	in	order	to	sniff
secure	traffic.

Analyzing	brute	force	attacks
Most	of	you	must	be	aware	of	the	popularity	of	brute	force	attacks.	The	chances
of	success	are	not	high.	Yet,	many	security	professionals	and	malicious	users
implement	their	password-guessing	ability	with	the	help	of	modern	tools.	Brute
force	attack	is	just	a	way	in	which	you	try	to	log	on	to	a	particular
service/application	using	the	password	dictionary	that	might	have	been	created
on	the	basis	of	the	target's	profile.	Tools	such	as	Cewl,	Crunch,	and	John	let	you
create	dictionary	files.	Even	you	can	salt	the	passwords.	Discussing	how	to
create	one	for	yourself	is	out	of	the	scope	of	this	book,	but	I	would	recommend
that	you	have	a	look	at	these	tools	(all	of	them	come	preinstalled	with	Kali
Linux).

To	analyze	these	common	and	malicious	attacks,	I	will	attempt	to	brute	force
two	important	services:	Telnet	and	FTP.	You	might	be	aware	of	these	two
services	and	how	much	they	are	being	used	in	corporate	networking
infrastructure.	Telnet	is	used	to	perform	administration	of	devices	such	as
routers,	switches,	and	different	kinds	of	web	servers	remotely.	FTP	is	used	to
transfer	files	efficiently	with	the	assurance	of	integrity	and	confirmed	delivery	of
the	data.

First,	take	a	look	at	most	widely	used	protocol	for	remote	administration	that	is
often	overlooked	from	a	security	standpoint.	Using	simple	brute	force
techniques,	any	script	kiddie	can	gain	access	to	your	network,	and	the
consequences	of	such	acts	can	be	really	destructive	in	terms	of	money	and
availability	of	the	service.	If	dealing	with	consumers,	then	their	records	that
might	be	worth	millions,	leading	to	full	remote	code	execution	of	the
administrative	systems.

For	this	illustration,	I	have	a	Windows	server	machine	running	at
192.168.1.109	and	an	attacker	at	192.168.1.106.	The	attacker	will	first	prepare
its	dictionary	file	and	then	will	proceed	to	use	an	automated	tool	to	attack	over
the	Telnet	administration	service	running	under	the	Windows	server	machine.
The	traffic	generated	for	such	activities	will	be	logged	in	through	our	wonderful
sniffer	for	our	analysis.	I	tried	connecting	to	the	Telnet	service	like	a	normal	user
using	these	steps:

Using	the	Telnet	command	followed	by	the	IP	address,	I	was	able	to	get
connected	to	the	service.	In	return,	it	printed	a	banner	for	me:	Welcome	to
Microsoft	Telnet	service.

Then,	I	supplied	the	wrong	user	credentials,	which	was	not	accepted	by	the
server.	Hence,	it	showed	a	login	error,	which	stated	bad	username	or
password.

Then,	I	supplied	a	legitimate	set	of	credentials,	which	were	identified	and
accepted	by	the	service.
Once	the	user	is	authorized,	the	Windows	command	prompt	with	certain
authorization	is	presented	along	with	a	banner.	Welcome	to	Microsoft
Telnet	Server.

After	I	got	connected,	I	was	able	to	issue	remote	commands	(Windows)
from	my	machine	itself.
Then,	at	the	end,	to	terminate	the	connection	gracefully	and	to	free	up	all
resources	that	were	allocated	to	use	for	smooth	functioning,	I	issued	the
exit	command	that	gave	a	message	connection	closed	by	foreign
host.

Here	is	the	screenshot	illustrates	the	normal	functioning	of	a	Microsoft	Telnet
server:

Figure	7.11:	Telnet	normal	session

	

The	traffic	generated	was	also	captured	by	Wireshark.	Instead	of	showing	the
traffic,	I	decided	to	show	you	the	whole	communication	in	plain	text	format	that
you	can	achieve	by	assembling	the	TCP	stream	by	right-clicking	on	the	list	pane
and	choosing	show	TCP	stream	(the	Telnet	server	is	configured	with	an	echo
option,	so	there	is	a	chance	we	might	see	some	characters	echoed	back	from	the
server	to	the	client).	Refer	to	the	following	screenshot:

Figure	7.12:	Telnet	follow	TCP	stream

	

Everything	we	typed	and	received	in	response	from	the	server	is	being	shown	in
simple	plain	text	readable	form	by	just	following	the	TCP	stream.

Now,	after	seeing	how	a	normal	session	looks,	if	you	want	to	learn	how	to
perform	a	brute	force	attack,	follow	these	steps:

Create	a	virtual	pen-testing	lab	that	consists	of	at	least	two	machines:	one
will	be	an	attacker	(Kali)	and	the	other	machine	can	be	of	your	choice
(make	sure	you	can	install	Telnet	on	it).
Try	pinging	the	target	to	test	the	connectivity.	Issue	the	Telnet	command	to

create	a	normal	session	and	test	whether	everything	is	working	fine.
Now,	open	Kali	and	issue	the	medusa	–h	<target	ip>	-U	<usernames
file>	-P	<password	file>	-M	telnet	command.	Refer	to	the	following
screenshot:

Figure	7.13:	Brute	force—Telnet

	

At	last,	using	a	different	set	of	combinations,	we	were	able	to	brute	force
the	server.	The	traffic	generated	because	of	all	these	attempts	made	one
after	another	is	of	special	interest	to	us.
There	is	a	lot	of	TCP	and	TELNET	traffic	generated	in	the	file,	which
include	traffic	patterns	such	as	the	three-way	handshake	and	transfer	of	data
between	the	server	and	client	through	Telnet.	However,	not	everything	is	of
interest	to	us.	Refer	to	the	following	screenshot:

Figure	7.14:	Telnet	and	TCP	traffic	between	the	server	and	our	client

	
To	view	only	the	malicious	traffic,	I	applied	another	display	filter	that	will
show	only	the	various	connection	attempts	between	the	two	hosts.	Refer	to
the	following	screenshot:

	
Now,	observe	the	display	filter	telnet.data==Welcome	to	Microsoft
Telnet	Service	along	with	the	Time	column.	The	string	I	applied	in	as	the
filter	is	the	same	as	the	one	we	received	as	a	banner	while	connecting	to	the
service.	The	banner	is	printed	approximately	15	times	in	a	span	of	100
seconds	(less	than	a	minute).
Does	this	now	seem	suspicious	to	you	now?	If	it	is,	then	you	can	take
preventive	measures	to	protect	your	infrastructure	by	creating	useful
signatures	for	the	same	traffic	pattern	that	will	help	you	in	getting	alarmed.

Next,	it's	time	to	look	at	another	popular	service,	FTP,	that	we	discussed	in
earlier	chapters	in	detail.	Let's	look	at	how	a	brute	force	attack	would	look	like
against	the	FTP	service.	FTP	is	a	very	crucial	service.	If	attacked	by	any	means,
the	service	will	crash	or	become	unusable	for	the	legitimate	users.	It	can	cause
big	trouble	to	the	network	admins	with	serious	downtime.	To	deal	with	such
activity	that	happens	in	day-to-day	operations,	you	need	to	be	prepared	by	being
aware	of	the	malicious	traffic	patterns	that	you	can	compare	with	the	baseline
traffic	pattern	we	created	earlier.

For	testing	and	analysis	purpose,	I	configured	one	FTP	server	at	192.168.1.108
over	a	Windows	7	machine	and	the	attacker	is	at	the	same	place	over	IP
192.168.1.106.	I	used	a	Kali	Linux	operating	system	to	duplicate	the	attack	and
normal	traffic	pattern	scenario.	Follow	these	steps	if	you	want	to	duplicate	it	for
educational	purpose	only:

Configure	the	client	and	the	server	using	whatever	platform	suits	your
needs	best	and	make	sure	the	connection	between	the	FTP	server	and	the
client	works	freely	without	a	single	glitch.
Now,	first,	we	will	try	to	visit	the	server	using	a	legitimate	user	and	will
record	the	traffic.	Later,	we	will	use	the	Follow	TCP	stream	option	in
Wireshark	to	view	the	traffic	details	in	easy	to	understand	plain	text	format.
Refer	to	the	following	screenshot	where	I	initiated	the	connection	between
the	server	and	the	client	using	the	netcat	client	available	over	the	Kali
platform.	I	then	logged	in	using	the	wrong	credentials	in	the	first	attempt,
and	then	used	the	correct	ones	in	the	second	attempt:

	
After	I	successfully	logged	in,	I	issued	the	help	command	to	view	the
commands	available	for	execution.	Then,	I	issued	the	quit	command	to
terminate	the	connection	gracefully.	Refer	to	the	preceding	screenshot.
Our	sniffer	captured	the	whole	conversation.	Instead	of	viewing	the	traffic
in	the	list	pane,	we	are	again	seeing	the	assembled	TCP	stream.	Refer	to	the
following	screenshot:

Figure	7.15:	FTP	assembled	stream

	
Now,	as	we	have	seen	the	normal	traffic	patterns	that	you	would	witness	in
every	day	operations,	it's	time	to	look	at	something	malicious,	such	as	the
brute	force	attack	attempts	executed	against	your	FTP	servers.	I	used	a
different	brute	force	tool	that	is	it	also	popular	among	the	category	THC-
hydra.
Before	you	issue	the	command,	make	sure	you	have	you	own	custom-made
dictionary	file	that	suits	you	well	for	your	target	(refer	to	the	openwall
website	at	http://www.openwall.com/wordlists/	to	get	the	best	dictionary
files	available).
Once	you	have	the	dictionary	file	and	the	target	up	and	running,	issue	the
hydra	–l	<username>	–P	<password	file>	ftp://<you	target's	IP

http://www.openwall.com/wordlists/

address>	command.	Refer	to	the	following	screenshot:

	
The	traffic	generated	was	also	captured	by	our	sniffer.	Instead	of	displaying
all	the	traffic,	I	used	a	display	filter	ftp.request.command==PASS	in	order
to	view	only	traffic	that	might	be	malicious.	The	following	screenshot
shows	what	display	filter	I	used	to	query	malicious	repetitive	packets.

Figure	7.16:	FTP	Brute	Force	attack	traffic	pattern

	
It	is	easily	identifiable	that	the	traffic	is	malicious	because,	in	a	span	of
maximum	85	seconds	(calculated	using	the	time	column),	there	were
approximately	10	password	attempts	made.	This	does	look	dangerous,	and
activities	of	such	kind	should	be	monitored	closely	in	order	to	protect	your
resources	facing	the	Internet.

There	is	one	more	way	through	which	you	can	point	out	such	traffic	patterns.
The	best	advisable	option	using	Wireshark	is	to	create	a	different	coloring
scheme	using	the	same	display	filter	expression	that	we	used	in	order	to	point
out	the	malicious	traffic	even	faster.	Refer	to	the	following	screenshot	where	I
did	the	same	and	created	a	different	coloring	scheme	for	both	TELNET	and	FTP

traffic:

Figure	7.17:	Coloring	scheme	for	malicious	traffic

	

There	are	various	other	application	layer	protocols	(HTTP,	SSH,	SMTP,	and	so
on)	that	fall	prey	to	these	brute	forcing	techniques	and	might	result	in	heavy
losses	for	corporate	infrastructures.	In	order	to	make	these	services	secure,	you
can	force	encryption	over	the	service	that	you	are	configuring	and	use	strong
password	policies,	such	as	an	alphanumeric	password	with	minimum	length.	You
can	also	enforce	a	password	change	policy	at	a	regular	intervals,	such	as	30	days
or	something.	Last	but	not	least,	you	can	make	the	employees	aware	of	such
activities.	Any	form	of	social	engineering	attacks	executed	against	an	employee
can	leverage	the	attacker	to	gain	access	to	the	infrastructure	more	easily.

Inspecting	malicious	traffic
In	some	previously	mentioned	topics,	we	have	witnessed	a	few	scenarios	that
generated	malicious	traffic.	Some	of	the	common	protocols,	such	as	HTTP,
DNS,	ARP,	IRC,	that	are	seen	in	the	list	pane	can	carry	malicious	traffic.	So,
knowing	about	the	malware	traffic	analysis	is	definitely	an	important	skill	every
network	and	security	professional	should	be	well	versed	with.	In	today's	digital
world,	various	advance	have	been	made.	Yet,	threats	including	malware
infection	persist.	Every	organization	should	consider	threats	of	such	nature	to	be
critical.	For	illustrating	the	threats	that	are	caused	due	to	various	malicious
traffic,	I	have	configured	a	few	things	in	my	virtual	lab.	The	traffic	generated
because	of	the	activities	between	the	client	and	the	server	would	be	captured	in
parallel,	which	we	will	use	to	analyze	later.	Refer	to	the	following	screenshot:

	

Malwares	are	supposed	to	perform	a	couple	of	tasks	once	installed	on	the
victim's	machine,	such	as	passing	on	the	secret	content	to	the	person	in
command,	receiving	commands	from	the	server,	and	infecting	and	corrupting
systems.	Even	if	you	have	the	best	security	solutions	installed	in	your

infrastructure,	you	are	still	open	to	wide	attack	vectors,	including	malware
infections.

Now,	we	have	understood	the	basics	of	how	malicious	traffic	is	being	generated,
and	we	also	have	a	clear	image	of	the	infrastructure	that	we	will	work	with.	So,
without	wasting	even	a	second	more,	let's	go	ahead	and	start	the	process.	Follow
these	steps	if	you	want	to	replicate	the	scenario	in	your	own	virtual	lab:

You	require	three	machines	connected	to	the	same	LAN.	Make	sure	they
are	able	to	talk	to	each	other,	that	is,	verify	the	connectivity.
On	the	IP	address	192.168.1.106	stays	a	legitimate	website,	which	the
client	is	habituated	to	visit.	However,	this	time,	the	client	is	not	aware	of	the
infection	that	causes	redirection	to	another	webserver.	Refer	to	the
following	screenshot	of	the	legitimate	server:

Figure	7.18:	Legitimate	website

	
To	simulate	the	redirection,	I	have	configured	my	Apache	server	running	on
106	to	redirect	every	request	coming	to	IP	192.168.1.100	and	download
the	efg.exe	malware	from	there.
So,	next	time	the	client	visits	the	website	running	at	192.168.1.106,	it	gets
redirected	to	a	new	webserver	address,	which	directly	asks	the	client	to	run
a	file	named	efg.exe.	Refer	to	the	following	screenshot:

Figure	7.19:	Client	gets	redirected	to	IP	192.168.1.100	and	is	asked	to	run
the	application.

	
If	the	client	clicks	on	Run	they	might	not	be	aware	of	the	dangerous	effects
the	malware	can	pose	to	the	client's	machine	and	the	network	client	is	a	part
of.	The	publisher	of	the	application	is	not	verified,	so	the	browser	is	not
able	to	verify	it.	This	results	in	giving	an	unknown	publisher	error.	If	the
client	still	proceeds	and	clicks	on	Run,	the	malware	will	be	installed.	Refer
to	the	following	screenshot:

Figure	7.20:	Unknown	publisher	error

	
Now,	let's	suppose	that,	if	the	client	hits	run,	then	the	malware	will	be
downloaded	to	the	client's	machine.	It	will	be	executed	later	on,	thus
creating	a	connection	back	to	the	command	and	control	center.
If	the	connection	back	to	the	attacker	was	successful,	then	without	the
knowledge	of	the	client,	the	attacker	can	copy	files,	delete	files,	take
screenshots,	take	webcam	snaps,	record	voice	through	the	mic,	corrupt
system	files,	and	so	on.	You	might	have	heard	of	various	malwares	such	as
ransom	wares,	spywares,	and	adwares.
The	whole	traffic	generated	because	of	all	these	activities	is	being	captured.
Let's	take	a	look	at	it.	Instead	of	showing	you	the	traffic,	I	assembled	the
TCP	stream	first	between	the	client	and	the	legitimate	server.
To	understand	the	way	our	malware	works,	we	need	to	look	at	more	details,
which	can	be	presented	to	us	by	Wireshark.	Refer	to	the	following
screenshot	that	shows	the	assembled	TCP	stream:

Figure	7.21:	TCP	stream	between	the	client	and	real	(compromised)	server

	

As	you	can	clearly	see,	the	client	is	trying	to	visit	the	webserver,	and	the
request	is	being	forwarded	with	HTTP	redirection	to	the	new	address
192.168.1.100,	trying	to	download	the	malicious	file.
Once	the	client	gets	a	redirection	response,	the	client	again	initiates	a	three-
way	handshake	with	the	new	server	and	tries	to	download	the	file.	After	a
couple	of	packets	were	exchanged	between	the	hosts	in	the	later	frames,	the
clients	received	a	200	OK	status	message,	suggesting	successful	download
of	the	malware.

	

In	the	following	screenshot,	you	can	see	that	the	malware	signature	can	be	easily
recognized	by	any	IDS/IPS	in	place:

Figure	7.22:	Malware	signature

	

The	GET	request	was	initiated	by	the	client	in	search	of	efg.exe,	to	which	the
server	responded	with	a	200	OK	status	message.	Later,	you	can	see	the	known
malware	signature	starting	with	the	characters	MZ	followed	by	some	random
character.	A	quick	Google	search	regarding	the	same	will	reveal	its	behavior	and
pattern.	Our	search	also	reveals	that	it	is	an	executable	file,	as	Wikipedia	states
16/32	bit	DOS	executable	files	can	be	identified	by	the	letters	MZ	at	the
beginning	of	the	file	in	ASCII.	Refer	to	the	following	screenshot:

	

Until	this	point,	its	clear	that	the	is	a	Windows	executable	file	is	clear	which
might	be	malicious.

Moving	on	with	our	investigation	regarding	the	malicious	file,	I	would	like	to
export	the	efg.exe	file	using	Wireshark.

1.	 Go	to	File	|	Export	Objects	|	HTTP.	You	will	see	a	dialog	similar	to	the
one	shown	here:

Figure	7.23:	Exporting	HTTP	objects

	
2.	 Now,	to	export	the	file,	you	need	to	select	the	conversation	that	states	the

name	of	the	file	along	with	it.	Then	click	on	Save	As	and	save	the	file	at	a
location	of	your	choice.

3.	 The	best	option	would	be	to	upload	this	file	to	websites	such	as
http://www.virustotal.com,	which	will	cross	examine	the	PE-executable	file
with	numerous	antivirus	software	online	and	will	show	you	a	detailed
analytical	report.	Refer	to	the	following	screenshot:

http://www.virustotal.com

Figure	7.24:	Uploading	efg.exe	to	virustotal.com

	
4.	 Now,	click	on	Scan	it!	to	let	the	website	examine	the	file	and	wait	for	the

results:

Figure	7.25:	efg.exe	examination	completed

	

31	out	of	56	antivirus	software	detected	the	executable	file	as	malicious,
which	is	quite	alarming.

5.	 Further,	I	manually	examine	the	conversation	between	the	infected	machine
and	the	command	and	control	center	by	looking	at	the	hex	dump	in	the
following	TCP	stream	window.	I	observe	something.	Refer	to	the	following
screenshot:

Figure	7.26:	Hexdump	in	TCP	stream	dialog

	

It	seems	that	the	server	machine	that	has	taken	the	control	of	the	victim	issues
some	command	to	gather	quick	information	regarding	the	machine.	The
highlighted	content	on	the	right-hand	side	of	the	window	states	strings	such	as
Get	File	Information,	Get	full	PC	name,	Get	Current	directory,	Adjust
token	Privileges,	and	so	on.

As	per	my	analysis,	the	file	that	got	installed	to	the	windows	box	is	definitely
malicious.	It	might	have	caused	some	serious	damage	to	the	individual	machine
as	well	as	the	network.	The	best	advisable	solution	is	to	isolate	the	machine	from
the	network,	unless	it	is	being	disinfected	using	specialized	tools.

To	conclude	this	section,	I	have	one	more	thing	to	depict	using	the	list	pane	in
Wireshark.	Refer	to	the	following	screenshot:

Figure	7.27:	Unusual	behavior	noticed	in	list	pane

	

Observe	the	behavior	of	the	packets	from	the	beginning,	as	it	started	with	the
ARP	request	sent	by	the	Windows	machine	because	it	was	trying	to	look	for	a
legitimate	web	server	locally	configured.	Followed	by	the	three-way	handshake,
the	client	initiates	a	GET	request	in	frame	6,	which	the	server	acknowledged	in
the	following	packet.	Then,	the	server	states	that	the	resource	the	client	is
looking	for	has	been	moved	to	another	location,	and	the	client	is	required	to	go
there.	After	this,	the	client	generates	an	SYN	request	in	frame	9.	Then,	the
command	and	control	center	generates	the	ARP	packets	asking	for	the	client's
physical	address	in	order	to	get	in	touch	with	it	and	to	transfer	the	file.	Then,	at
last,	in	frames	12	and	13,	the	three-way	handshake	is	completed,	which	ends	in
generating	a	GET	request	from	the	victim's	machine	in	order	to	start	the	transfer
of	the	exploit	as	seen	in	frame	13.	The	consequences	of	such	traffic	patterns	can
be	highly	devastating.	A	good	network/security	admin	should	be	aware	of	such
traffic	patterns	and	can	use	such	traffic	behavior	to	create	firewall/IDS-IPS
signatures	that	can	generate	quick	alerts.	They	can	help	in	avoiding	and	making
their	infrastructures	ready	to	fight	with	these	malicious	traffic.

Solving	real-world	CTF	challenges
Capturing	the	flag	events	is	the	most	common	thing	that	happens	in	security
conferences.	The	objective	is	to	learn	and	play	with	the	challenges	based	on	real-
world	scenarios	that	can	assist	you	quite	well	in	learning	the	methodology.
Popular	conferences	such	as	DEF	Con,	PlaidCTF,	CSAW,	and	Codegate	can	be
searched	for	if	you	are	interested	in	cracking	flags.	Basic	programming,
networking,	forensics,	and	common	sense	are	the	skills	required	to	take	part	in
these	challenges.

I	have	made	a	couple	of	challenges	for	you	and	we	will	be	solving	them	as	well
in	a	step-by-step	approach.	I	have	made	all	of	them	pretty	simple	in	order	to	give
you	an	idea	of	how	the	CTF	thing	works	and	definitely	the	approach	you	are
supposed	to	follow.	So,	let's	begin	and	capture	some	flags.

First	CTF:	Leverage	the	weakness	in	remote	administration	services

Figure	7.28:	CTF1	trace	file

	
Solution:	We	have	a	telnet-flag.pcap	file	that	lists	multiple	packets	in
the	list	pane.	The	question	is	asking	us	to	take	advantage	of	remote

administration	services.	How	many	services	do	we	know	which	are	used	for
remote	administration	RDP,	Telnet,	and	SSH?	To	better	understand	the
scenario,	let's	open	our	trace	file	in	Wireshark	first.	Refer	to	the	following
screenshot:

	

As	you	can	see,	there	are	more	than	two	thousand	packets	in	our	trace	file.	It
would	be	practically	impossible	to	scroll	to	the	bottom	to	see	each	packet.	The
best	option	would	be	to	look	into	the	protocol	hierarchy	window,	which	will	give
us	a	brief	regarding	all	protocols	involved	in	the	whole	trace	file.	From	here,	it
would	be	easy	for	us	to	identify	the	remote	administration	services.	The	protocol
hierarchy	window	can	be	accessed	from	the	Statistics	menu.	Refer	to	the
following	screenshot:

Figure	7.29:	Protocol	hierarchy	CTF1

	

Among	all	the	protocols	listed,	I	can	see	only	one	that	is	used	for	remote
administration,	and	we	can	use	it	to	move	on	with	our	CTF	process.	So,	I	applied
the	display	filter	telnet	in	order	to	see	only	relevant	traffic.	Refer	to	the
following	screenshot:

Figure	7.30:	Telnet	traffic	CTF1

	

Now,	the	next	step	would	be	to	follow	the	TCP	stream	of	these	packets,	which
will	reveal	more	information	regarding	the	Telnet	session.

This	is	what	the	question	was	about:	leveraging	the	weakness	in	a	remote
administration	service.	Telnet	sessions	can	be	viewed	in	plain	text	format,	and
we	finally	leveraged	the	weakness	to	take	advantage	of	viewing	the	session's
information	in	plain	text	format.	The	flag	is	the	password	used	by	the	user	to	log
in	to	the	Windows	machine	to	perform	maintenance	activities.

FLAG	:	Sup3rs3cr3t

The	following	screenshot	illustrates	how	the	TCP	stream	windows	will	look	after
the	packets	are	assembled.	Also,	the	Telnet	session's	password	can	be	seen
clearly.

Figure	7.31:	TCP	stream	dialog	CTF1

	

I	hope	you	have	understood	the	basic	approach	of	CTF	solving.	We	would
follow	similar	approach	in	solving	further	CTF	challenges.

This	time	I	have	designed	a	CTF	that	utilizes	another	common	protocol	and	will
let	you	learn	the	basics	of	the	CTF	challenge	approach.

Second	CTF:	Image	magic

Solution	is	in	the	title	of	this	CTF	and	it	is	pretty	small	and	attractive,	though	we

have	no	idea	what	we	are	looking	for,	but	for	sure	there	is	something	related	to
images.	Wireshark	performs	magic	every	time;	this	is	what	my	perspective	tells
me	about	the	challenge.

Following	an	approach	similar	to	the	one	we	talked	about	first,	we	would	open
the	trace	file	in	order	to	learn	basic	stats	related	to	the	traffic	capture	that	will
give	us	an	overview	of	the	protocols	used	during	the	session.	Refer	to	the
following	screenshot:

Figure	7.32:	Trace	file	CTF2

	

The	trace	file	starts	with	a	lot	of	DNS	packets,	which	don't	look	very	useful	for
our	analysis.	Looking	at	the	following	status	bar	in	Wireshark,	we	can	say	that
there	are	around	4,800	frames	definitely	captured.	This	one	is	not	something	that
we	can	inspect	element	by	element,	so	we	need	the	help	of	our	best	guy:	protocol
hierarchy	dialog	(now	I	hope,	without	any	specific	instruction,	that	you	can	open
the	dialog):

Figure	7.33:	Protocol	hierarchy	CTF2

	

In	the	list	of	various	protocols,	I	spotted	JPEG,	which	is	an	image	extension,	and
is	listed	under	the	HTTP	section	in	the	dialog.	We	can	conclude	from	this	that
there	is	some	relation	between	these	two	,so	our	display	filter	could	become
HTTP,	which	will	keep	us	moving	in	the	right	direction.

As	soon	as	I	type	HTTP	in	the	display	filter	box	and	press	enter,	I	am	presented
with	just	four	packets.	One	of	those	listed	is	a	.jpg	file	with	the	name	flag.	Refer
to	the	following	screenshot:

Figure	7.34:	Display	filter	HTTP—CTF2

	

Frame	number	4,696	lists	a	GET	request	for	a	alg.jpg	file.	Investigating,	further
by	looking	at	the	TCP	stream	of	this	packet,	confirms	that	there	was	a	.jpg	file
requested	by	the	client	at	192.168.1.108.	Refer	to	the	following	screenshot:

Figure	7.35:	TCP	stream—CTF2

	

The	request	made	by	the	client	is	now	confirmed	and	verified.	The	next	step
would	be	to	export	this	object	from	the	stream.	Go	to	File	|	Export	Objets	|
HTTP.

	

The	window	just	lists	one	flag.jpg	file.	Follow	the	mentioned	steps	in	order	to
export	the	image	object.	First	select	the	row	one	showing	the	images	object	then
click	on	save	as	and	save	the	file	at	any	desired	location.	When	finished,	open
the	file	to	view	the	flag	content.	Refer	to	the	following	screenshot	to	see	the
content	of	the	exported	object.

Figure	7.36:	CTF2

	

This	challenge	was	pretty	interesting,	because	you	learned	about	a	different	idea
behind	CTF	challenges.

Our	final	challenge	also	introduces	us	to	a	new	idea	behind	CTF's.

Third	CTF:	Are	you	Pro	Enough!!

Title	of	the	challenge	is	pretty	challenging	in	itself.	However,	we	will	solve	this
together.	So,	let's	open	the	trace	file	first.

At	first	glance,	it	looks	like	other	trace	files	we	have	seen	with	numerous	useless
packets	filled	in.	Without	getting	ourselves	confused	with	the	overwhelming
amount	of	information	there,	let's	follow	the	approach	that	we	have	been
following	so	far.	Refer	to	the	following	screenshot:

Figure	7.37:	Packet	list	pane—CTF3

	

Look	at	the	protocol	hierarchy	window	that	can	help	us	in	revealing	more	about
the	CTF	challenge	we	are	dealing	with.	Refer	to	the	following	screenshot:

Figure	7.38:	Protocol	hierarchy—CTF3

	

As	expected,	we	get	a	new	insight	about	the	trace	file,	and	we	can	observe	that
the	UDP	traffic	percentage	is	about	89	percent,	which	is	quite	a	big	number.	It
lists	Real	Time	Protocol	under	it.	So,	let's	go	ahead	and	create	a	display	filter	for
RTP	traffic,	which	can	take	us	to	the	next	step	in	solving	the	riddle.	Refer	to	the
following	screenshot:

Figure	7.39:	RTP	display	filter—CTF3

	

It	seems	like	a	call	session	is	in	progress	between	the	two	hosts	at
192.168.1.107	and	192.168.1.105.	Next,	using	the	playback	feature	in
Wireshark,	I	will	reassemble	the	stream	and	will	try	to	play	back.	Go	to
Telephony	menu	|	VoIP	Calls	and	select	the	SIP	call	in	row	1	and	click	on
Player.	Refer	to	the	following	screenshot:

Figure	7.40:	VoIP	calls	dialog—CTF3

	

Once	the	call	session	is	visible,	select	it	and	click	on	the	player	where	you	will
be	asked	to	give	the	jitter	value.	Specify	200	as	the	value	and	click	on	Decode:

	

Now,	you	should	be	able	to	see	the	assembled	VoIP	stream	available	for
playback.	Select	the	first	part	of	the	communication	and	click	on	Play.	The
person	communicating	from	Side	A	side	says,	Start	the	transfer	of	the	rabbit	and
playing	Side	B's	part	we	can	observe	that	it	is	just	an	echo	of	Side's	A	message.
Refer	to	the	following	screenshot:

Figure	7.41:	Reassembled	VoIP	call	for	playback—CTF3

	

We	did	not	get	many	clues	from	this	message.	Let's	look	at	the	protocol
hierarchy	dialog	once	again	and	see	what	we	have	in	the	TCP	section.	Other	than
the	HTTP	protocol,	there	isn't	much	useful	information.	Under	the	HTTP	tree,
there	is	a	media	type,	which	means	something	got	transferred	between	the	hosts
on	the	network	(as	the	person	on	VOIP	call	said	start	the	transfer).	We
applied	HTTP	as	a	display	filter,	we	got	the	following	screenshot:

	

As	is	clearly	visible,	a	flag.rar	file	got	transferred.	Let's	export	this	to	a	.rar
file	for	extraction.	Go	to	File	|	Export	Objects	|	HTTP,	select	the	first	row,	and
click	on	Save	as	to	save	the	.rar	file.	The	file	got	successfully	saved,	but	when
we	tried	opening	the	file,	it	asked	for	a	password,	which	we	don't	know	have:

Figure	7.42:	Flag.rar	ask	password

	

Did	you	notice	what	the	person	said	over	the	call	"start	the	transfer	of	the
rabbit",	so	why	don't	we	check	therabbit	as	password	to	this	archive	file.

Luckily,	our	first	guess	worked.	This	might	not	happen	every	time	we	solve	CTF
challenges.	There	is	a	file	inside	it	called	flag.txt	that	reads	You	Gotcha!!
Refer	to	the	following	screenshot:

	

This	section	was	particularly	real	fun!	I	enjoyed	solving	it	for	you.	I	hope	the
approach	and	flow	we	followed	would	prove	useful	for	other	CTFs	that	you
might	start	solving	after	reading	this	chapter.	Best	of	luck	to	you	for	your
independent	analysis,	and	remember	that	using	out-of-the-box	thinking	and	a	bit
of	common	sense	is	also	required.

Summary
Use	Wireshark	to	keep	your	network	secure	by	defending	against	the	most
common	form	of	infiltration	attempts.	Analyzing	the	packets	with	security
perspective	will	give	you	a	new	insight	into	how	to	deal	with	malicious	users.

Activities	such	as	port	scanning,	footprinting,	and	various	active	information-
gathering	attempts	are	the	basis	of	attacking	methodologies	that	can	be	taken
advantage	of	to	bypass	your	security	infrastructure.

Guessing	passwords	for	a	legitimate	service	is	called	a	brute	force	attack.	If	the
same	form	of	attack	is	combined	with	dictionaries,	which	consist	of	millions	of
passwords,	the	chances	to	break	in	get	higher.	Through	Wireshark,	you	can	view
such	attempts	made	against	a	service	in	your	network.

Using	a	legitimate	looking	piece	of	software,	a	malicious	user	can	gain	entry	into
your	network.	These	days,	the	most	common	form	through	which	malwares	are
being	distributed	is	emails.	Another	attack	form,	such	as	phishing,	when
combined	with	malwares,	becomes	seriously	dangerous.

Wireshark	can	help	you	in	analyzing	malware	behaviors,	and	using	the	behavior
analyzed,	you	would	be	able	to	create	the	necessary	signatures	for	your	IDS/IPS
firewalls	in	place.

Capture	the	flag	events	are	commonly	conducted	at	security	conferences.
Multiple	educational	exercises	are	provided	to	the	participants	to	experience
real-world	scenarios.	The	real	CTF	is	where	a	TEAM	A	tries	to	penetrate	into
TEAM	B's	network	and	vice	versa	at	the	same	time.	Both	the	teams	are
responsible	for	securing	against	the	malicious	attacks	sent	in.	There	are	multiple
categories	in	CTF	events,	such	as	reverse	engineering,	protocol	analysis,
programming,	cryptanalysis,	and	so	on.	Mastering	Wireshark	can	ease	your	way
while	dealing	with	protocol	analysis	related	CTFs.

Observing	things	scattered	around	with	a	security	professional's	perspective	will
let	you	see	things	differently.	From	a	person	inside	the	corporate	infrastructure,
things	might	feel	OK.	However,	from	outside,	you	might	be	very	vulnerable.
Security	professionals	are	like	immunity	to	the	IT	industry,	and	analyzing	the

packets	using	Wireshark	is	one	of	their	weapons	in	the	arsenal.

Practice	questions
Q.1	What	is	the	difference	between	the	active	and	passive	information	gathering
techniques?

Q.2	Which	information-gathering	technique	is	stealthier	and	why?

Q.3	What	do	you	understand	by	the	term	banner	grabbing?

Q.4	Use	the	netcat	utility	in	Linux	to	connect	to	a	running	HTTP	service.

Q.5	What	is	the	difference	between	the	–sT	and	–sS	switches	used	in	nmap
scans?	Can	you	use	both	at	the	same	time?

Q.6	Use	nmap	to	perform	OS	fingerprinting	on	a	machine	and	then	redirect	the
output	of	the	scan	to	a	file	for	later	use.

Q.7	Without	using	nmap,	can	you	fingerprint	an	OS	using	Wireshark?

Q.8	How	OS	fingerprinting	attempts	made	against	you	can	lead	to	serious
damage?

Q.9	Figure	out	the	techniques	to	evade	firewalls	deployed	in	corporate
environments	using	nmap.

Q.9	Is	it	possible	to	combine	two	attacking	methodologies,	ARP	spoofing	and
DNS	poisoning,	in	order	to	achieve	bigger	and	better	results?

Q.10	Try	brute	forcing	a	service	in	you	lab	environment	and	analyze	the	traffic
pattern	using	your	own	custom-made	dictionary	files.

Q.11	Try	leaning	about	brute	forcing	tools	already	installed	in	Kali	Linux	and
figure	out	which	tool	is	more	suitable	for	RDP	brute	force	attacks.

Q.12	What	other	filter	expression	can	be	useful	while	analyzing	the	malicious
FTP	traffic	patterns?

Q.13	Is	it	possible	to	force	encryption	over	the	FTP	session	so	that	the	following

TCP	stream	won't	show	the	traffic	in	normal	text	form?

Q.14	Why	is	it	important	to	isolate	an	infected	PC	that	emits	unusual	traffic	from
your	network,	and	what	traffic	patterns	related	to	it	make	it	malicious?

Q.15	Visit	various	online	CTF	challenge	websites	and	try	solving	a	few	of	them.
Do	you	still	find	it	difficult	to	understand	the	challenge,	or	does	it	seem	a	bit
easier	now?

Chapter	8.	Troubleshooting
This	chapter	will	teach	you	how	to	configure	and	use	Wireshark	to	perform
network	troubleshooting.	You	will	also	master	the	art	of	troubleshooting	network
issues	using	Wireshark.	The	following	are	the	topics	that	we	will	cover	in	this
chapter:

Using	Wireshark	to	troubleshoot	slow	Internet	issues
Lab	up
Troubleshooting	network	latencies
Lab	up
Troubleshooting	bottleneck	issues
Lab	up
Troubleshooting	application-based	issues
Lab	up
Practice	questions

The	loss	of	packets	during	transmissions	is	one	of	the	most	common	problems
that	all	network	administrators	deal	with	in	their	day-to-day	lives.	However,
thankfully,	we	have	various	built-in	error	recovery	features	in	the	transmission
protocol	that	come	to	our	rescue	to	deal	with	the	problems.	However,	it	is
essential	to	understand	how	these	error	recovery	features	work	in	order	to
troubleshoot	the	problems	by	just	looking	at	the	packets	flow	in	the	list	pane	if
and	when	human	intelligence	is	required.	Troubleshooting	latencies	or	any
application-based	issues	in	your	network	requires	you	to	have	an	understanding
of	the	traffic	flow	and	the	way	packets	interact	with	each	other.	Before	we	start
getting	our	hands	dirty	with	a	troublesome	network,	we	need	to	understand	some
basics	of	the	recovery	features	that	would	help	you	diagnose	and	figure	out	the
root	of	such	problems.	Consider	yourself	blessed	that	you	have	the	privilege	of
using	Wireshark—the	most	popular	and	well-versed	tool	for	network	packet
analysis—which	is	an	open	source	tool.	This	won't	state	the	problems	for	you,
but	the	time	required	to	troubleshoot	network-related	issues	is	drastically
reduced.

Now,	you	might	feel	like	asking	the	question:	"how	does	it	looks	like	or	how	you
can	identify	such	happenings?"	Just	as	every	coin	has	two	sides,	the	network
communication	has	two	ends:	a	sender	and	a	receiver.	On	the	sender	side,

recovery	features	are	handled	by	the	Retransmission	Timeout	(RTO)	values,
which	are	a	sum	of	Round	Trip	Time	(RTT)	and	mean	of	standard	deviation.
On	the	receiver	side,	recovery	mechanism	is	handled	by	keeping	a	track	of	SEQ
and	ACK	values	that	are	shared	between	the	communicating	hosts.

You	definitely	have	heard	about	flow	control	features,	we	discussed	the	same	in
previous	chapters	while	dissecting	TCP-based	communications.	Flow	control
features	are	used	in	order	to	keep	the	transmission	more	reliable	by	taking	help
of	dynamic	functionalities	such	as	sliding	window	and	zero	window
notifications.	Now	that	you	have	the	basic	understanding	of,	I	want	you	to
understand	things	in	detail.	Note	that	we	will	talk	about	TCP-based
communication	most	of	the	time	in	this	chapter.

Recovery	features
TCP	retransmissions	and	duplicate	ACKs	are	the	tactics	that	are	used	while
recovering	from	a	failed	packet	transmission	or	an	out-of-order	packets
transmission	scenario.	Commonly,	network	latencies	(the	total	time	it	takes	for	a
packet	to	be	sent	along	with	the	time	its	ACK	is	received)	are	observed,	due	to
which	the	performance	of	networks	are	significantly	disturbed.	When	the
amount	of	retransmissions	and	duplicate	ACK	packets	are	seen	very	often	in	the
list	pane,	most	probably,	there	is	a	chance	that	your	network	is	facing	high
latencies;	if	not,	then	just	sit	back	and	relax.	My	point	is	that	you	should	be
concerned	about	such	activities,	and	if	possible,	mix	some	network	management
techniques	with	your	protocol	analysis	that	can	keep	you	updated	all	the	time
with	what's	happening	inside

The	devices	use	TCP	retransmission	in	order	to	send	data	reliably.	Values	such	as
RTT	and	RTO	are	maintained	by	the	sender	of	the	data	in	order	to	facilitate	a
reliable	form	of	communication.	The	sender	initiates	the	retransmission	timer	as
soon	as	the	packet	leaves	the	ACK,	and	when	the	same	is	received,	the	sender
stops	the	retransmission	timer.	The	timer	value	here	determines	the	timeout
value.	Now,	if	the	sender	does	not	receive	the	ACK,	after	a	certain	amount	of	time,
the	sender	initializes	the	retransmission	of	the	same	packet.	If	the	sender	still
does	not	receive	any	ACK,	the	timeout	value	will	be	doubled	and	the	sender	will
retransmit	the	same	packet	again.	The	same	cycle	is	followed	until	the	ACK	is
received	or	the	sender	reaches	maximum	retransmission	attempts.	The	sender,
based	on	the	operating	system	maintains	a	number	of	retransmission	attempts,
which	are	triggered	when	a	certain	timeout	value	is	reached.

Figure	8.1:	TCP	duplicate	ACK	and	retransmission

	

For	instance,	in	the	preceding	figure,	a	client	is	located	at	192.168.1.2	and	the
server	is	located	at	192.168.1.1.	Here,	the	client	is	requesting	some	resource
that	the	server	holds,	following	which	the	transmission	between	the	two	hosts
starts	after	the	three-way	handshake	is	successfully	completed.	For	every	data
packet	received,	the	client	sends	a	ACK	for	the	same.	Now,	suppose	that	for	some
random	packet	in	the	stream,	the	server	did	not	receive	the	ACK	even	after	the
timeout	value	for	the	data	packet	expired.	The	server	initiates	the	retransmission
of	the	similar	data	packet	again.	The	same	process	is	followed	unless	and	until
the	server	receives	an	ACK	for	every	packet,	or	the	server	at	192.168.1.1	reaches
the	maximum	number	of	default	attempts,	five,	in	a	row.	Refer	to	the	following
figure	that	shows	this	retransmission	process:

Figure	8.2:	TCP	retransmission

	

On	the	basis	of	the	preceding	simplified	scenario,	I	suppose	now	that	you	have
understood	the	gist	of	the	retransmission	process.

Now,	we	will	discuss	duplicate	ACKs	and	fast	retransmission,	which	is	another
recovery	feature	that	the	clients	take	care	of.	In	the	previous	chapter,	we
discussed	the	SEQ	and	ACK	numbers	that	are	used	in	order	to	keep	track	of	TCP-
based	communication.	You	might	also	remember	how	the	ACK	values	were
incremented	using	the	data	payload	size,	where	we	added	the	received	packet
SEQ	value	and	data	payload	size	value	and	the	resulting	sum	became	the	ACK
value.	We	sent	this	value	with	our	ACK	packet,	and	we	expect	to	receive	the	next
data	packet	marked	with	the	same	SEQ	value.	Suppose	that	the	server	starts
sending	data	packets,	and	the	first	data	packet	is	marked	with	a	SEQ	value	of	100
with	a	data	payload	size	equals	10.	Once	the	client	receives	the	ACK	packet,	it
prepares	to	send	to	the	server	with	value	set	to	110	(remember	the	formula:	SEQ
number	received	+	Data	payload	size	=	ACK	value).

As	soon	as	the	server	receives	the	ACK	packet	with	the	value	110,	it	prepares	for
another	data	packet	to	be	sent	with	SEQ	110	with	a	payload	size	of	10.	After
receiving	this,	the	client	will	respond	with	ACK	120.	The	same	process	goes	on
till	the	end	of	the	session.	Now,	suppose	that	instead	of	sending	the	next	packet
with	SEQ	set	to	10,	the	server	sends	a	packet	with	SEQ	130,	which	is	out	of	order,
and	after	receiving	this,	the	client	would	send	a	duplicate	ACK	set	to	120	to	the
server	to	recheck	and	send	the	missing	packet	again	from	the	data	stream.

	

From	the	preceding	scenario,	I	hope	you	have	understood	the	process	of
duplicate	ACKs	and	fast	retransmission,	which	you	can	use	while
troubleshooting	your	realtime	network	for	related	anomalies.	Before	we	go
ahead	and	discuss	flow	control,	I	would	like	you	to	see	real	packets	in	my
network	that	are	related	to	both	cases	of	error	recovery	that	we	discussed.	Refer
to	the	following	Figure	8.3	and	Figure	8.4:

Figure	8.3:	TCP	retransmission	packets

	

In	the	preceding	screenshot,	a	client	located	at	192.168.1.103	sends	FIN	and
ACK	to	the	server	at	216.58.220.36.	After	this,	the	client	would	expect	to	receive
a	ACK	packet	in	the	next	place.	However,	the	client	does	not	receive	anything
back	from	the	server.	Now,	after	the	RTO	time	expires,	the	client	starts	sending
the	same	packet	after	double	the	time,	and	the	process	of	sending	TCP
retransmission	packets	after	a	certain	period	of	time	goes	on	until	the	client
receives	an	ACK	packet	or	reaches	the	maximum	number	of	retransmission
attempts.	Observe	the	RTO	column	and	how	the	value	starts	doubling	up	until	it
reaches	a	maximum	limit.

With	the	next	scenario	in	Figure	8.4,	I	want	you	to	witness	the	duplicate	ACK
packet	that	is	being	generated	because	of	a	malformed	packet	sent	by	the	server
at	216.58.220.46	to	the	client	at	192.168.1.103.	As	soon	as	the	client	receives
it,	a	duplicate	ACK	packet	is	sent	in	response	to	the	malformed	packet	that	is	seen
out	of	sequence.

Observe	that	the	6027	frame	with	SEQ	=	1920	and	Data	payload	size	=	46	is
being	sent	across	from	one	host	to	another.	Next,	in	the	response	frame	6070,	a

malformed	packet	with	a	random	SEQ	value	was	sent	in	response.	Due	to	this,	the
host	at	192.168.1.103	generates	a	duplicate	ACK	packet	and	sends	it	to	the	host
on	the	other	side	with	the	SEQ	and	ACK	values	similar	to	the	frame	6027.	Now,
this	time	in	response,	the	host	at	216.58.220.46	sends	a	valid	ACK	frame	6115
with	ACK	incremented	to	1966	(1920+46),	as	expected,	and	then	the
communication	goes	on.

Figure	8.4:	Duplicate	ACK

	

With	these	real-life	examples,	I	expect	that	you	have	understood	the	behavior	of
TCP	error	recovery	features	more	precisely.

The	flow	control	mechanism
This	is	another	feature	used	by	the	TCP	protocol	to	avoid	any	data	loss	during
the	transmission.	Using	flow	control,	the	sender	syncs	the	transmission	rate	with
the	receiver's	buffer	space	with	a	motive	to	avoid	any	future	data	loss.	Consider
a	scenario	where	the	recipient	has	a	buffer	space	of	1,000	bytes	available	at	an
instance,	and	the	sender	side	is	capable	of	sending	up	to	5,000	bytes	per	frame.
Now,	using	this	information,	both	the	hosts	have	to	sync	their	window	size	to
1,000	bytes	only	to	avoid	any	data	loss.	Refer	to	the	following	figure	that	shows
this	feature:	

	

The	preceding	figure	depicts	the	way	both	the	communicating	hosts	negotiate
the	window	size	for	transmission	purpose.	Observe	the	behavior,	beginning	from
the	frame	with	SEQ	1	where	Host	2	responds	with	ACK	2	to	specify	that	the
frame	was	successfully	received.

Next,	HOST	1	tries	to	increase	the	transmission	rate	to	two	frames	and	sends
them	with	SEQ	2	and	3.	Host	2	responds	with	ACK	4,	which	denotes	that	both
frames	were	successfully	received.	Similarly,	we	succeed	in	increasing	the	rate
to	three	frames.

Next,	HOST	1	increases	the	rate	to	4	and	tries	sending	packets	with	SEQ	7,	8,	9,
and	10.	This	time,	HOST	2	responds	with	ACK	10,	which	means	that	Host	2
receiving	the	window	size	can	afford	maximum	3	frames	at	an	instance,	and	the
sending	side	should	adjust	to	it.

Next	time,	when	Host	1	transmits,	the	windows	size	would	be	set	to	3	frames,
which	the	recipient	can	afford	to	process	on	his/her	end.	The	window	size	is	not
set	to	a	permanent	value;	it	can	vary	until	the	whole	transmission	is	completed,
and	the	whole	process	is	called	the	TCP	sliding	window	mechanism	and	is	used
to	avoid	data	loss	during	a	transmission.

Think	about	what	would	happen	if	the	recipient	side	is	left	with	no	buffer	space,
that	is,	0	bytes.	It	can	handle	at	some	moment	during	the	transmission.	What	will
the	TCP	do	in	such	case?	Will	the	communication	channel	drop	or	the	TCP	will
come	up	with	something	more	reliable.

Yes,	the	TCP	has	another	data	loss	recovery	feature	called	the	Zero	window
notification.	Here,	the	recipient	side	sends	a	Windows	update	packet	set	to	0
bytes	and	asks	the	sender	to	halt	the	transmission	of	frames.	In	response,	the
sending	side	will	understand	the	situation	and	respond	with	a	Keep	Alive	packet
that	is	sent	at	a	particular	duration	while	waiting	for	the	next	Window	Update
packet	from	the	client.	Refer	to	the	Figure	8.6	that	illustrates	the	same.

HOST	1	starts	communicating	after	the	three-way	handshake	process	has	been
completed.	After	a	few	packets	get	transmitted	successfully,	the	receiving	side
buffer	space	gets	filled	up	with	other	resources,	so	HOST	2	responds	with	a
Zero	Window	packet	telling	Host	1	to	halt	sending	packets	until	further	notice.
Accepting	the	Host	2	zero	window	packet,	Host	1	starts	transmitting	Keep
Alive	packets	in	order	to	keep	the	connection	active	and	waits	for	further	notice.
Once	Host	1	receives	the	new	window	size	and	ACK	for	the	frames	that	were
transmitted,	it	will	start	sending	the	data	packets	again	in	accordance	with	the
receiver's	buffer	space.

Figure	8.6:	The	zero	window	notification

	

The	technique	we	discussed	here	is	quite	efficient	in	preventing	any	data	loss
that	might	happen	during	a	transmission	or	due	to	an	overwhelmed	sender.	The
TCP	hosts	a	great	mechanism	to	control	the	transmission	process,	thus	making	it
more	reliable	for	any	type	of	communication.

Troubleshooting	slow	Internet	and	network
latencies
The	discussion	that	we	had	on	delays	observed	in	the	list	pane	can	be
categorized	in	two	categories:	the	normal/acceptable	delays	and	the	unacceptable
delays.	Yes,	you	heard	me	right,	there	are	some	forms	of	delay	that	are
acceptable,	and	you	should	not	waste	any	precious	time	of	yours	in
troubleshooting	any	of	those	cases.

Assign	a	category	to	your	current	scenario	on	the	basis	of	the	test	results	that	you
have	obtained	from	the	client	site	(try	to	put	sniff	packets	from	the	complaining
client's	perspective)	into	one	of	the	following	categories:	wire	latency,	client
latency,	and	server	latency.	Seeing	your	scenario	with	the	perspective	of	one	of
these	cases	will	assist	you	in	solving	the	problem	with	a	more	process-oriented
approach,	hence	making	the	task	less	complex,	which	will	end	up	getting	sorted
out	in	lesser	time	with	lesser	resources.

Before	you	start	troubleshooting	such	scenarios,	I	would	highly	recommend	that
you	change	the	default	list	pane	view	by	customizing	the	existing	time	column
(customize	the	time	value	to	seconds	since	Previous	Displayed	Packet),
which	would	work	as	a	column	to	figure	out	latency	issues,	that	is,	it	will	show
you	the	total	amount	of	time	between	two	related	packets	in	a	sequence.	Refer	to
the	following	figure	to	customize	the	time	column.

To	further	elaborate	the	best	practices	that	are	followed,	I	will	discuss	a	step-
down	approach,	which	you	can	use	as	part	of	your	checklists.	Make	sure	that	you
understand	one	thing	clearly:	tracking	an	issue	can	be	quite	critical	on	a	server
side	because	you	may	see	thousands	of	packets	flying	in	and	out	per	seconds.
This	can	be	really	messy	and	would	only	end	up	in	making	the	whole	problem
more	intense.	Looking	at	thousand	of	packets	to	figure	out	the	source	of	slow
Internet	connection	doesn't	sound	feasible.	So,	the	best	option	would	be	to	filter
out	things,	prioritize	them,	and	look	at	the	problem	from	the	client's	end	first.

Figure	8.7:	Customizing	the	time	column

	
Starting	your	investigation	at	the	client's	end	makes	it	much	simpler
because	you	won't	be	dealing	with	several	packets	that	may	not	be	relevant
to	your	scenario.	On	the	other	side,	if	there	is	even	a	hairline	chance	that
you	won't	be	able	to	see	the	packets	that	are	relevant	to	you,	this	might
make	the	troubleshooting	experience	a	bit	challenging.
Apart	from	all	the	challenges	that	you	might	face	at	the	client's	end,	the	first
thing	you	should	ask	your	client	is	to	replicate	the	problem	if	possible,	or	if
the	problem	is	occurring	in	a	time-based	manner,	then	you	should	wait	at
the	client's	end	in	order	to	witness	and	understand	the	scenario.	The
ultimate	goal	should	be	to	capture	the	relevant	packets	and	get	a	crystal
clear	understanding	of	the	problem	that	the	client	is	facing	from	their
perspective.
Now,	when	you	have	the	trace	file	in	hand,	you	can	look	at	the	process
where	the	client	is	trying	to	connect	to	the	server:	the	whole	process	where
the	client	issues	a	DNS	query	with	an	objective	to	attain	a	server's	logical
location	over	the	Web.	If	the	local	DNS	cache	already	holds	the	IP	address

of	the	server,	then	you	might	not	observe	any	DNS	packets;	instead,	a	direct
SYN	packet	would	be	seen	in	the	list	pane	sent	to	the	server	to	initiate	the
independent	connection.	What	you	need	to	make	sure	here	is	that	if	the
DNS	queries	are	seen	in	the	list	pane,	then	the	round	trip	time	should	be
low,	as	expected	(approximately	less	than	or	equal	to	150	ms).

	

The	next	would	be	the	three-way	handshake	packet	that	you	will	be
observing	in	the	list	pane.	The	best	option	would	be	to	isolate	the
communicating	hosts	that	can	help	you	in	eliminating	any	further
communication.	You	can	just	right-click	on	the	communication	and	create	a
filter	as	illustrated	in	Figure	8.8
Once	you	have	filtered	out	the	problematic	connection	between	the	hosts,
the	next	task	would	be	to	observe	the	total	time.	The	time	between	duration
when	the	SYN	packet	was	sent	and	the	corresponding	SYN/ACK	packet
was	received.	This	can	be	compared	with	the	baseline	that	you	already	have
to	come	up	with	a	variance	that	could	help	you	in	pointing	out	whether	the
connection	is	slow	or	is	working	fine.	Refer	to	the	following	screenshot	that
illustrates	the	same:

Figure	8.8:	The	time	between	the	SYN	and	SYN/ACK	packets

	
As	you	can	see,	the	time	between	the	SYN	and	SYN/ACK	packets	is
relatively	low,	and	this	seems	to	be	a	good	working	connection.	This	kind
of	connections	can	be	helpful	while	you	are	designing	a	baseline	for	your
network.	At	a	later	point	in	time,	the	same	can	be	used	to	compare	with
problematic	scenarios.	Refer	to	the	following	screenshot	that	show	DNS
and	TCP	packets	of	the	same	communication:

Figure	8.9:	The	ideal	baseline	trace

	
The	client	issues	a	request	to	visit	the	google.ae	(frame	686)	website,
which	the	local	server	acknowledged	in	order	to	first	look	for	the	IP	address
in	a	local	cache.	Once	the	local	DNS	server	completes,	the	search	process,
the	client	receives	DNS	responses	including	Google's	IP	address,	which	can
be	used	to	visit	the	website	(frame	688	and	689).
As	soon	as	this	process	completes,	the	client	at	192.168.10.196	issues	a
SYN	request	to	one	of	Google's	IP	address	in	order	to	visit	the	web	page.
Without	any	further	delay	(less	than	tenth	of	a	second),	the	server	responds
with	SYN/ACK,	and	the	process	goes	on.

Let's	suppose	that	the	total	time	between	the	SYN	and	SYN/ACK	packets	is	high	by
approximately	0.90-1.0	seconds.	At	first	glance,	you	ignore	this	an	move	ahead,
and	you	will	observe	a	quick	ACK	packet	sent	in	response	from	the	client
followed	by	a	HTTP	GET	request	(in	case	the	client	is	visiting	a	website).	Next,
the	ACK	packet	acknowledging	your	GET	request	surprisingly	takes	more	than	a
second	to	come.	Now,	this	points	to	some	serious	latency	issues.	The	question	is,
who	will	be	the	one	you	are	going	to	blame—the	client	or	the	server?	The	client
did	its	part	by	sending	the	SYN	packet	on	time.	Then,	is	it	the	server	who	is
handling	a	high	load	of	traffic	and	is	quite	busy	with	other	applications,	because
of	which	you	are	handling	high	round	trip	time?	The	answer	is	neither	the	client
nor	the	server.	Then	why	is	the	round	trip	time	high?	The	probable	answer	for
such	cases	in	my	knowledge	would	be	the	wire.	Yes,	you	heard	it	right.	The	wire

can	also	take	part	in	making	your	network	slower	then	expected.	So,	while
troubleshooting	slow	networks,	if	you	observe	high	round	trip	times	associated
with	the	SYN/ACK	and	ACK	packets,	then	you	can	be	sure	that	your	client	and
server	are	not	the	source	of	the	issue.

What	you	can	do	is	start	examining	the	devices	between	the	hosts,	such	as	the
routers,	switches,	firewalls,	proxy	servers,	and	so	on.	Although	the	example	we
talked	about	doesn't	give	you	the	exact	source	of	the	problem,	it	definitely	gives
you	a	clear	understanding	that	both	the	communicating	hosts	are	not	promoting
any	form	of	latency.

Now,	for	better	understanding,	I	would	like	to	show	you	the	same	in	practical
terms.	Refer	to	the	following	screenshot	that	lists	out	a	few	packets	shared
between	two	hosts,	starting	from	a	three-way	handshake:

Figure	8.10:	Wire	latency

	

First,	the	client	located	at	192.168.10.196	and	the	server	located	at
128.173.97.169	start	communicating.	In	the	beginning,	we	see	that	a	three-way
handshake	takes	place	between	the	client	and	the	server,	but	did	you	notice	the
amount	of	time	it	took	for	the	SYN/ACK	packet	to	come	(more	than	0.36	seconds).
Look	at	the	frame	39,	and	it	is	something	that	you	should	take	care	of.	Moving
on,	we	saw	one	more	similar	event	after	the	GET	request	was	issued,	where	the
ACK	packet	took	approximately	0.30	seconds	to	come	back.	The	latency	observed
is	not	because	of	the	client	or	the	server,	as	we	discussed	earlier.	The	latency
here	is	promoted	by	the	devices	that	lie	on	the	wire.	The	best	troubleshooting
option	in	such	cases	would	be	to	look	at	the	routers,	switches,	or	any	firewalls
that	were	implemented	without	wasting	time	in	troubleshooting	the	source	and
the	destination.

Client-	and	server-side	latencies
You	might	think	about	the	scenarios	where	you	would	come	across	or	see
latency	issues	that	the	client/server	promotes.	Let	me	explain	this	to	you	with
some	real-life	examples;	first,	we	will	take	a	look	at	the	latencies	promoted	by
the	clients.

A	few	days	ago,	I	was	just	visiting	some	random	websites	over	the	Internet	to
look	for	some	research	material,	and	meanwhile,	Wireshark	was	running	in	the
background	and	capturing	every	packet	I	was	tying	to	visit.	I	surfed	the	Web	for
approximately	3-4	minutes	and	then	closed	the	browser	as	well	as	stopped
Wireshark	from	sniffing	any	packets.	After	the	whole	thing,	I	decided	to	look
into	the	trace	file	to	investigate	any	client-side	latency	issues.

Refer	to	the	following	screenshot	from	my	trace	file,	which	shows	frequent
client-side	latencies	that	will	eventually	affect	the	performance	of	my	network:

Figure	8.11:	Client-side	latency

	

As	you	can	see	in	the	frame	9985	and	frame	10408,	there	are	GET	requests	that
my	machine	at	192.168.10.196	had	issued,	and	the	amount	of	time	it	took	was	1
second	for	the	first	time	and	more	then	3.5	seconds	the	next	time.	I	became
curious	and	started	thinking	about	why	this	happened	and	what	can	be	the	most
appropriate	reason	for	such	latencies.

Once	I	started	further	investigation,	I	saw	that	the	three-way	handshake	process
happened	in	a	timely	manner	and	there	were	no	signs	of	latencies.	Now,	my
attention	went	to	my	machine.	Maybe,	there	is	something	that	is	tampering	with
my	network	connectivity.	I	looked	at	the	resource	allocation	window	in	terms	of

primary	memory	and	CPU	utilization.	What	I	saw	was	that	the	CPU	and	memory
utilization	meter	were	showing	high	consumption,	which	led	me	to	enquire	more
about	the	number	of	applications	running.	There	were	three	virtual	machines
running	that	I	forgot	to	turn	off,	which	were	utilizing	all	the	memory.	This,	in	my
belief,	is	one	of	the	strongest	reasons,	because	of	which	I	was	experiencing
latencies	on	the	client	side	(my	machine).	I	hope	that,	with	this	practical
example,	you	might	have	understood	how	client-side	latencies	can	be	one	of	the
reasons	for	low	network	and	Internet	performances.

Moving	on	with	this	simple	example,	let's	get	ourselves	introduced	with	server-
side	latency	issues.	I	followed	the	same	approach	of	surfing	the	Web	with
random	websites	while	capturing	packets	with	Wireshark	for	a	couple	of	minutes
and	then	analyzing	the	cause	of	any	form	of	latency	that	can	be	seen	in	the	list
pane.	This	time,	I	came	across	an	interesting	session	between	my	machine	and	a
website.	First,	I	would	like	you	to	have	a	look	at	it.	Refer	to	the	following
screenshot	that	illustrates	this:

Figure	8.12:	Server-side	latencies

	

As	you	can	see,	the	session	between	my	machine	at	192.168.10.96	and	the
server	at	198.41.184.93	begins	with	a	smooth	three-way	handshake	without	any
sign	of	latencies.	Next,	the	client	issues	a	web	request,	following	which	the
server	sends	an	acknowledgement.	Uptil	here,	everything	has	gone	flawlessly,
and	there	were	no	traces	of	latencies.	However,	when	the	server	was	about	to
start	the	data	transfer,	the	server	stopped	for	a	while,	as	you	can	see	in	the	frame
503.	The	server	took	around	0.35	seconds	to	initiate	the	data	transfer.	This
clearly	illustrates	that	the	server	might	have	experienced	heavy	network	traffic,
or	may	be,	the	server	was	running	several	applications	that	were	causing	high
CPU	and	memory	consumption.	There	can	be	several	other	reasons	as	well	for
the	latency	that	we	just	witnessed.	Observing	all	of	it,	we	can	give	a	conclusion

that	the	server	is	the	reason	for	the	latency;	in	this	case,	the	server	was	incapable
of	processing	the	client's	request	in	a	reasonable	amount	of	time,	which	ended	up
as	a	minor	latency	issue.

You	learned	how	the	devices	over	the	wire,	the	client	side,	and	the	server	side
can	promote	high	latencies	while	you	surf	the	Internet	or	even	your	internal	LAN
network	can	be	a	victim	of	the	same.	We	talked	about	delays	before	the	server's
SYN/ACK	packet	is	received.	These	delays	can	happen	because	of	the	device	in
between	(over	the	wire)	and	may	be	witnessed	due	to	the	server's	high	response
time.	Let's	make	things	more	interesting	with	a	small	practical	example	about
identifying	high	HTTP	response	time.	This	will	be	useful	for	you	to	identify	high
response	time.	Follow	these	steps	to	replicate	the	same	in	parallel:

1.	 Open	your	browser	and	visit	some	websites	while	Wireshark	runs	in	the
background	listening	to	your	packets.

2.	 Once	you	have	visited	at	least	3-4	websites,	you	can	stop	the	capture
process.

3.	 Now,	switch	to	Wireshark	and	make	some	necessary	changes.	First,	disable
Allow	subdissector	to	reassemble	TCP	streams.	Select	any	TCP	packet	in
the	list	pane,	then	right-click	on	the	TCP	section	in	the	details	pane,	and
then	click	on	the	Allow	subdissector	to	reassemble	TCP	streams	option
to	disable	it.	Look	the	the	following	screenshot	that	illustrates	this:

Figure	8.13:	Disable	the	Allow	subdissector	setting

	
4.	 Next,	we	have	to	add	the	http.time	delta	column	to	the	list	pane	in	order	to

see	things	more	clearly	and	to	easily	identify	any	traces	of	latencies.
5.	 Select	any	HTTP	packet	from	the	list	pane	and	then	expand	the	HTTP

protocol	section	in	the	details	pane.	Then,	right-click	on	the	Time	since
request	parameter	and	click	on	the	Apply	as	Column	option.	Refer	to	the
following	screenshot	that	illustrates	this:

Figure	8.14:	Apply	Time	since	request	as	a	column

	
6.	 Once	this	is	done,	you	would	be	able	to	see	the	Time	Since	Request

columns	just	before	the	info	column	in	the	list	pane.
7.	 Now,	you	are	left	with	just	one	step:	to	identify	the	highest	response	time

from	the	web	servers	that	you	visited.	Simply	sort	the	newly	added	columns
in	a	descending	order	to	the	highest	response	time.	Refer	to	the	following
screenshot	that	illustrates	this:

Figure	8.15:	Sorting	the	http.time	delta	column

	
8.	 Once	this	is	sorted,	you	would	be	able	to	see	the	highest	response	time	at

the	top	of	the	list	pane,	as	shown	in	the	following	screenshot:

Figure	8.16:	High	HTTP	response	time

	
9.	 The	session	at	the	top	of	my	list	pane	between	my	machine	and	a	web

server	that	I	visited	denotes	quite	a	high	response	time	of	more	than	a
second.	See	how	easy	it	was	to	identify	the	http	delays	in	order	to	make
your	troubleshooting	job	easy.	I	hope	it	would	be	easy	for	you	to	replicate
the	same.

You	can	also	achieve	this	in	a	visual	representation,	where	you	can	create	an	IO
graph	to	identify	high	latencies.	Refer	to	the	following	small	illustration	using
which	you	can	replicate	the	scenario	(note	that	I	am	using	the	same	trace	file	that

we	saw	earlier	in	the	previous	example):

Figure	8.17:	Using	an	IO	graph	to	identify	the	delays	in	HTTP	response

	

As	you	can	clearly	observe	in	the	graph,	the	response	time	for	the	requests	you
made	took	more	than	a	second	to	complete	in	a	total	browsing	session	of
approximately	45	seconds.

There	can	be	multiple	situations	where	you	will	witness	such	traffic	patterns;	this
one	is	definitely	because	of	a	web	server	that	makes	your	web	surfing	experience
bad.	The	reasons	behind	such	a	pattern	can	vary	from	a	server	in	a	heavy	traffic
load	to	a	server	hosting	several	applications,	or	it	can	be	possible	that	the	server
you	are	trying	to	visit	might	be	consulting	some	other	web	server	in	order	to
fulfill	your	request.

Next,	let's	see	an	example	where	DNS	queries	and	their	responses	are
responsible	for	causing	your	Internet	or	local	networking	experience	to	suffer.
As	we	saw,	other	protocols	in	conjunction	with	DNS	make	the	whole	networking
experience	better,	but	at	times,	the	same	DNS	protocol	can	cause	trouble.	Follow
the	next	steps	to	identify	the	source	of	problems	using	DNS	response	time:

1.	 Open	your	browser	and	visit	at	least	3-4	websites.	Wireshark	should	be
capturing	your	web	session	packets	while	in	the	background.

2.	 Stop	the	capturing	process	and	apply	dns	as	a	display	filter	in	your	trace	file
in	order	to	see	only	dns	packets.

3.	 Now,	select	any	dns	response	packet	from	the	list	pane	and	expand	the
corresponding	DNS	section	in	the	details	pane	for	the	same	packet.	Right-
click	on	the	Time	parameter	and	click	on	Apply	as	Column.	Refer	to	the
following	screenshot	to	see	this:

Figure	8.18:	Applying	DNS	Time	parameter	as	column

	
4.	 Once	you've	done	this,	you	will	see	a	time	column	next	to	the	info	column

in	the	list	pane.
5.	 Our	next	objective	is	to	sort	the	column	in	a	descending	order	to	figure	out

the	highest	DNS	response	time.	Refer	to	the	following	screenshot	to
replicate	the	same:

Figure	8.19:	Sorting	the	DNS	time	column	in	a	descending	order

	

6.	 Once	this	is	sorted,	you	would	be	able	to	see	the	session	details	in	the	list
pane	with	the	highest	DNS	response	time	that	can	be	used	to	investigate
further.	If	the	server	belongs	to	your	premises,	then	you	are	the	only	one
who	has	to	take	care	of	it.	Refer	to	the	following	screenshot	that	illustrates
this:

Figure	8.20:	High	DNS	response	time

	
7.	 Seems	like	some	of	the	servers	are	responding	really	slow,	and	this	badly

affects	your	overall	web	surfing/networking	experience.
8.	 Similarly,	you	can	create	an	IO	graph	to	see	the	whole	scenario	in	a

graphical	form,	and	it	would	be	far	easier	to	visualize	and	understand	the
case.	Refer	to	this	screenshot	that	illustrates	this:

Figure	8.21:	DNS	high	response	time	depicted	with	the	help	of	an	IO	graph

	

You	can	easily	observe	in	the	preceding	graph	that	the	DNS	response	time	was
quite	high	and	reached	to	an	approximate	of	2.5	seconds,	and	it	is	something	that
should	be	taken	care	of.

Through	the	preceding	realistic	examples,	I	hope	you	have	understood	the
approach	that	can	give	you	a	kickstart	in	troubleshooting	such	scenarios	in	future
corporate	infrastructures,	which	you	might	be	asked	someday	to	troubleshoot.

Troubleshooting	bottleneck	issues
Next,	we	have	a	commonly	occurring	issue	in	corporate	networks.	You	might
have	already	gone	through	the	harsh	suffering	of	troubleshooting	them	using
various	hardware	and	software	tools.	The	first	thing	to	do	is	to	understand	what
these	issues	are	and	what	kind	of	problems	we	can	we	face.

When	packets	are	queued	up	or	there	is	a	delay	in	the	transmission	process
between	the	host,	which	is	not	expected	to	happen,	you	might	think	"why	do
such	delays	happen?"	The	answer	to	this	depends	on	many	factors	such	as	when
your	system	of	the	server	side	is	not	able	to	send/receive	information	with	the
speed	at	which	it	is	being	processed.	These	kind	of	issues	severely	affect	the
performance	of	networks	by	slowing	the	rate	at	which	the	TCP/IP	packets	are
transmitted,	because	of	which	the	data	between	the	hosts	starts	moving	back	and
forth	at	a	comparatively	slower	rate.

Using	my	small	LAN	network,	I	decided	to	create	an	exercise,	which	you	can
also	replicate	on	your	end	easily.	For	the	infrastructure,	I	have	a	gateway	at
192.168.10.1	and	my	client	at	192.168.10.209.	Refer	to	the	following	figure
that	illustrates	this:

	

What	you	need	next	is	a	network	traffic	generator.	Research	it	a	bit	and	try	to	use
anyone	that	makes	you	feel	comfortable.	Lastly,	you	need	a	ping	utility,	which	is
already	installed	on	every	known	operating	system.

So,	here's	the	scenario.	I	will	start	a	non-top	ping	from	the	client	to	the	server.
While	the	client	is	pinging,	I	will	launch	the	traffic	generator	application,	which
will	try	to	interrupt	the	ping	process	by	trying	to	consume	the	gateway's
resources	in	order	to	create	a	bottleneck	scenario	for	the	client.

We	will	first	see	a	normal	traffic	pattern	in	the	IO	graph	so	that	we	would	work
as	our	baseline	when	we	would	be	required	to	compare	with	the	bottleneck	issue.
Here	is	the	screenshot	for	the	normal	traffic	pattern	shown	in	terms	of	an	IO
graph:

Figure	8.22:	Normal	traffic	in	an	IO	graph

	

In	the	preceding	graph,	no	major	deviation	can	be	observed;	hence,	we	can
include	such	a	traffic	pattern	while	creating	a	baseline	for	our	network.	Just	the
ICPMP	packets	are	sent	from	the	client	to	the	server	without	much	trouble.

Next,	I	want	you	to	see	and	observe	the	difference	between	the	traffic	pattern
that	we	saw	and	the	one	below	the	IO	graph,	which	was	captured	for	the	same
network	infrastructure.	However,	there	was	one	more	application	that	was
involved	in	the	replication	of	the	event,	which	generated	unnecessary	traffic.
This	resulted	in	network	clogging,	which	is	popularly	known	as	a	bottleneck.

The	application	I	used	is	the	network	traffic	generator	that	can	be	used	to	deviate
a	normal	traffic	pattern.	This	results	in	a	network	bottleneck	scenario	and	can

even	result	in	a	denial	of	service.	Refer	to	the	following	screenshot	for	reference:

Figure	8.23:	A	bottleneck	scenario

	

Bottleneck	issues	are	represented	by	ups	and	downs,	as	shown	in	the	preceding
graph.	The	rate	at	which	the	throughput	drops	is	the	same	rate	at	which	it	jumps
up,	and	this	pattern	of	deviation	in	normal	traffic	denotes	that	there	is	a
bottleneck	being	formed.

When	every	technique	you	know	about	troubleshooting	fails,	then	at	the	end,
you	can	use	the	network	baseline,	which	can	prove	worthy	while	dealing	with
the	slowness	of	the	network.	As	discussed	earlier,	a	network	baseline	is	just
crucial	information	that	you	have	collected	through	various	points	in	your
network.	The	sole	purpose	of	the	network	baseline	you	have	is	to	compare
abnormal	traffic	with	it	in	order	to	understand	the	level	of	deviation.

We	already	discussed	slow	DNS	and	HTTP	responses	that	make	up	your	web
surfing	experiences.	If	you	already	have	a	baseline	regarding	your	network,	then
it	would	be	thousand	times	easier	for	you	to	troubleshoot.	You	would	be	able	to

identify	the	root	cause	of	the	situation	you	are	dealing	with,	and	definitely,	this
will	save	a	lot	of	time	for	other	analysis.

Remember	one	thing	that	the	baseline	created	for	two	different	networks	can
vary	in	vast	aspects,	so	you	should	not	compare	them	with	each	another.	An
interesting	and	creative	way	of	creating	a	baseline	would	be	to	create	separate
baselines,	that	is,	one	for	the	network,	one	for	the	hosts	in	your	network	(how
well	they	coordinate	with	each	other	without	creating	much	noise),	and	one	for
the	applications	communicating	over	a	network.

While	creating	baselines,	you	can	also	consider	each	and	every	site	you	are
working	with	separately.	In	my	opinion,	the	best	approach	would	be	break	up
each	site	with	similar	categories.	When	you	are	dealing	with	a	WAN,	a
troubleshooting	site	baseline	can	prove	useful.	Several	components	can	be
considered	while	dealing	with	WAN	sites,	such	as	data	transfer	rate,	several
applications	in	use,	the	pattern	of	the	broadcast	traffic,	and	various	other
categories	that	you	may	come	up	with	can	come	handy	while	making	a
standardized	baseline	for	a	particular	site.

Troubleshooting	slow	networks	is	definitely	a	piece	of	art.	I	would	say,	you
won't	be	able	to	get	its	real	gist	unless	you	get	your	hands	dirty.	With	experience,
you	will	gradually	gain	the	insight	required	to	solve	problems	ranging	from	slow
Internet	to	complex	infrastructure-related	issues

Troubleshooting	application-based	issues
There	can	be	scenarios	where	applications	running	in	your	network	can	be	one
of	the	major	sources	of	issues	that	clients	face.	You	cannot	blame	the	network
every	time	for	not	working	popularly;	there	can	be	other	reasons	as	well	for	the
anomalies.	When	troubleshooting	any	application-based	issue,	capturing	packets
from	one	end	won't	be	fruitful	enough.	You	should	try	to	move	to	analyzers	all
around	and	capture	as	many	traces	of	the	application's	traffic	as	possible.
Capturing	from	multiple	points	will	give	you	a	much	closer	insight	into	network-
based	applications.

As	discussed	earlier,	you	can	create	baselines	by	following	certain	different
parameters.	Similarly,	for	network-based	applications,	there	can	be	a	certain
defined	set	of	rules,	by	using	which	the	best	baseline	for	your	network	can	be
formed,	for	example,	dependencies	applications	have	another	coordinating
application,	analyzing	the	startup	and	shutdown	process,	the	rate	at	which	the
application	transmits	packets,	various	protocols	that	coordinate	in	order	to	make
the	application	work	flawlessly,	the	way	an	application	interacts	with	the
network	once	a	new	installation	is	in	process,	and	so	on.

While	creating	a	baseline	for	application-based	performance	issues,	it	won't	be
feasible	all	the	time	to	capture	traffic	directly	from	the	complaining	hosts
because	it	may	cause	the	hosts	to	suffer	high-traffic	load	and	might	make	it
unusable.	For	your	trace	file,	there	might	be	an	unusual	number	of	dropped
packets	that	would	get	captured	and	would	make	your	application	baseline	less
appropriate.

As	long	as	dissectors	in	Wireshark	are	able	to	translate	the	application-based
requests	and	responses	in	a	plain-text	format,	you	are	good	to	go.	In	the
following	section,	I	will	take	two	popular	application	protocols,	HTTP	and	DNS,
to	illustrate	a	few	basic	scenarios	that	you	can	replicate	in	order	to	follow	the
methodology.

First,	we	will	look	at	the	HTTP	application-based	anomalies.	Remember	that	you
should	be	able	to	identify	the	responses	from	the	error-prone	application	if	you
are	aware	of	the	response	code.	As	you	know,	HTTP	is	based	on	the
request/response	model,	where	a	client	requests	for	a	certain	resource	to	the

server	and	the	server	responds	with	the	valid	resource	if	available;	if	not,	then
with	a	certain	error	code,	which	your	browser	is	able	to	translate.

HTTP	error	codes	are	categorized	into	five	sections	of	errors,	where	each	error	is
based	on	certain	logical	parameters.	To	learn	more	about	error	code,	visit
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.	For	illustration
purpose,	I	will	explain	the	procedure	so	that	you	can	figure	out	the	most
commonly	seen	error	code,	which	is	client	errors.

The	infrastructure	I	am	going	to	use	is	pretty	simple,	easy,	and	similar	to	the	one
that	we	used	earlier.	The	client	is	located	at	192.168.10.196	and	the	gateway	is
located	at	192.168.10.1.	I	will	try	to	make	a	few	requests	to	the	gateway	and	a
few	to	any	web	server	located	in	the	wild	(note	that	my	intention	is	just	to
replicate	error	code	that	you	can	see	in	the	list	pane	of	Wireshark,	and	not	to
compromise	any	web	server.)

	

At	first,	we	will	try	to	generate	some	client	error	code.	Follow	the	next	steps	to
walk	through	this;	otherwise,	you	can	just	read	it	once	and	then	replicate	the
whole	scenario:

1.	 Open	your	browser	and	visit	the	default	home	page	of	your	gateway.
Hopefully,	it	will	present	you	with	a	login	screen	like	the	one	shown	here:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Figure	8.24:	The	gateway's	Login	panel

	
2.	 Open	Wireshark,	and	let	it	run	in	the	background	while	capturing	all	your

activities.
3.	 Enter	an	incorrect	password	in	the	password	field	and	click	on	Login.	This

will	show	you	the	incorrect	login	name	and	password	message	on	the
screen	or	something	similar.

4.	 Next,	visit	any	random	website	and	click	on	any	link.	After	the	link	is
successfully	opened,	change	the	web	extension	of	the	web	page	visible	in
the	address	bar	to	anything	such	as	.foo,	.abc,	and	so	on.	Doing	this	will
give	you	an	error	on	the	web	page,	such	as	page	not	found.	Just	ignore	it
for	time	being.

5.	 Now,	come	back	to	Wireshark	and	stop	the	packet	capturing	process	that	we
started	earlier.

6.	 You	should	be	able	to	see	a	number	of	packets	in	the	list	pane,	but	our
concern	in	this	section	is	to	look	at	error	code	messages	and	nothing	else.

7.	 Now,	click	on	the	display	filter	box	and	apply	the	http.response.code	>
=	400	filter.	Then,	click	on	apply.	Refer	to	the	following	screenshot	that
illustrates	this:

Figure	8.25:	Display	filter

	
8.	 Once	the	filter	has	been	applied,	you	will	be	able	to	see	only	those	packets

that	match	the	criteria.	Refer	to	the	following	screenshot	that	illustrates	this:

Figure	8.26:	HTTP	Response	code	>=	400

	
9.	 See,	how	easily	you	were	able	to	identify	error	code	from	an	enormous

trace	file.
10.	 You	can	also	create	a	button	for	the	same.	Once	you	click	on	it,	you	will

only	be	able	to	see	relevant	packets.	You	can	colorize	them	for	a	better
viewing	experience.

11.	 We	learnt	about	Coloring	options	in	the	earlier	chapter.	I	want	you	to	learn
how	to	create	a	button	for	specific	display	filters	this	time.

12.	 Do	not	clear	the	current	filter;	just	click	on	the	Save	button	that	is	next	to
the	Apply	button	in	the	display	filter	area.

Figure	8.27:	The	display	filter	toolbar

	

13.	 Once	you	click	on	Save,	you	will	be	presented	with	a	dialog.	To	provide	a
name	for	the	button,	specify	any	name	of	your	choice	and	click	on	OK.
Refer	to	the	following	screenshot	that	illustrates	this:

Figure	8.28:	Creating	a	button

	
14.	 Once	you	click	on	OK,	you	will	be	able	to	see	the	button	next	to	the	Save

button	in	the	display	filter	toolbar	area.
15.	 Now,	whenever	you	want,	you	can	create	a	similar	display	filter	without

typing	it	into	the	display	filter	box.	You	just	need	to	click	on	the	button	that
you	created	recently.

Figure	8.29:	The	newly	added	button

	

To	make	this	more	interesting,	I	would	advise	you	to	create	a	coloring	rule	for
the	HTTP	404	error.	This	will	definitely	help	you	identify	particular	error	types
more	conveniently.

Next,	we	will	see	another	application	protocol	that	is	commonly	used	by	various
applications	in	order	to	translate	a	domain	name	to	its	IP	address.	Yes,	I	am
referring	to	DNS.	As	we	know,	the	DNS	protocol	runs	over	a	UDP	or	TCP.
There	are	various	response	code	that	relate	to	DNS	errors	that	range	from	0	to
21.	The	dissectors	present	in	Wireshark	do	know	about	response	code.	Using
this,	Wireshark	is	able	to	show	you	messages	relevant	to	the	error	code.	To

replicate	an	error,	I	will	visit	a	website	that	does	not	exist	on	the	Web;	hence,	I
will	receive	an	error.	But	my	gateway	does	not	know	about	this,	so	it	will	try	to
resolve	the	IP	address	associated	with	that	name.	In	return,	we	will	see	a	DNS
response	containing	an	error.	The	infrastructure	is	the	same	that	we	used	in	the
preceding	examples.	The	client	is	located	at	192.168.10.209	and	the	gateway	is
at	192.168.10.1.

	

You	can	replicate	the	scenario	step	by	step	with	me	or	do	it	later	once	you	finish
reading.	Follow	these	steps	to	replicate	the	scenario:

1.	 Open	Wireshark,	and	start	capturing.	Let	it	run	in	the	background.
2.	 Open	a	terminal	(Command	Prompt)	of	whichever	operating	system	you	are

using,	type	nslookup	in	it,	and	press	Enter.
3.	 Now,	you'll	enter	the	interactive	mode	of	the	nslookup	tool.	If	you	are	not

aware	of	the	tool,	do	read	about	it	before	you	proceed.	There	are	plenty	of
documents	available	for	the	tool.	Refer	to	the	following	screenshot:

Figure	8.30:	The	NSLOOKUP	tool

	
4.	 To	generate	DNS	error	response	code,	just	type	any	domain	name	and	press
Enter.	Before	you	specify	a	domain	change	the	type	of	query	to	A	by	using
the	set	type=a	command	and	then	give	the	domain	you	want.

	
5.	 First,	we	can	try	the	same	for	a	domain	that	exists,	such	as	google.com.

Then,	you	can	try	it	for	the	nonexistent	domain.	Refer	to	the	Figure	8.31
shown	here.

6.	 The	preceding	screenshot	shows	the	various	IP	addresses	that	are	associated
with	the	google.com	domain.	The	domain	already	exists.	That's	why	we	are
able	to	see	the	reply.	What	if	you	try	a	domain	that	doesn't	exist.	Refer	to
the	following	screenshot	that	illustrates	this:

http://google.com
http://google.com

Figure	8.31:	The	nonexistent	domain

	
7.	 I	typed	my	name	in	place	of	the	domain	name	and	pressed	Enter,	and	this	is

what	I	saw	because	there	was	no	domain	with	that	name.	The	DNS	server
was	not	able	to	resolve	an	IP	address,	hence	resulting	in	the	reply	server
can't	find.

8.	 Now,	you	can	go	back	to	Wireshark	and	stop	the	capture	process.	We	will
now	start	analyzing	error	code.

9.	 The	best	option	would	be	to	segregate	the	DNS	error	response	code	from
the	normal	frames	in	the	trace	file	that	we	have.	To	achieve	this,	apply	the
dns.flags.rcode	==	3	display	filter,	which	means	that	the	shown	DNS
response	frame	with	error	code	3	is	for	nonexistent	domains.	For	more
information	on	DNS	error	code,	visit	https://tools.ietf.org/html/rfc2929.

10.	 Once	you	have	applied	the	preceding	display	filter,	you	will	only	see
relevant	packets	matching	your	filter	expression.

Figure	8.32:	DNS	error	response

	
11.	 As	you	can	see	in	the	list	pane,	only	packets	that	are	related	to	error	code	3

are	visible.

https://tools.ietf.org/html/rfc2929

12.	 If	you	want,	you	can	save	the	filter	expression	in	the	form	of	a	button	for
later	use	following	the	same	approach	we	used	earlier.

Troubleshooting	application-based	issues	depends	on	how	well	you	are	aware	of
the	error	code.	There	might	be	a	case	that	you	can	witness	where	you	don't	have
the	option	of	installing	Wireshark	for	your	assistance.	You	will	be	presented	with
error	code	for	troubleshooting	purposes.	So	I	recommend	that	you	at	least	know
about	the	common	error	codes	in	the	most	popular	application	protocols	that	are
normally	used.

Summary
Troubleshooting	is	an	art	that	comes	with	experience,	and	to	become	a	master	in
it,	you	are	required	to	practice	things	practically	on	your	own.

There	are	various	error	recovery	features	that	are	provided	by	the	TCP	protocol
that	help	us	to	recover	from	loss	of	packets	that	might	happen	commonly	in	a
production	environment.

TCP	retransmission	and	duplicate	ACKs	are	some	of	those	techniques	that	are
used	by	the	TCP	protocol	in	order	to	make	the	life	of	network	administrators	a
bit	more	comfortable.

Slow	network	is	one	of	those	common	problems	that	you	have	to	face	on	a	daily
basis.	Before	you	start	solving	these	latency	issues,	you	should	know	the	basic
methodology	that	you	can	follow,	that	is,	to	categorize	your	scenario	in	one	of
the	latency	categories:	a	wire,	client,	or	server.

Solving	bottleneck	issues,	such	as	packets	getting	queued	up	inside	the	sender
buffer	area	and	causing	trouble,	is	quite	important.	The	best	approach	in	solving
a	bottleneck	issue	would	be	to	take	the	help	of	IO	graphs	that	you	learned	about
in	the	earlier	chapter	to	visualize	a	situation	and	get	hold	over	it.

Applications	use	protocols	such	as	HTTP	and	DNS.	This	is	very	common,	but
you	must	be	aware	of	error	codes	these	can	present,	and	without	using
Wireshark,	you	should	be	able	to	identify	the	situation.	I	do	not	know	every	error
code,	even	I	can	not	do	that.	But	the	most	common	ones	that	you	might	witness.

Creating	a	baseline	is	one	of	the	most	convenient	ways	of	dealing	with	issues	in
your	network.	When	you	have	a	trace	file	containing	an	optimized	traffic	pattern,
then,	by	comparing	the	normal	pattern	with	the	deviated	pattern,	you	can	solve
the	issue	in	less	time	with	few	resources.	Collect	the	network	traces	for	your
baseline	from	various	locations	in	your	network	at	least	2-3	times.

Practice	questions
Q.1	Create	a	baseline	from	different	positions	of	your	network	regarding	various
common	protocols	used	in	communication.

Q.2	Explain	the	various	characteristics	that	TCP	error	recovery	features	have.

Q.3	Which	protocols	other	than	DNS	and	HTTP	can	be	troublesome	for	you,	and
what	approach	will	you	follow	in	order	to	troubleshoot	them?

Q.4	What	do	you	understood	by	the	term	"bottleneck	issues",	and	can	they	be
ignored.	If	yes/no,	why?

Q.5	Create	a	trace	file	for	your	own	host	and	at	least	capture	10,000	packets.
Then,	analyze	how	many	types	of	errors	you	are	able	to	see	for	the	HTTP
protocols,	and	how	many	of	them	can	you	replicate.

Q.6	Using	the	baseline	that	you	created	earlier,	try	to	match	an	unusual	traffic
pattern	and	observe	what	anomalies	you	can	figure	out	by	the	comparison
process.

Q.7	For	the	DNS	protocol,	replicate	an	error	code	other	than	3	and	capture	traffic
for	the	same.

Q.8	Prepare	a	checklist	for	the	latency	types	we	discussed	and	mention	as	many
scenarios	as	you	can	think	about	in	each	category.	Once	you've	prepared	this,	try
using	the	same	in	a	troubleshooting	scenario.	Does	this	speed	up	your	overall
process?

Q.9	Try	creating	coloring	rules	for	error	responses	for	various	application
protocols	you	want	to	and	analyze	what	difference	does	it	makes	in	the
troubleshooting	issue.

Chapter	9.	Introduction	to	Wireshark
v2
This	chapter	will	introduce	you	to	the	amazing	features	launched	with	the	latest
version	of	Wireshark.	The	following	are	some	of	the	prominent	changes	that
users	will	become	aware	of,	and	all	the	sample	examples	in	this	chapter	are
being	using	version	2:

Comparison	between	Wireshark	v2	(QT)	and	the	Legacy	framework	(GTK)
The	intelligent	scroll	bar
The	Translation	feature
Graph	improvements
Newer	TCP	streams
USBPcap
Summary
Practice	questions

Wireshark	has	been	there	with	us	for	approximately	two	decades	now;	there
weren't	any	major	updates	that	we	witnessed	during	its	lifecycle.	However,	there
were	minor	updates	introduced	to	make	the	application	more	convenient	and
robust	during	this	long	period.	But	this	time,	we	have	a	newly	branded
Wireshark	v2	with	glazing	arsenal.	Yes,	we	are	really	lucky	to	witness	this	major
update	for	the	most	popular	and	amazing	tool	in	the	protocol	analysis	industry.

I	am	really	excited	to	discuss	the	different	sets	of	tools	introduced	with	the	latest
release,	but,	before	that,	it	is	necessary	that	you	get	acquainted	with	the
background	of	the	QT	and	GTK	frameworks.	You	definitely	have	to	Google
these	either	now	or	maybe	after	reading	this	chapter.	However,	make	sure	that
you	note	them.

For	your	convenience,	I	will	give	you	a	gist	and	some	background	of	these
frameworks;	the	reason	why	I	am	emphasizing	the	difference	between	the	two	is
that	the	newly	developed	version	2	of	our	protocol	analyzer	is	developed	using
the	QT	framework.	QT	and	GTK	are	frameworks	used	for	the	development	of
GUI	cross-platform	utilities	such	as	Wireshark.	In	general,	from	the	end	user's
perspective,	the	difference	would	be	based	purely	on	graphical	changes,	but

performance	wise,	GTK	is	more	economical	as	compared	to	QT.	For	better
understanding,	these	aren't	just	toolkits	and	frameworks;	instead,	these	are	sets
of	libraries	used	by	developers	to	create	better	GUIs	for	end	users.	Basically,	it's
reusing	the	designs	already	made	by	others.	The	main	advantage	of	reusing
designs	is	that	it	allows	the	newly	installed	program	to	look	more	similar	to	the
other	already	installed	programs	on	your	machine.	For	instance,	let's	see	both	the
new	and	old	version	of	the	application	parallelly;	refer	to	the	following
screenshot	for	this:

Figure	9.1:	The	GTK	and	QT	frameworks

	

You	must	be	wondering	how	you	can	get	your	machine	installed	with	the	latest
version	of	Wireshark.	It's	really	easy;	you	just	have	to	visit	http://wireshark.org,
and	then	go	to	the	download	page.	There,	you	will	find	the	latest	release.
Download	the	one	appropriate	to	your	operating	system.	During	installation,
there	is	one	important	question	that	you	will	be	asked,	that	is,	whether	you	want
to	install	the	legacy	version	along	with	the	newer	release	or	you	just	want	to
install	the	newer	version	(note	that	only	Windows	users	have	this	privilege;	Mac
and	Linux	users	can	just	install	the	latest	version	of	the	application).

http://wireshark.org

There	is	one	more	component	that	you	will	see	being	installed	on	your	machine:
USBpcap.	I	have	dedicated	a	separate	section	in	this	chapter	for	this	particular
topic.	For	the	sake	of	basic	introduction,	USBpcap	facilitates	users	to	capture
data	that	moves	back	and	forth	from	your	machine's	USB	port.	The	tool	has	been
available	for	Linux	users	for	quite	a	long	time,	but	luckily,	Windows	users	can
also	utilize	this	now.

For	starters,	let's	have	a	look	at	the	main	screen	,	which	has	a	completely
different	feel	from	the	previous	version.	Refer	to	the	following	screenshot	to	get
a	look:

Figure	9.2:	The	main	screen	of	Wireshark	v2

	

I	hope	you	feel	the	same	way	I	do	about	the	new,	exciting	look.	Everything	in
this	version	looks	so	properly	arranged	and	cleaner.	Even	a	novice	user	who	has
no	experience	at	all	in	protocol	analysis	can	get	a	great	head	start	just	because
this	has	now	become	a	simple	and	attractive	interface.

Just	observe	the	toolbar	area,	for	instance.	In	this	version,	it	seems	like	the
developers	have	filtered	out	the	unwanted	and	less	commonly	used	tools,	which
eventually	makes	the	interface	quite	comfortable	for	the	eyes.	In	this	new

version,	we	have	quick	access	directly	to	a	basic	toolset,	such	as	the	start	and
stop	capture	buttons,	the	interface	customization	button,	a	button	to
save/open/close	the	current	capture	file,	some	navigational	tools,	and	the	auto
scroll	and	coloring	activate/deactivate	button.

Just	below	the	toolbar	area,	we	have	our	good	old	friend,	the	Display	Filter
toolset,	which	is	redesigned	with	great	efforts.	On	the	leftmost	side	of	display
filter	text	box,	you	will	see	a	bookmark	kind	of	icon	(in	blue—top-left	corner)
that	will	show	you	the	default	and	manually	created	filter	expressions.	Refer	to
the	following	screenshot	that	shows	an	illustration:

Figure	9.3:	The	Display	Filter	toolbar

	

As	you	can	see,	all	the	filters	are	listed,	which	you	might	have	created,	or	are
default	ones.	So	now,	it's	a	matter	of	just	a	click	if	you	want	to	activate	any	one
of	them,	instead	of	getting	a	pop-up	window	from	where	you	choose	and	apply
the	filter,	like	in	the	older	version.	This	definitely	speeds	up	the	process	of
analyzing	and	makes	the	life	of	IT	professionals	easier.

On	the	other	end	of	the	Display	Filter	toolbar,	we	have	a	few	old	tools	that	have

been	remodeled	in	a	fresh	look,	along	with	some	functionality	improvements;
refer	to	the	following	screenshot	for	an	illustration:

Figure	9.4:	The	Display	Filter	toolset

	

To	apply	any	display	filter	now,	you	just	need	to	click	on	the	arrow,	and	the
dropdown	next	to	it	will	give	you	access	to	frequently	used	filter	expressions
(history	of	last-used	expressions).	Then,	you	have	the	Expression	button,	which
will	help	you	access	the	dialog	where	you	can	get	access	to	all	possible	filter
expressions	categorized	on	the	basis	of	protocols.	Next,	on	the	rightmost	side	of
the	display	filter	textbox,	you	have	the	+	sign;	by	clicking	on	this,	you	can	create
a	filter	button.	Let	me	help	you	in	creating	one	for	yourself	in	the	newer	version
to	get	started.

For	example,	I	want	to	create	a	button	to	see	only	the	ARP	packets,	so	I	will	type
arp	in	the	display	filter	area	and	click	on	the	+	sign	at	the	end	of	the	toolbar.
Then,	you	need	to	specify	the	name	of	the	button	you	want:

Figure	9.5:	Adding	a	custom	display	filter	expression	button

	

This	will	add	a	physical	button	next	to	the	+	sign.	This	technique	will	prove
worthy	and	very	effective	when	you	have	long	display	filter	expressions,	which
you	might	need	often.	So,	instead	of	typing	the	whole	expression	again,	you	can
just	activate	them	with	a	single	click.	As	a	result,	you	will	see	something	like
what	is	shown	in	the	following	screenshot.	Now,	you	are	just	a	single	click	away
from	applying	arp	as	the	display	filter:

Figure	9.6:	The	display	filter	button	created

	

Next,	below	the	display	filter	toolbar,	you	can	see	the	recently	used	files;	just
double-click	on	any	file	you	want	to	open.

After	the	Open	file	section,	we	have	the	capture	filter	toolbar,	and	I	don't	think
you	need	any	explanation	regarding	what	it	is	for	and	how	you	are	going	to	use	it
for	your	perusal.

Now	comes	the	major	change	that	you	will	witness	on	the	main	screen,	that	is,
the	interface's	name	followed	by	an	interactive	graph.	The	graphs	you	will	see
are	actually	live,	meaning	you	will	see	the	fluctuations,	that	is,	the	lines	going	up
and	down.	The	miniature	graph	followed	by	the	interface	name	represents	the
amount	of	traffic	moving	back	and	forth	from	the	interfaces	you	have.	The
proper	terminology	for	these	miniature	graphs	is	sparklines.	In	the	older	legacy
version,	we	had	the	live	statistics	in	numerical	form.

Now,	if	you	decide	to	capture	traffic	from	a	particular	interface,	just	double-click
on	the	graph	area,	and	Wireshark	will	do	the	rest	for	you.

The	intelligent	scroll	bar
This	is	one	of	the	features	launched	in	the	latest	release,	and	you	might	have
already	noticed	some	colored	sections/lines	in	the	scroll	bar	area.	If	not,	then	go
back	to	any	of	the	capture	files	you	have,	slowly	scroll	up	and	down,	and
observe	the	coloring	pattern	in	the	scroll	bar	area.	Any	guesses	what	difference	it
would	make	in	the	analysis	process?	Let's	understand	this	with	an	example.

I	will	use	a	previously	captured	file	for	demonstration	purpose,	which	has	HTTP
and	HTTPS	packets	along	with	some	retransmission	and	duplicate	frames.	There
is	no	difference	that	you	can	figure	out	at	first	glance,	but	as	soon	as	you	start
scrolling,	the	coloring	pattern	will	be	shown	in	the	scroll	bar	area.	This	pattern	is
based	on	the	coloring	rules	that	you	have	in	your	application.	For	example,	as
per	the	default	coloring	rules,	duplicate	and	retransmission	packets	are	usually
seen	with	a	black	background	and	a	red	foreground,	and	HTTP	packets	are
shown	with	a	green	background	and	a	black	foreground.	Now,	let's	verify	this	in
the	application	itself.	Refer	to	the	following	figure	for	the	same:

Figure	9.7:	The	intelligent	scroll	bar	in	action

	

The	way	packets	in	the	list	pane	are	shown	in	different	colors	is	similar	to	the
way	the	scroll	bar	represents	the	different	sections	of	your	list	pane.

In	the	same	way	that	the	blue	line	indicates	the	selected	packet,	the	black	lines
denote	the	duplicate	ACKs	and	retransmissions,	and	the	green-colored	section
indicates	that	at	the	bottom	of	the	capture	file,	we	have	some	HTTP	packets
listed.	By	just	observing	the	coloring	pattern	in	the	scroll	bar	area,	we	can	figure
out	what	sort	of	packets	we	have	ahead,	and	most	importantly,	navigating	to	a
certain	section	of	packets	you	are	looking	for	is	now	much	easier	and	faster.

We	already	discussed	customizing	the	coloring	rules	in	previous	chapters;	let's
take	one	more	example	of	the	same	capture	file,	and	this	time,	I	want	to
customize	the	HTTP	packet	coloring	rule.	We	will	change	the	green	background
color	to	yellow.	Let's	see	what	difference	it	would	make	in	the	scroll	bar	area	in
the	following	screenshot:

Figure	9.8:	Accessing	the	coloring	rules	dialog

	

To	access	the	coloring	rules,	you	need	to	click	on	View	from	the	menu	bar	and
then	choose	Coloring	Rules	at	the	bottommost	corner,	which	will	show	you	the
dialog	where	all	coloring	rules	will	be	listed.	Try	changing	the	HTTP	coloring
rule	to	yellow.	Once	this	has	been	done,	close	the	dialog	and	reopen	the	capture
file	in	order	to	see	the	change.

Now,	try	scrolling	the	same	file,	and	I	hope	you	will	see	the	difference	in	the
coloring	pattern	in	the	scroll	bar	and	your	list	pane	too,	where	all	HTTP	packets
are	colored	with	a	yellow	background.	Refer	to	the	following	screenshot:

Figure	9.9:	The	HTTP	coloring	rule

	

Now,	let's	compare	what	difference	it	made	when	we	tried	scrolling	up	and	down
in	the	list	pane	after	the	new	coloring	rule	was	applied.	Refer	to	the	following
screenshot	to	go	through	the	illustration:

Figure	9.10	Effect	of	the	HTTP	coloring	rule	can	be	seen	in	the	scroll	bar

	

A	good	amount	of	cleanup	has	been	done	from	the	toolbar	area	where,	for
example,	the	coloring	rules	toolset	has	been	removed,	and	now	you	can	access
it	from	the	view	menu.	The	+	and	–	symbols	at	the	bottom	of	the	coloring	rules
window	can	facilitate	you	with	the	configuration	of	the	rules.

Translation
I	think	this	amazing	and	pretty	cool	feature	is	not	able	to	gain	limelight,	so	I
want	you	to	know	that	Wireshark	offers	you	to	change	the	language	to	any	other
language	of	your	choice,	for	example,	Spanish,	Japanese,	Chinese	(Mandarin
actually),	Polish,	French,	and	so	on,	and	this	feature	has	been	there	their	since
version	1.99.

Giving	the	privilege	to	users	to	change	the	default	language	of	the	application	to
their	native	language	is	all	about	personalizing	user	experience	while	working
with	the	application.	If	users	feel	more	connected	and	comfortable	with	the
application,	then	they	will	definitelybecome	more	productive.

Let's	see,	with	the	help	of	an	example,	how	we	can	change	our	system's	default
language	to	Japanese	(launched	with	version	2.0).	Follow	the	given	steps	to
achieve	the	same:

1.	 Navigate	to	Wireshark	|	Preferences	(Windows	users	need	to	navigate	to
View	|	Edit	|	Preferences):

	
2.	 Now,	choose	Japanese	from	the	drop-down	list	at	the	bottom,	and	click	on

OK:

	
3.	 Now,	you	probably	will	see	everything	in	Japanese,	as	shown	in	the

following	screenshot:

	
4.	 To	revert	it	back	to	System	Default,	follow	the	same	steps.

The	most	amazing	thing	about	this	is	that	you	can	also	become	part	of	the
change;	this	means	that	if	you	want	to	help	Wireshark's	team	in	adding	your
native	language,	then	you	can	get	in	touch	with	them.

From	the	help	menu,	you	can	list	all	the	keyboard	shortcuts,	which	can	be	used
to	make	things	work	faster	than	usual.	Even	to	make	graphs,	now	you	have	a
shortcut	available.

Graph	improvements
This	is	something	that	you	will	be	really	pleased	to	know	about.	Yes,	Wireshark
has	made	quite	significant	changes	that	will	make	your	analytical	tasks	more
comfortable.	To	understand	the	difference,	the	best	option	will	be	to	go	through
an	example.

We	will	try	to	create	an	IO	graph	in	order	to	witness	the	changes	that	the	new
version	has.	I	am	using	a	capture	file	from	the	previous	chapter,	which	has	mixed
packet	types	and	mostly	contains	VoIP	traffic.	The	sole	purpose	of	this	exercise
is	to	see	how	graphs	can	be	of	better	assistance	in	version	2	of	Wireshark.
Follow	these	steps	to	create	an	IO	graph	in	Wireshark	version	2.0:

1.	 Capture	the	normal	traffic	from	your	network	or	open	any	previously
captured	trace	file	that	you	have.

2.	 Click	on	IO	Graph	under	Statistics.	Once	you	do	that,	you	will	be	directly
presented	with	a	graph	without	any	further	hassle:

Figure	9.11:	The	IO	graph

	
3.	 Now,	if	you	want	to	modify	and	configure	the	graph,	then	you	can	use

various	configurable	options	given	at	the	bottom	of	the	dialog.
4.	 For	instance,	if	I	want	to	add	any	filter	to	the	graph,	I	can	click	on	the	+

symbol	at	the	bottom	and	a	new	line	will	be	shown,	as	in	the	following
screenshot:

Figure	9.12:	Adding	a	filter	to	a	graph

	

5.	 Now,	I	want	to	see	the	traffic	pattern	for	the	ARP	packets	along	with	other
traffic-related	details.	So,	I	would	write	arp	as	a	filter	expression	in	the
display	filter	column	and	ARP	packets	in	the	name	column.	If	you	want	to
customize	the	look	and	feel	too,	you	are	most	welcome	to	do	so.

Figure	9.13:	The	ARP	filter	added	in	the	IO	graph

	
6.	 As	you	can	see,	our	newly	created	filter	is	in	effect,	and	we	can	observe	the

frequency	of	ARP	packets	appearing	in	our	graph	as	well.

Using	graphs	is	now	much	more	convenient,	as	you	are	no	longer	required	to
pass	any	statistical	information	to	the	graph.	Just	choose	whichever	graph	you
want,	and	then	the	default	version	of	the	graph	will	be	presented	to	you	without
any	questions	asked.	Now,	if	you	feel	like	changing	the	graph	as	per	your	need,
then	just	use	the	toolset	given	at	the	end	of	the	graph	to	custom	configure	it.

Now,	after	we	have	made	an	IO	graph,	you	will	see	how	clean	it	looks;	there	are
lots	of	features	that	have	been	introduced.	Using	the	default	graph,	most	of	the
time	you	will	be	able	to	figure	out	the	ups	and	downs	in	your	trace	file.	The

legends	are	shown	at	the	bottom	most	in	a	separate	section,	along	with	other
configurable	options	like	changing	colors,	hiding	or	enabling	a	filter,	and	much
more.

Additional	features	can	be	listed	and	explored	in	the	graphs;	all	you	need	to	do	is
right-click	on	the	graph	area.	The	graph	can	now	be	moved	along	with	the	x	and
y	axis	by	just	clicking	and	dragging.	Adding	new	arguments	to	the	graph
couldn't	be	any	easier	than	this.	As	you	can	see,	so	many	new	amazing	features
are	waiting	for	you	to	discover	them.

Figure	9.14:	The	right-click	options	list

	

Opening	two	graphs	is	now	possible;	and	maybe	someday,	you	will	feel	like
comparing	the	traffic	patterns	in	two	trace	files	that	you	have.	For	example,	I

want	to	compare	the	normal	VoIP	traffic	pattern	and	the	malicious	traffic	pattern.
Then,	we	can	use	two	graphs	to	figure	out	the	difference	graphically,	and	it's
really	effective.	Refer	to	the	following	screenshots:

Figure	9.15:	Comparing	two	graphs	at	a	single	instance

	

Similarly,	you	can	create	a	flow	graph	that	can	be	of	great	assistance	while
analyzing	the	TCP	flow	and	to	know	how	SYN	and	ACK	coordinate	with	each
other.	I	would	highly	recommend	that	you	create	the	flow	graph	in	the	newer
version	of	Wireshark.

To	switch	between	the	graphs,	you	have	the	drop-down	list	sitting	at	the	bottom-
left	corner	of	the	graph	window,	which	can	assist	you	in	doing	so,	and	you	are	no
longer	required	to	go	the	window	in	the	background	to	switch	between	graphs.

Another	useful	feature	that	can	be	taken	advantage	of	when	you	are	trying	to
create	reports	for	your	client	or	maybe	for	your	own	reference	purpose	is	to
export	the	graphs	in	PDF	formats.	You	might	have	done	this	before;	if	not,	then
let's	do	this	together	here.	Follow	the	given	steps	to	do	so:

1.	 You	need	to	click	on	the	Save	as	icon	at	the	bottom-right	corner	in	the
graph	dialog	window.	Now,	choose	the	location	where	you	want	to	save	the
PDFs	and	click	on	Save.

2.	 Once	this	has	been	done,	you	can	export	the	PDF	to	anywhere	you	want	to.
Refer	to	the	following	screenshot:

Figure	9.16:	Exporting	graphs	to	PDF	format

	

Now,	whenever	you	want	to	import	it	into	your	report,	just	add	it	like	an	image
and	the	graph	from	the	PDF	you	exported	will	be	added	to	your	document.
Doing	this	is	really	this	easy:

Figure	9.17:	The	graph	exported	as	PDF

	

TCP	streams
This	is	one	of	the	features	that	you	might	have	used	very	often	so	far,	and	I
suppose	the	story	will	be	same	for	all	IT	professionals	using	Wireshark	as	a
utility.	The	gist	of	the	tool	definitely	will	remain	the	same	in	the	next	version,
which	is	going	to	come	in	the	future;	however,	there	are	some	new	things	that	I
would	like	to	emphasize.	To	view	the	TCP	stream	window,	the	process	remains
the	same	as	usual.	Right-click	on	the	list	pane	area	and	choose	Follow	by
hovering	your	mouse	over	it,	which	will	the	present	available	different	streams.
Then,	click	on	TCP	Stream	options.	Refer	to	the	following	screenshot	to	see
these	steps:

Figure	9.18:	Follow	TCP	streams

	

Following	this	will	present	you	with	a	usual-looking	stream	window	similar	to
what	we	have	seen	in	our	previous	chapters.	However,	we	definitelyhave	some
new	features	to	discuss,	such	as	the	flexibility	of	moving	back	and	forth	between
the	different	TCP/UDP	streams	available,	and	the	find	utility	that	lets	you	search
in	the	stream	window	for	any	text.

First,	we	will	see	how	you	can	traverse	in	between	the	different	streams

available	in	your	trace	file.	Then,	we	will	try	to	search	some	text	through	the
follow	streams	window.	Refer	to	the	following	Stream	option	screenshot	that
can	be	used	to	traverse	between	various	TCP	streams	available:

Figure	9.19:	Follow	the	TCP	Stream	dialog

	

The	stream	option	labeled	(1)	at	the	bottom-right	corner	of	the	preceding	dialog
gives	you	the	flexibility	to	move	back	and	forth	between	the	different	streams
available.	You	have	two	choices	here:	you	can	specify	the	number	of	the	stream
you	want	to	look	at	or	you	can	traverse	up	or	down	by	clicking	on	the	up/down
arrow	followed	by	the	textbox.	So	now,	if	you	are	looking	for	a	different	stream,
you	don't	have	to	close	and	reopen	the	dialog,	like	we	did	while	working	with
the	earlier	version	of	the	application.	Refer	to	the	following	screenshot:

Figure	20:	The	Stream	option

	

The	part	labeled	(2)	gives	you	the	facility	to	find	any	ASCII	text	inside	the
Follow	stream	dialog,	which	definitely	gives	an	extra	mile	advantage	for	every
person	actively	using	this	beautiful	application.	Most	of	the	time,	when	we	are
using	the	stream	dialog,	it	is	for	analytical	purpose,	and	with	these	new	features,
our	job	becomes	more	easy	and	interesting.	Refer	to	the	following	screenshots
for	reference	regarding	both	the	newly	introduced	options:

Figure	9.21:	The	Find	utility	in	the	Follow	TCP	stream	dialog

	

For	example,	if	you	want	to	search	for	the	text	abc	in	the	current	stream,	then
just	type	the	search	string	in	the	find	textbox	and	press	Enter	or	click	on	Find
Next.

Figure	9.22:	The	Find	utility	in	the	Follow	TCP	stream	dialog

	

USBPcap
USBPcap	has	been	there	from	a	long	time	with	Linux	and	Mac	users,	but	for
Windows,	this	is	the	first	time	that	users	will	be	able	to	sniff	the	activity	over
USB	interfaces.	So,	let's	quickly	walk	through	this	latest	feature	and	try	to
understand	how	to	work	with	it	with	the	help	of	an	example.	Follow	the	given
steps	to	replicate	the	scenario:

1.	 After	the	successful	installation	of	Wireshark	on	your	Windows	machine,	it
is	highly	recommended	that	you	restart	your	machine	because	USBPcap
might	give	you	some	trouble.

2.	 After	your	PC	has	restarted,	open	Command	Prompt	and	change	your
current	directory	to	the	USBpcap	installation	directory	that	should	be
located	at	C:\Program	Files\USBPcap\.

3.	 Now,	perform	a	directory	listing	using	the	dir	command	to	check	whether
USBPcapCMD.exe	is	present	in	the	directory.	Refer	to	the	following
screenshot	that	represents	this	step:	

Figure	9.23:	The	USBPcap	installation	directory

Type	USBPcapCMD.exe	in	the	Command	Prompt	to	launch	the	sniffing
application.
As	soon	as	it	has	been	launched	successfully,	you	will	be	asked	to	choose	a

root	hub	over	which	you	want	to	sniff	the	traffic	and	the	name	of	the	trace	file
where	you	want	to	redirect	the	output.	Refer	to	following	screenshot	that
illustrates	this:	

Now,	as	instructed,	the	application	will	initiate	the	sniffing	process	over	root
hub	1	and	will	dump	any	activity	captured	over	the	USB	interfaces	to	the
abc.pcap	file.
Now,	try	to	copy	something	from	your	PC	to	the	USB	drive	or	vice	versa.	You

probably	won't	be	able	to	see	any	live	activity	over	the	Command	Prompt,	but	in
the	background,	it	is	actually	running.
Whenever	you	want	to	stop	the	sniffing	process,	you	can	press	Ctrl	+	C.
Now,	it's	time	to	open	the	abc.pcap	file	using	Wireshark	to	see	what	we	have

in	the	trace	file.	Refer	to	the	following	screenshot	that	illustrates	this:	

Figure	9.24:	The	abc.pcap	trace	file

As	you	can	see,	we	have	an	activity,	which	got	captured;	it	all	looks	similar	to
what	we	saw	with	network	packets.	We	have	all	the	familiar	columns	that	list	out
various	details	such	as	time,	source,	destination,	and	so	on.	So	we	were	able	to
successfully	dump	the	activity	over	available	USB	interfaces	without	any
technical	hassle	and	I	hope	you	will	do	some	research	to	get	a	better
understanding	about	USBPcap.

Summary
The	newer	version	of	Wireshark	has	adopted	a	new	framework	that	gives	us	a
new	and	totally	amazing	GUI.	The	older	version	was	built	upon	the	GTK
framework,	and	since	now	we	have	the	QT	framework,	from	the	perspective	of	a
normal	user,	the	differences	are	mostly	concerned	with	its	look	and	feel.

Scrolling	is	definitely	one	of	the	tools	that	we	all	have	seen	in	all	major
applications,	but	hats	off	to	the	developers	who	came	up	with	such	a	creative
idea	of	showing	the	coloring	pattern	of	your	trace	file	inside	the	scroll	bar	while
you	are	trying	to	look	for	something	specific.	It	does	give	an	extra	advantage.

The	Translation	feature	makes	Wireshark	more	international	and	close	to	every
user	in	terms	of	personalization.	As	many	Wireshark	users	might	not
comfortable	with	the	English	language,	now	they	have	the	facility	to	change	the
language	to	their	native	language,	which	would	make	the	analytical	process	for	a
professional	more	effective.

Graphs	are	one	of	the	features	using	which	differences	between	normal	and
abnormal	conditions	can	be	figured	out,	and	are	used	very	often.	Now,	creating
and	customizing	graphs	is	easier	than	ever,	and	the	look	and	feel	has	drastically
improved	as	well.

The	following	protocol-specific	streams	dialog	is	introduced	with	some	of	the
new	features	that	let	you	find	an	ASCII	string,	and	itlets	you	move	easily
between	the	streams	available	too;	you	don't	have	to	close	and	reopen	the	dialog
to	move	to	a	different	stream.

USBPcap	has	been	there	with	us	for	quite	a	long	time,	and	most	Linux	and	Mac
users	are	probably	aware	of	this	fact.	The	way	your	NIC	card	lets	you	listen	over
the	wired/wireless	channel	is	similar	to	the	way	the	USBpcap	option	would	let
you	listen	over	the	USB	ports	that	you	have.	This	means	that	now,	Wireshark	can
also	trace	the	activities	happening	over	a	USB	interface.

Practice	questions
Q.1	Try	to	find	out	the	major	differences	between	the	GTK	and	QT	frameworks.
And	which	one	do	you	think	is	better?

Q.2	Try	out	the	Translation	feature	by	changing	the	system	default	language	in
Wireshark	to	any	other	language	of	your	choice.

Q.3	Create	a	Flow	graph	using	the	newer	version	and	the	legacy	version,	and
observe	how	many	differences	you	can	figure	out	between	the	graphs.

Q.4	Open	any	previous	capture	file	you	have,	and	try	to	figure	out	how	many
TCP	streams	there	are	in	it.

Q.5	Figure	out	a	way	to	remove	the	display	filter	button	for	the	ARP	protocol
that	we	created	earlier	in	this	chapter.

Q.6	Try	changing	coloring	rules	for	ARP	packets,	and	check	whether	you	can
observe	the	difference	in	the	intelligent	scroll	bar	area.

Q.7	After	installing	the	newer	version	of	Wireshark	on	a	Windows	machine,	try
to	launch	USBPcap.	Then,	copy	and	paste	from	your	PC	to	the	sub	device	or
vice	versa	(dump	all	the	activities	in	the	test.pcap	file).

Q.8	Open	the	recently	captured	test.pcap	trace	file	for	the	USB	interface
activity	in	Wireshark,	and	try	to	figure	out	what	the	packets	listed	in	the	list	pane
state.	Specifically,	try	to	analyze	the	values	shown	in	the	source	and	destination
columns.

Bibliography
This	course	is	a	blend	of	different	projects	and	texts	all	packaged	up	keeping
your	journey	in	mind.	It	includes	the	content	from	the	following	Packt	products:

Wireshark	Essentials	-	James	H	Baxter
Network	Analysis	using	Wireshark	Cookbook	-	Yoram	Orzach
Mastering	Wireshark	-	Charit	Mishra

Index
A

abnormalities,	TCP
examples	/	Unusual	traffic

access_denied	/	How	to	do	it...
ACK	/	How	it	works…,	Regular	operation	of	the	TCP
Sequence/Acknowledge	mechanism
acknowledgement	number	field	/	How	it	works...
ACK	packets	/	WEP-open	key
ACK	scanning	/	How	to	do	it...
Active	mode	(ACTV)	/	Analyzing	FTP	problems
Address	Resolution	Protocol	(ARP)	/	Ethernet	frames	and	switches

about	/	Address	Resolution	Protocol,	The	layers	in	the	TCP/IP	model
poisoning	/	ARP	poisoning,	ARP	poisoning

Address	Resolution	Protocol	(ARP)	filter	/	Configuring	Ethernet,	ARP,
host,	and	network	filters
advantages,	Wireshark

user	friendly	/	Why	use	Wireshark?
robustness	/	Why	use	Wireshark?
platform	independent	/	Why	use	Wireshark?
filters	/	Why	use	Wireshark?
cost	/	Why	use	Wireshark?
support	/	Why	use	Wireshark?

AirPcap	Adapters
about	/	AirPcap	adapters

Allow	sub-dissector	option	/	There's	more...
Anycast	addresses

about	/	IPv6	address	types
application-based	issues

troubleshooting	/	Troubleshooting	application-based	issues
application-layer	attacks

about	/	How	it	works...
application	attacks

discovering	/	Discovering	brute-force	and	application	attacks,	How	to

do	it...,	There's	more...
application	layer,	OSI

about	/	Layer	7	–	the	application	layer
encapsulation	/	Encapsulation

application	layer	protocols
about	/	Application	layer	protocols
Dynamic	Host	Configuration	Protocol	(DHCP)	/	Dynamic	Host
Configuration	Protocol
Dynamic	Host	Configuration	Protocol	Version	6	(DHCPv6)	/	Dynamic
Host	Configuration	Protocol	Version	6
Domain	Name	Service	(DNS)	/	Domain	Name	Service
Hypertext	Transfer	Protocol	(HTTP)	/	Hypertext	Transfer	Protocol
additional	information	/	Additional	information

areas,	functional	issues	troubleshooting
user	credentials	/	Troubleshooting	functional	issues
user	machine,	application	settings	/	Troubleshooting	functional	issues
application	reported	errors	/	Troubleshooting	functional	issues
web	browsers	differences	/	Troubleshooting	functional	issues

ARP
configuring	/	Configuring	Ethernet,	ARP,	host,	and	network	filters,
Getting	ready
connectivity	problems,	analyzing	with	/	Analyzing	connectivity
problems	with	ARP,	How	to	do	it...,	Gratuitous	ARP,	Requests	or
replies,	and	who	is	the	sender,	How	it	works...,	There's	more...
poisoning	/	ARP	poisoning	and	Man-in-the-Middle	attacks
amount	/	How	many	ARPs

arp.opcode	==	<value>	/	Getting	ready
arp.src.hw_mac	==	<MAC	Address>	/	Getting	ready
ARP	filters	/	ARP	filters
ARP	packet

significant	fields	/	Address	Resolution	Protocol
ARP	replies	/	Requests	or	replies,	and	who	is	the	sender
ARP	requests	/	Requests	or	replies,	and	who	is	the	sender
ARP	scans

about	/	ARP	scans
ARP	sweep	/	ARP	sweeps
ARP	sweeps

about	/	ARP	scans
association	request/response	/	WEP-open	key
Automatic	Private	IP	Addressing	(APIPA)	addresses	/	General	tests
Autonomous	System	(AS)	/	Getting	ready
AVG	(*)	/	Getting	ready

B
%	Bytes	field	/	How	to	do	it...
32-bit	source	and	destination	IP	addresses	/	How	it	works...
bad_certificate	/	How	to	do	it...
bad_record_mac	/	How	to	do	it...
bandwidth

about	/	How	it	works...
measuring,	per	user	over	network	connection	/	Measuring	bandwidth
and	throughput	per	user	and	per	application	over	a	network
connection,	How	to	do	it...,	See	also
measuring,	per	application	over	network	connection	/	Measuring
bandwidth	and	throughput	per	user	and	per	application	over	a	network
connection,	How	to	do	it...,	See	also

baselining
about	/	The	importance	of	baselining
importance	/	The	importance	of	baselining
traffic	aspects	/	The	importance	of	baselining

Base	Service	Set	Identifier	(BSSID)	/	Various	modes	in	wireless
communications
basic	network	connectivity

testing	/	Basic	network	connectivity
application	services,	connecting	to	/	Connecting	to	the	application
services

Berkeley	packet	filter	(BPF)	/	Installing	Wireshark	on	Mac	OS	X
Berkeley	Packet	Filter	(BPF)	/	How	it	works...
bits-per-second	(bps)	/	Bandwidth	congestion
bits	per	second	(bps)	/	Filtering	out	the	noise
Bladeserver

about	/	Finding	out	what	is	running	over	your	network
Bladesystem	/	Finding	out	what	is	running	over	your	network
Border	Gateway	Protocol	version	4	(BGPv4)	/	Getting	ready
bottleneck	issues

troubleshooting	/	Troubleshooting	bottleneck	issues
BPF	syntax

identifiers	/	How	to	use	capture	filters

qualifiers	/	How	to	use	capture	filters
Bridge	Protocol	Data	Units	(BPDUs)	/	Which	STP	version	is	running	on	the
network?
broadcast	/	Getting	ready
broadcast	domains

about	/	Getting	ready
Broadcast	MAC	address	/	How	to	do	it...
broadcast	storm

about	/	Discovering	broadcast	and	error	storms
discovering	/	How	to	do	it...
working	/	How	it	works...

brute-force	attacks
discovering	/	Discovering	brute-force	and	application	attacks,	How	to
do	it...,	How	it	works...,	There's	more...

brute	force	attacks
malicious	traffic,	inspecting	/	Inspecting	malicious	traffic
real-world	CTF	challenges,	solving	/	Solving	real-world	CTF
challenges

byte	offset
configuring	/	Configuring	byte	offset	and	payload	matching	filters,
How	to	do	it...,	How	it	works…,	There's	more...

bytes	field	/	How	to	do	it...

C
!,	C-like	Syntax	/	Getting	ready
!=,	C-like	Syntax	/	Getting	ready
&&,	C-like	Syntax	/	Getting	ready
<,	C-like	Syntax	/	Getting	ready
<=,	C-like	Syntax	/	Getting	ready
==,	C-like	Syntax	/	Getting	ready
>,	C-like	Syntax	/	Getting	ready
>=,	C-like	Syntax	/	Getting	ready
C-like	Syntax	/	Getting	ready
C-Tag	(802.1Q)	/	There's	more…
calculating	conversations	timestamps	/	How	it	works...
Capinfos.exe

about	/	Wireshark	command-line	utilities
capture

data	capturing,	starting	/	The	layers	in	the	TCP/IP	model,	ARP
poisoning
interface,	selecting	/	How	to	choose	the	interface	to	start	the	capture
interface,	configuring	/	How	to	configure	the	interface	you	capture
data	from
configuration,	changing	/	Changing	the	capture	configuration

Capture	Filter	field
about	/	Selecting	the	correct	network	interface

capture	filters
about	/	Capturing	interfaces,	filters,	and	options,	Display	filters
using	/	Using	capture	filters,	Why	use	capture	filters
configuring	/	Configuring	capture	filters,	Searching	for	packets	using
the	Find	dialog,	How	to	do	it...,	How	it	works...,	There's	more...
reference	link	/	Configuring	capture	filters
using,	techniques	/	How	to	use	capture	filters
example	/	An	example	capture	filter
with	protocol	header	values	/	Capture	filters	that	use	protocol	header
values

Capture	Interfaces	window
about	/	Selecting	the	correct	network	interface

options	/	Selecting	the	correct	network	interface
capture	options

about	/	Capturing	interfaces,	filters,	and	options
Capture	Options	window

about	/	Selecting	the	correct	network	interface,	Capture	options
filename,	configuring	/	Capturing	filenames	and	locations
location,	configuring	/	Capturing	filenames	and	locations
multiple	file	options	/	Multiple	file	options
Ring	buffer	option	/	Ring	buffer
stop	capture	options	/	Stop	capture	options
display	options	/	Display	options
name	resolution	options	/	Name	resolution	options

capturing	methodologies
hub-based	networks	/	Hub-based	networks
switched	environment	/	The	switched	environment
ARP	poisoning	/	ARP	poisoning
passing,	through	routers	/	Passing	through	routers
first	capture,	starting	/	Starting	our	first	capture
about	/	Capturing	methodologies

C	Arrays	to	Packet	Bytes	(*.c)	/	Saving	data	in	various	formats
Carrier	Sense	Multiple	Access	and	Collision	Avoidance	protocol
(CSMA/CA)	/	Various	modes	in	wireless	communications
Cascade	Pilot	package

URL	/	There's	more...
Castlerock	Computing	SNMPc

URL	/	SNMP	platforms
CA	Unicenter

URL	/	SNMP	platforms
certificate_expired	/	How	to	do	it...
certificate_revoked	/	How	to	do	it...
certificate_unknown	/	How	to	do	it...
chats	tab	/	How	to	do	it...
Checkpoint

URL	/	See	also
checksum	errors	/	How	to	do	it...
checksum	field	/	How	it	works...
Cisco

URL	/	The	NetFlow,	JFlow,	and	SFlow	analyzers
Cisco	Netflow

URL	/	See	also
Cisco	press

URL	/	Books
Citrix	communications

issues,	analyzing	/	Analyzing	MS-TS	and	Citrix	communications
problems	,	How	to	do	it...,	There's	more…

Citrix	Metaframe	Independent	Computing	Architecture	(ICA)	/	Analyzing
MS-TS	and	Citrix	communications	problems
Class	Inter-Domain	Routing	(CIDR)	notation	/	IPv6	addressing
Classless	Inter-Domain	Routing	(CIDR)	designator	/	IP	networks	and
subnets
Class	of	Service	(CoS)	tagging	/	Layer	2	–	the	data-link	layer
client-side	latency	issues	/	Client-	and	server-side	latencies
client	codes	/	Client	errors
client	error	codes	/	4xx	codes	–	client	error
close_modify	/	How	to	do	it...
coloring	rules

about	/	Summary,	Getting	ready,	How	to	do	it...,	See	also
command-line	tools

Capinfos.exe	/	Wireshark	command-line	utilities
Dumpcap.exe	/	Wireshark	command-line	utilities
Editcap.exe	/	Wireshark	command-line	utilities
Mergecap.exe	/	Wireshark	command-line	utilities
Rawshark.exe	/	Wireshark	command-line	utilities
Text2pcap.exe	/	Wireshark	command-line	utilities
Tshark.exe	/	Wireshark	command-line	utilities

Command	and	Control	(C&C)	servers	/	Phone	home	traffic
Command	Line-fu

about	/	Command	Line-fu
Command	Line	Interface	(CLI)	/	How	to	do	it...
Command	Prompt	(CMD)	/	Basic	network	connectivity
Comma	Separated	Values	/	Saving	data	in	various	formats
communication	link

total	bandwidth,	measuring	on	/	Measuring	total	bandwidth	on	a
communication	link,	Getting	ready,	How	to	do	it...,	How	it	works...,

There's	more...
comparison	operators

</lt	/	Display	filters
==/eq	/	Display	filters
<=/le	/	Display	filters
!=/ne	/	Display	filters
>/gt	/	Display	filters
>=/ge	/	Display	filters

Compass	(for	Windows)
URL	/	There's	more...

Compile	BPF	button	/	How	it	works...
complex	filters	/	Complex	filters
compound	filters

configuring	/	Configuring	compound	filters,	There's	more...
configuration,	Wireshark

packet	timestamps,	working	with	/	Working	with	packet	timestamps
packet	colorization	/	Colorization	and	coloring	rules
preferences	/	Wireshark	preferences
profiles	/	Wireshark	profiles

CONNECT	/	HTTP	methods
connectivity	issues

troubleshooting	/	Troubleshooting	connectivity	issues
connectivity	issues	troubleshooting

about	/	Troubleshooting	connectivity	issues
network	interfaces,	enabling	/	Enabling	network	interfaces
physical	connectivity,	confirming	/	Confirming	physical	connectivity
workstation	IP	configuration,	obtaining	/	Obtaining	the	workstation	IP
configuration
MAC	addresses,	obtaining	/	Obtaining	MAC	addresses
network	service	IP	addresses,	obtaining	/	Obtaining	network	service	IP
addresses
basic	network	connectivity	/	Basic	network	connectivity

connectivity	problems
analyzing,	with	ARP	/	Analyzing	connectivity	problems	with	ARP,
How	to	do	it...,	Gratuitous	ARP,	Requests	or	replies,	and	who	is	the
sender,	How	it	works...,	There's	more...

content	addressable	memory	(CAM)	table	/	Ethernet	frames	and	switches

Content	Delivery	Network	(CDN)	/	There's	more...
Contributing	source	identifiers	list	(CSRC)	/	RTP	principles	of	operation
control	frame

about	/	The	IEEE	802.11	packet	structure
Request-to-send	(RTS)	/	The	IEEE	802.11	packet	structure
Clear-to-send	(CTS)	/	The	IEEE	802.11	packet	structure
Acknowledgement	(ACK)	/	The	IEEE	802.11	packet	structure

Conversations
about	/	Conversations

Conversations	tool
using,	from	statistics	menu	/	Using	the	Conversations	tool	from	the
Statistics	menu,	How	to	do	it...,	How	it	works...

Conversations	window
about	/	Using	the	Conversations	window
using	/	Using	the	Conversations	window
Ethernet	tab	/	The	Ethernet	tab
TCP	tab	/	The	TCP	and	UDP	tabs
UDP	tab	/	The	TCP	and	UDP	tabs
WLAN	tab	/	The	WLAN	tab

/	A	device	that	generates	Broadcasts
COUNT	FIELDS	(*)	/	Getting	ready
COUNT	FRAMES	(*)	/	Getting	ready
Create	Stat	button	/	How	to	do	it...
CSRC	count	(CC)	/	RTP	principles	of	operation
cyclic	redundancy	check	(CRC)	/	The	IEEE	802.11	packet	structure
||,	C-like	Syntax	/	Getting	ready

D
DARPA	model

about	/	The	OSI	and	DARPA	reference	models
data

capturing,	starting	/	The	layers	in	the	TCP/IP	model
whole	file,	saving	/	How	to	do	it...
part	of	file,	saving	/	How	to	do	it...
saving,	in	different	formats	/	Saving	data	in	various	formats
printing	/	How	to	print	data

data-link	layer,	OSI
about	/	Layer	2	–	the	data-link	layer
Media	Access	Control	(MAC)	addresses	/	Layer	2	–	the	data-link	layer
Type	(or	EtherType)	field	/	Layer	2	–	the	data-link	layer
Payload	/	Layer	2	–	the	data-link	layer
frame	check	sequence	/	Layer	2	–	the	data-link	layer
Cyclic	Redundancy	Check	(CRC)	/	Layer	2	–	the	data-link	layer
Ethernet	II	frame	/	Layer	2	–	the	data-link	layer
Ethernet	frame	/	Layer	2	–	the	data-link	layer

Database	Administrator	(DBA)	/	How	to	do	it...
database	traffic

issues,	analyzing	/	Analyzing	database	traffic	and	common	problems,
How	to	do	it...,	How	it	works...

Datagram	distribution	service	(port	138)	/	Analyzing	problems	in	the
NetBIOS	protocols
data	transport

about	/	Data	transport
TCP	StreamGraph	/	TCP	StreamGraph
time/sequence	(Stephen’s-style)	/	TCP	StreamGraph
time/sequence	(tcptrace)	/	TCP	StreamGraph
window	scaling	/	TCP	StreamGraph
IO	Graph	/	IO	Graph
Wireshark	2.0	/	IO	Graph	–	Wireshark	2.0

Date	and	Time	of	Day	/	How	to	do	it...
DDoS

about	/	How	it	works...

attacks,	discovering	/	Discovering	DoS	and	DDoS	attacks,	How	to	do
it...,	How	it	works...

deauthentication	packet	/	WPA-Enterprise
decode_error	/	How	to	do	it...
decompression_failure	/	How	to	do	it...
decryption_failed	/	How	to	do	it...
decrypt_error	/	How	to	do	it...
Deep	Packet	Inspection	(DPI)	/	How	it	works...
Defense	Advanced	Research	Projects	Agency	(DARPA)	/	The	OSI	model	–
why	it	matters
delay

monitoring,	Wireshark	used	/	Monitoring	jitter	and	delay	using
Wireshark,	How	to	do	it...,	How	it	works...,	There's	more...
about	/	How	it	works...
problems,	discovering	/	Discovering	delay/jitter-related	application
problems,	How	to	do	it...,	How	it	works...

delays
prioritizing	/	Detecting	and	prioritizing	delays
detecting	/	Detecting	and	prioritizing	delays

DELETE	/	HTTP	methods
details	tab	/	How	to	do	it...
DHCP

about	/	Analyzing	DHCP	problems
DHCP	Ack	/	How	it	works...
DHCP	Discover	/	How	it	works...
DHCP	message	types

DHCP	Discover	/	Obtaining	the	workstation	IP	configuration
DHCP	Reply	/	Obtaining	the	workstation	IP	configuration
DHCP	Request	/	Obtaining	the	workstation	IP	configuration
DHCP	Decline	/	Obtaining	the	workstation	IP	configuration
DHCP	Acknowledgment	/	Obtaining	the	workstation	IP	configuration
DHCP	Negative	Acknowledgement	/	Obtaining	the	workstation	IP
configuration
DHCP	Release	/	Obtaining	the	workstation	IP	configuration
DHCP	Informational	/	Obtaining	the	workstation	IP	configuration

DHCP	Offer	/	How	it	works...
DHCP	problems

analyzing	/	Analyzing	DHCP	problems,	How	to	do	it...,	How	it
works...,	There's	more...

DHCP	Request	/	How	it	works...
Differentiated	Services	(DiffServ)	/	Configuring	of	IPv4	and	IPv6
Preferences,	How	it	works...
Dir	(direction)	qualifiers	/	How	it	works...
disassociation	packet	/	WPA-Enterprise
displayed	data

saving	/	Saving	the	displayed	data
display	filters

about	/	Wireshark	display	filters,	Display	filters,	Introduction
ways	of	creating	/	Wireshark	display	filters
Display	Filter	window	/	The	Display	Filter	window
display	filter	syntax	/	The	display	filter	syntax
reference	link	/	The	display	filter	syntax
typing	in	/	Typing	in	a	display	filter
creating,	from	Conversations	window	/	Display	filters	from	a
Conversations	or	Endpoints	window
creating,	from	Endpoints	window	/	Display	filters	from	a
Conversations	or	Endpoints	window
configuring	/	Configuring	display	filters,	Getting	ready,	How	to	do
it...,	Choosing	from	the	filters	menu
syntax,	writing	/	Writing	the	syntax	directly	into	the	display	filter
window
parameter,	selecting	in	packet	pane	/	Choosing	a	parameter	in	the
packet	pane	and	defining	it	as	a	filter
retaining,	for	later	use	/	Retaining	filters	for	later	use

display	filter	toolbar
about	/	Display	Filter	Toolbar

Display	Filter	window
about	/	The	Display	Filter	window

Display	window	/	How	to	do	it...
Distributed	Denial	of	Service	(DDoS)	attacks	/	Phone	home	traffic
distribution	system	(DS)	/	The	IEEE	802.11	packet	structure
DNS

about	/	Introduction
traffic,	filtering	/	Filtering	DNS	traffic,	How	to	do	it...,	There's	more...

operations,	analyzing	/	Analyzing	regular	DNS	operations,	How	it
works...
operations	/	DNS	operation
namespace	/	DNS	namespace
servers,	using	/	The	resolving	process
issues,	analyzing	/	Analysing	DNS	problems,	DNS	cannot	resolve	a
name,	How	it	works...,	There's	more...
slow	responses	/	DNS	slow	responses

DNS	Benchmark
from	GRC,	URL	/	The	resolving	process

DNS	display	filters	/	DNS	display	filters
DNS	error	code

URL	/	Troubleshooting	application-based	issues
DNS	packet

dissecting	/	Dissecting	a	DNS	packet
Domain	Name	Service	(DNS)

about	/	Domain	Name	Service
Wireshark	DNS	filters	/	Wireshark	DNS	filters

/	How	it	works
Domain	Name	System	(DNS)	/	Ethernet	frames	and	switches
domain	name	system	(DNS)

about	/	Domain	name	system
packet,	dissecting	/	Dissecting	a	DNS	packet
packet,	fields	/	Dissecting	a	DNS	packet
query/response,	dissecting	/	Dissecting	DNS	query/response
unusual	DNS	traffic	/	Unusual	DNS	traffic

DoS
about	/	How	it	works...
attacks,	discovering	/	Discovering	DoS	and	DDoS	attacks,	How	to	do
it...,	How	it	works...

dst	host	<host>	filter	/	Getting	ready
dst	net	<net>/<len>	filter	/	Getting	ready
dst	net	<net>	filter	/	Getting	ready
dst	net	<net>	mask	<netmask>	filter	/	Getting	ready
dst	port	<port>	filter	/	Getting	ready
Dumpcap

used,	for	capturing	traffic	/	Capturing	traffic	with	Dumpcap

Dumpcap.exe
about	/	Wireshark	command-line	utilities

Dumpcap	options
-D	/	Capturing	traffic	with	Dumpcap
-i	<interface>	/	Capturing	traffic	with	Dumpcap
-f	<capture	filter>	/	Capturing	traffic	with	Dumpcap
-b	filesize	/	Capturing	traffic	with	Dumpcap
-w	<outfile>	/	Capturing	traffic	with	Dumpcap
reference	link	/	Capturing	traffic	with	Dumpcap

duplicate	ACKs
about	/	Duplicate	ACKs	and	fast	retransmissions,	How	to	do	it...,	How
it	works...,	There's	more...

duplicate	IPs
finding	/	Finding	duplicate	IPs,	How	it	works...,	There's	more...

Dynamic	Host	Configuration	Protocol	(DHCP)
about	/	Dynamic	Host	Configuration	Protocol
Wireshark	DHCP	filters	/	Wireshark	DHCP	filters

/	The	DHCP
Dynamic	Host	Configuration	Protocol	Version	6	(DHCPv6)

about	/	Dynamic	Host	Configuration	Protocol	Version	6
Wireshark	DHCPv6	filters	/	Wireshark	DHCPv6	filters

Dynamic	Host	Control	Protocol	(DHCP)	/	How	it	works

E
e-mail	traffic

issues,	analyzing	/	Analyzing	e-mail	traffic	and	troubleshooting	e-mail
problems	–	POP,	IMAP,	and	SMTP,	POP3	communications,	SMTP
communications,	How	it	works...,	POP3,	SMTP	and	SMTP	error	codes
(RFC3463),	There's	more...

Editcap
about	/	Editing	trace	files	with	Editcap
used,	for	editing	trace	files	/	Editing	trace	files	with	Editcap

Editcap.exe
about	/	Wireshark	command-line	utilities

Editcap	options
reference	link	/	Editing	trace	files	with	Editcap

encrypted	traffic	(SSL/TLS)
decrypting	/	Decrypting	encrypted	traffic	(SSL/TLS)

End	Bytes	field	/	How	to	do	it...
End	Mbit/s	field	/	How	to	do	it...
End	Packets	field	/	How	to	do	it...
endpoints

about	/	Endpoints
Endpoints	tool

using,	from	statistics	menu	/	Using	the	Endpoints	tool	from	the
Statistics	menu,	How	to	do	it...,	There's	more...

Enhancement	area
URL	/	Useful	Wireshark	links

Enterprise	Resource	Planning	(ERP)	/	There's	more…
Eric	Lawrence	and	Telerik

URL	/	HTTP	debuggers
error	codes	filters	/	How	to	do	it...
error	events

about	/	Error	events	and	understanding	them,	How	it	works...
error	storms

about	/	Discovering	broadcast	and	error	storms
discovering	/	How	to	do	it...

eth.addr	==	<MAC	Address>	/	Getting	ready

eth.dst	==	<MAC	Address>	/	Getting	ready
eth.src	==	<MAC	Address>	/	Getting	ready
eth.type	==	<Protocol	Type	(Hexa)>	/	Getting	ready
ETHER-TYPE	codes

URL	/	See	also
Etherape	(for	Linux)

URL	/	There's	more...
ether	broadcast	filter	/	Getting	ready
ether	dst	<Ethernet	host>	filter	/	Getting	ready
ether	host	<Ethernet	host>	filter	/	Getting	ready
ether	multicast	filter	/	Getting	ready
Ethernet

configuring	/	Configuring	Ethernet,	ARP,	host,	and	network	filters
/	How	to	do	it...
Ethernet	(MAC)	address	/	How	to	do	it...
Ethernet	broadcasts	/	Ethernet	broadcasts
Ethernet	conversations	statistics

about	/	Ethernet	conversations	statistics
Ethernet	filters

configuring	/	Create	new	Wireshark	profiles,	How	to	do	it...,	How	it
works…

/	Ethernet	filters
Ethernet	frame

significant	fields	/	Layer	2	–	the	data-link	layer
working,	with	switches	/	Ethernet	frames	and	switches

Ethernet	tab
about	/	The	Ethernet	tab

ether	proto	<protocol>	filter	/	Getting	ready
ether	src	<Ethernet	host>	filter	/	Getting	ready
expert.group

categories	/	There's	more...
expert.message	/	There's	more...
expert.severity	/	There's	more...
Expert	Info	dialog

about	/	Expert	Infos
Chat	section	/	Expert	Infos
Note	section	/	Expert	Infos

warning	messages	/	Expert	Infos
error	section	/	Expert	Infos
details	/	Expert	Infos
Packet	Comments	/	Expert	Infos

Expert	Infos	window
about	/	Introduction,	The	Expert	Infos	window	and	how	to	use	it	for
network	troubleshooting,	How	to	do	it...
starting	/	How	to	do	it...
errors	/	How	to	do	it...
warnings	/	How	to	do	it...
notes	/	How	to	do	it...
chats	/	How	to	do	it...
details	/	How	to	do	it...
packet	comments	/	How	to	do	it...
expert.message	/	There's	more...
expert.severity	/	There's	more...

export_restriction	/	How	to	do	it...
Extended	passive	(ESPV)	mode	/	Passive	mode
Extended	Port	(EPRT)	/	Active	mode
Extension	bit	(X)	/	RTP	principles	of	operation
Exterior	Gateway	Protocols	(EGPs)	/	Getting	ready

F
Fiddler

URL	/	HttpWatch,	There's	more...
/	There's	more...
field	appearances

monitoring	/	How	to	monitor	a	number	of	field	appearances
field	name	pane	/	Choosing	from	the	filters	menu
fields,	domain	name	system	(DNS)	packet

Transaction	ID	/	Dissecting	a	DNS	packet
Query/response	/	Dissecting	a	DNS	packet
Flag	bits	/	Dissecting	a	DNS	packet
Response	code	/	Dissecting	a	DNS	packet
Questions	/	Dissecting	a	DNS	packet
Answers	/	Dissecting	a	DNS	packet
Authority	RRs	/	Dissecting	a	DNS	packet
Additional	RRs	/	Dissecting	a	DNS	packet
Query	section	/	Dissecting	a	DNS	packet
Answer	section	/	Dissecting	a	DNS	packet
Type	/	Dissecting	a	DNS	packet
Additional	info	/	Dissecting	a	DNS	packet
window	size	/	Understanding	the	TCP	header	and	its	various	flags
checksum	/	Understanding	the	TCP	header	and	its	various	flags
urgent	pointer	/	Understanding	the	TCP	header	and	its	various	flags
options	/	Understanding	the	TCP	header	and	its	various	flags
data	/	Understanding	the	TCP	header	and	its	various	flags

File	Transfer	Protocol	(FTP)	/	The	layers	in	the	TCP/IP	model
file	transfer	protocol	(FTP)

about	/	File	transfer	protocol
communications,	dissecting	/	Dissecting	FTP	communications
packets,	dissecting	/	Dissecting	FTP	packets
unusual	FTP	/	Unusual	FTP

filtered	packets
saving	/	Saving	the	filtered	traffic

Filter	Expression	Button	(FEB)	/	Obtaining	the	workstation	IP
configuration

Filter	Expression	Button	option
TCP	SYN	/	Filter	Expression	Buttons
SYN/ACK	/	Filter	Expression	Buttons
RST	/	Filter	Expression	Buttons
FIN	/	Filter	Expression	Buttons

Filter	Expression	Buttons	/	Identifying	unacceptable	or	suspicious	traffic
filter	expression	buttons

about	/	Filter	Expression	Buttons
Expressions	window	button,	using	/	Using	the	Expressions	window
button
right-click	menus,	on	specific	packet	fields	/	Right-click	menus	on
specific	packet	fields

Filter	Expression	window
using	/	Using	the	Expressions	window	button

filtering
about	/	A	brief	overview	of	the	TCP/IP	model

filters
display	filters	/	Display	filters
capture	filters	/	Searching	for	packets	using	the	Find	dialog
Ethernet	filters	/	Create	new	Wireshark	profiles
network	filters	/	Summary
hosts	filters	/	Summary
UDP	port	filter	/	Practice	questions,	How	to	do	it...,	How	it	works…,
See	also
TCP	port	filter	/	Practice	questions,	How	to	do	it...,	How	it	works…,
See	also
byte	offset	filter	/	Configuring	byte	offset	and	payload	matching	filters,
How	to	do	it...,	How	it	works…,	There's	more...
payload	matching	filter	/	Configuring	byte	offset	and	payload
matching	filters,	How	to	do	it...,	How	it	works…,	There's	more...
IO	Graphs,	configuring	with	/	Configuring	IO	Graphs	with	filters	for
measuring	network	performance	issues,	How	to	do	it...,	Y-Axis
configuration,	How	it	works...,	There's	more...
configuring	/	Filter	configuration

filters	menu
selecting	from	/	Choosing	from	the	filters	menu
field	name	pane	/	Choosing	from	the	filters	menu

relation	pane	/	Choosing	from	the	filters	menu
value	pane	/	Choosing	from	the	filters	menu
predefined	values	pane	/	Choosing	from	the	filters	menu
range	(offset$	length)	pane	/	Choosing	from	the	filters	menu

FIN	/	How	it	works…
FIN-ACK	scanning	/	How	to	do	it...
Find	dialog

used,	for	searching	for	packets	/	Searching	for	packets	using	the	Find
dialog

firewall
monitoring	/	Monitoring	a	firewall

firewalls	/	There's	more...
First	Byte	response	time	/	Server	processing	time	events
fixed	pattern	broadcasts	/	Fixed	pattern	broadcasts
flags,	TCP

SYN	(synchronize)	/	Understanding	the	TCP	header	and	its	various
flags
ACK	(acknowledgement)	/	Understanding	the	TCP	header	and	its
various	flags
RST	(reset)	/	Understanding	the	TCP	header	and	its	various	flags
FIN	(finish)	/	Understanding	the	TCP	header	and	its	various	flags
PSH	(push)	/	Understanding	the	TCP	header	and	its	various	flags
URG	(urgent)	/	Understanding	the	TCP	header	and	its	various	flags
CWR	(congestion	window	reduced)	/	Understanding	the	TCP	header
and	its	various	flags

flags	field	/	How	it	works...
flgs	/	How	it	works...
flow	control	mechanism	/	The	flow	control	mechanism
Flow	Control	mechanism

about	/	TCP	Zero	Window,	Window	Full,	Window	Change,	and	other
Window	indicators

Flow	Graph
configuring,	to	view	TCP	flows	/	Configuring	Flow	Graph	for	viewing
TCP	flows,	There's	more...

flow	graphs
about	/	Flow	graphs

Flow	Graph	window	/	How	to	do	it...

Follow	SSL	Stream	window
about	/	Following	TCP/UDP/SSL	streams

Follow	TCP	Stream
about	/	HTTP	flow	analysis	and	the	Follow	TCP	Stream	window,	How
to	do	it...,	How	it	works...

Follow	TCP	Stream	window
about	/	Following	TCP/UDP/SSL	streams

Follow	UDP	Stream	window
about	/	Following	TCP/UDP/SSL	streams

fragmentation
issues	/	Finding	fragmentation	problems,	How	to	do	it...,	How	it
works...,	There's	more...

Fragment	offset	/	How	it	works...
frame.time_delta	/	Getting	ready
frame.time_delta_displayed	/	Getting	ready
FTP

issues,	analyzing	/	Analyzing	FTP	problems,	How	to	do	it...,	How	it
works...,	There's	more...
Active	mode	(ACTV)	/	Analyzing	FTP	problems
Passive	mode	(PASV)	/	Analyzing	FTP	problems

FTP	communications
dissecting	/	Dissecting	FTP	communications
passive	mode	/	Passive	mode
active	mode	/	Active	mode

FTP	display	filters	/	FTP	display	filters
FTP	packets

Dissecting	/	Dissecting	FTP	packets
Full	Duplex	(FDX)	/	How	it	works...
functional	issues

troubleshooting	/	Troubleshooting	functional	issues

G
gateway	<Host	name	or	address>	filter	/	Getting	ready
generated	broadcast	storm

characteristics	/	A	device	that	generates	Broadcasts
GeoIP

about	/	Configuring	of	IPv4	and	IPv6	Preferences
URL	/	There's	more...,	Getting	ready
using,	to	lookup	physical	locations	/	Using	GeoIP	to	look	up	physical
locations	of	the	IP	address,	How	to	do	it...,	How	it	works...,	There's
more...

GET	/	HTTP	methods
global	failure	code	/	6xx	codes	–	global	failure
Google

reference	link	/	Dissecting	DNS	query/response,	Unusual	DNS	traffic
Google	web	page

accesses,	gaphing	/	Graphing	number	of	accesses	to	the	Google	web
page

Graphical	Ping	tools
URL	/	There's	more...

graph	improvements	/	Graph	improvements
gratuitous	ARP	/	Gratuitous	ARP
gtk

URL	/	Useful	Wireshark	links

H
H.225	/	How	it	works...
H.323	/	How	it	works...
Half-Duplex	(HDX)	/	How	it	works...
half-open	scan	(SYN)

performing	/	Half-open	scan	(SYN)
open	state	/	Half-open	scan	(SYN)
closed	state	/	Half-open	scan	(SYN)
filtered	state	/	Half-open	scan	(SYN)

half-split	troubleshooting
about	/	Half-split	troubleshooting	and	other	logic
advantages	/	Half-split	troubleshooting	and	other	logic

handshake_failure	/	How	to	do	it...
HEAD	/	HTTP	methods
header	fields,	TCP

source	port	/	Understanding	the	TCP	header	and	its	various	flags
destination	port	/	Understanding	the	TCP	header	and	its	various	flags
sequence	number	/	Understanding	the	TCP	header	and	its	various	flags
acknowledgement	number	/	Understanding	the	TCP	header	and	its
various	flags
data	offset	/	Understanding	the	TCP	header	and	its	various	flags

Header	length	(HL)	/	How	it	works...
header	length	field	/	How	it	works...
header	types,	IEEE	802.11	packet	structure

management	frames	/	The	IEEE	802.11	packet	structure
control	frames	/	The	IEEE	802.11	packet	structure
data	frames	/	The	IEEE	802.11	packet	structure

hop
about	/	WAN	links

host
configuring	/	Configuring	Ethernet,	ARP,	host,	and	network	filters

host	<host>	filter	/	Getting	ready
Host	field	/	Host
hosts

configuring	/	Summary,	Getting	ready,	How	to	do	it...,	There's	more...

HP	IMC
URL	/	SNMP	platforms

HP	OpenView
URL	/	SNMP	platforms

HTTP
about	/	Introduction
issues,	analyzing	/	Analyzing	HTTP	problems,	How	to	do	it...
informational	codes	/	Informational	codes
success	codes	/	Success	codes
redirect	codes	/	Redirect	codes
client	codes	/	Client	errors
server	errors	/	Server	errors

HTTP	debuggers	/	HTTP	debuggers
HTTP	display	filters	/	HTTP	display	filters
HTTP	error	code

URL	/	Troubleshooting	application-based	issues
HTTP	filters

name	based	filters	/	How	to	do	it...
request	methods	filters	/	How	to	do	it...
error	codes	filters	/	How	to	do	it...
HTTP	methods	/	HTTP	methods
status	codes	/	Status	codes

HTTP	headers	fields
custom	/	Custom	HTTP	headers	fields,	How	it	works...

HTTP	methods
about	/	HTTP	methods
OPTIONS	/	HTTP	methods
GET	/	HTTP	methods
HEAD	/	HTTP	methods
POST	/	HTTP	methods
DELETE	/	HTTP	methods
PUT	/	HTTP	methods
TRACE	/	HTTP	methods
CONNECT	/	HTTP	methods

HTTP	Methods
about	/	HTTP	Methods
GET	/	HTTP	Methods

HEAD	/	HTTP	Methods
POST	/	HTTP	Methods
OPTIONS	/	HTTP	Methods
PUT	/	HTTP	Methods
DELETE	/	HTTP	Methods
CONNECT	/	HTTP	Methods

HTTP	objects
about	/	Exporting	HTTP	objects
exporting	/	How	to	do	it...,	How	it	works...

HTTP	preferences
configuring	/	Configuring	HTTP	preferences

HTTPS
about	/	Introduction

HTTPS	sessions
monitoring	/	How	to	do	it...,	How	it	works...

HTTP	tool
using,	from	statistics	menu	/	Using	the	HTTP	tool	from	the	Statistics
menu,	How	to	do	it...

HTTP	traffic
filtering	/	Filtering	HTTP	traffic,	How	to	do	it...

HttpWatch
about	/	HttpWatch
URL	/	HttpWatch

HUB	/	Hub-based	networks
hub-based	networks	/	Hub-based	networks
hubbing	out	/	The	switched	environment
hubs	/	Monitoring	a	router
Hyper	Text	Transfer	Protocol	(HTTP)	/	The	layers	in	the	TCP/IP	model

about	/	Hyper	Text	Transfer	Protocol
working	/	How	it	works	–	request/response
request	/	Request
response	/	Response
unusual	HTTP	traffic	/	Unusual	HTTP	traffic

HyperText	Transfer	Protocol	(HTTP)
about	/	Layer	7	–	the	application	layer

Hypertext	Transfer	Protocol	(HTTP)
about	/	Hypertext	Transfer	Protocol

features	/	Hypertext	Transfer	Protocol
header	/	Hypertext	Transfer	Protocol
Host	field	/	Host
Request	Modifiers	/	Request	Modifiers

I
ICMP	/	Discovering	ICMP	and	TCP	SYN/Port	scans
ICMP	control	message	types

about	/	ICMP	control	message	types
ICMP	filters	/	IP	and	ICMP	filters
ICMP	pings

about	/	ICMP	pings
ICMP	ping	sweeps

about	/	ICMP	ping	sweeps
ICMP	redirects

about	/	ICMP	redirects
ICMP	traceroutes

about	/	ICMP	traceroutes
ICMPv6	packet	types

about	/	Internet	Control	Message	Protocol	Version	6
Echo	request	/	Internet	Control	Message	Protocol	Version	6
Echo	response	/	Internet	Control	Message	Protocol	Version	6
Multicast	listener	query	/	Internet	Control	Message	Protocol	Version	6
Multicast	listener	report	/	Internet	Control	Message	Protocol	Version	6
Multicast	listener	done	/	Internet	Control	Message	Protocol	Version	6
Router	solicitation	/	Internet	Control	Message	Protocol	Version	6
Router	advertisement	/	Internet	Control	Message	Protocol	Version	6
Neighbor	solicitation	/	Internet	Control	Message	Protocol	Version	6
Neighbor	advertisement	/	Internet	Control	Message	Protocol	Version	6
Redirect	message	/	Internet	Control	Message	Protocol	Version	6

icmp[icmptype]==<identifier>	filter	/	Getting	ready
IDS/IPS	/	There's	more...

URL	/	See	also
IEEE	802.11

about	/	Understanding	IEEE	802.11
standards	/	Understanding	IEEE	802.11
wireless	communications,	modes	/	Various	modes	in	wireless
communications
station	(STA)	/	Various	modes	in	wireless	communications
wireless	access	point	(AP)	/	Various	modes	in	wireless

communications
basic	service	set	(BSS)	/	Various	modes	in	wireless	communications
extended	service	set	(ESS)	/	Various	modes	in	wireless
communications
independent	basic	service	set	(IBSS)	/	Various	modes	in	wireless
communications
distribution	system	(DS)	/	Various	modes	in	wireless	communications
packet	structure	/	The	IEEE	802.11	packet	structure

IETF	/	How	it	works...
IGMP	Membership	Report

about	/	Internet	Group	Management	Protocol
IGMP	protocol	header

significant	fields	/	Internet	Group	Management	Protocol
illegal_parameter	/	How	to	do	it...
IMAP4

about	/	Analyzing	e-mail	traffic	and	troubleshooting	e-mail	problems	–
POP,	IMAP,	and	SMTP

information
retrieving,	through	TCP	stream	graphs	(Time-Sequence	(Stevens)
window)	/	Getting	information	through	TCP	stream	graphs	–	the	Time-
Sequence	(Stevens)	window,	How	to	do	it...,	How	it	works...
retrieving,	through	TCP	stream	graphs	(Time-Sequence	(tcp-trace)
window)	/	Getting	information	through	TCP	stream	graphs	–	the	Time-
Sequence	(tcp-trace)	window,	How	to	do	it...,	How	it	works...
retrieving,	through	TCP	stream	graphs	(Throughput	Graph	window)	/
Getting	information	through	TCP	stream	graphs	–	the	Throughput
Graph	window,	There's	more...
retrieving,	through	TCP	stream	graphs	(Round	Trip	Time	window)	/
Getting	information	through	TCP	stream	graphs	–	the	Round	Trip
Time	window,	How	to	do	it...,	There's	more...
retrieving,	through	TCP	stream	graphs	(Window	Scaling	Graph
window)	/	Getting	information	through	TCP	stream	graphs	–	the
Window	Scaling	Graph	window,	How	to	do	it...

informational	codes	/	Informational	codes
information	gathering

about	/	Information	gathering
PING	sweep,	performing	/	PING	sweep

half-open	scan	(SYN),	performing	/	Half-open	scan	(SYN)
OS	fingerprinting	/	OS	fingerprinting

information	security
about	/	Introduction

Initial	Sequence	Numbers	(ISN)	/	How	it	works
inSSIDer	/	How	to	do	it…
installation

Wireshark	/	Installing	Wireshark
Wireshark,	on	Windows	/	Installing	Wireshark	on	Windows
Wireshark,	on	Mac	OS	X	/	Installing	Wireshark	on	Mac	OS	X
Wireshark,	on	Linux/Unix	/	Installing	Wireshark	on	Linux/Unix

insufficient_security	/	How	to	do	it...
inter-frame	time	delta	statistics

monitoring	/	How	to	monitor	inter-frame	time	delta	statistics
internal_error	/	How	to	do	it...
Internet	Assigned	Numbers	Authority	(IANA)	/	How	it	works...
Internet	Control	Message	Protocol	(ICMP)

about	/	Address	Resolution	Protocol,	Internet	Control	Message
Protocol
pings	/	ICMP	pings
traceroutes	/	ICMP	traceroutes
control	message	types	/	ICMP	control	message	types
redirects	/	ICMP	redirects
Wireshark	ICMP	filters	/	Wireshark	ICMP	filters
significant	fields	/	Internet	Control	Message	Protocol	Version	6
Multicast	Listener	Discovery	(MLD)	/	Multicast	Listener	Discovery

Internet	Control	Message	Protocol	Version	6	(ICMPv6)
about	/	Internet	Control	Message	Protocol	Version	6

Internet	Engineering	Task	Force	(IETF)
about	/	Requests	for	Comments

Internet	Group	Management	Protocol	(IGMP)
about	/	Address	Resolution	Protocol,	Internet	Group	Management
Protocol
significant	fields	/	Internet	Group	Management	Protocol
interesting	fields	/	Internet	Group	Management	Protocol
Wireshark	IGMP	filters	/	Internet	Group	Management	Protocol

/	What	is	Wireshark?

Internet	Protocol	(TCP)	/	How	it	works
Internet	Protocol	Version	4	/	How	to	do	it...
Internet	Protocol	Version	4	(IPv4)

about	/	Internet	Protocol
Differentiated	Services	(DiffServ)	/	Internet	Protocol
Total	length	/	Internet	Protocol
Identification	(IP	ID)	/	Internet	Protocol
Flags	/	Internet	Protocol
Fragment	offset	/	Internet	Protocol
Time	to	Live	(TTL)	/	Internet	Protocol
Protocol	/	Internet	Protocol
Source	and	destination	IP	addresses	/	Internet	Protocol

Internet	Protocol	Version	6	(IPv6)
about	/	Internet	Protocol	Version	6
addressing	/	IPv6	addressing
address	types	/	IPv6	address	types
header	fields	/	IPv6	header	fields
transition	methods	/	IPv6	transition	methods

Internet	Relay	Chat	(IRC)	traffic	/	The	importance	of	baselining,
Identifying	unacceptable	or	suspicious	traffic
Internet	Service	Provider	(ISP)	/	Getting	ready
Intrusion	Detection	System	(IDS)	systems	/	Security	analysis	methodology
Intrusion	Detection	Systems	(IDS)	/	How	it	works...
Intrusion	Detection	Systems	/	Intrusion	Prevention	Systems	(IDSs/IPSs)	/
Getting	ready
INVITE	method	/	How	to	do	it...
IO	Graph	/	IO	Graph
IO	graph

creating	/	Graph	improvements
IO	graphs

working	with	/	Working	with	IO,	Flow,	and	TCP	stream	graphs
about	/	IO	graphs

IO	Graphs
tool	/	Introduction
configuring,	with	filters	/	Configuring	IO	Graphs	with	filters	for
measuring	network	performance	issues,	How	to	do	it...
throughput	measurements	/	Throughput	measurements	with	IO	Graph,

Getting	ready
throughput	measurements,	between	end	devices	/	Measuring
throughput	between	end	devices
application	throughput,	measuring	/	Measuring	application	throughput
configurations,	with	advanced	Y	Axis	parameters	/	Advanced	IO
Graph	configurations	with	advanced	Y-Axis	parameters,	How	to	do
it...
inter-frame	time	delta	statistics,	monitoring	/	How	to	monitor	inter-
frame	time	delta	statistics

IP-based	statistics
creating	/	Creating	IP-based	statistics,	How	to	do	it...

ip.addr	==	<IP	Address>	/	Getting	ready
ip.dst	==	<IP	Address>	/	Getting	ready
ip.len	<	<value>	/	Getting	ready
ip.len	=	<value>,	ip.len	>	<value>	/	Getting	ready
ip.src	==	<IP	Address>	/	Getting	ready
ip.ttl	==	<value>,	ip.ttl	<	value>	/	Getting	ready
ip.ttl	>	<value>	/	Getting	ready
ip.version	==	<4/6>	/	Getting	ready
ip6	proto	<protocol>	filter	/	Getting	ready
IP	addresses

working,	with	routers	/	IP	addresses	and	routers
IP	address	ranges	/	IP	networks	and	subnets
IP	conversations	statistics

about	/	IP	conversations	statistics
IP	destination	statistics

retrieving	/	How	to	do	it...
Iperf

URL	/	How	to	do	it...
IP	filters	/	IP	and	ICMP	filters
IPFIX

URL	/	The	NetFlow,	JFlow,	and	SFlow	analyzers
IP	geographical	location	databases

URL	/	How	it	works...
IP	networks

about	/	IP	networks	and	subnets
ip	or	IP6	filter	/	Getting	ready

IP	packet
factors	/	How	it	works...
ver	/	How	it	works...
Header	length	(HL)	/	How	it	works...
Type	of	Service	(ToS)	/	How	it	works...
Differentiated	Services	(DiffServ)	/	How	it	works...
length	field	/	How	it	works...
16-bit	identifier	/	How	it	works...
Fragment	offset	/	How	it	works...
flgs	/	How	it	works...
Time	to	live	(TTL)	/	How	it	works...
upper	layer	/	How	it	works...
checksum	field	/	How	it	works...
32-bit	source	and	destination	IP	addresses	/	How	it	works...
options	field	/	How	it	works...

ip	proto	<protocol	code>	filter	/	Getting	ready
IP	statistics	tools	/	IP	statistics	tools
IP	traffic

analysis	tools	/	Using	IP	traffic	analysis	tools
IP	statistics	tools	/	IP	statistics	tools
working	/	How	it	works...

IPTV	applications
scenarios,	troubleshooting	/	Troubleshooting	scenarios	for	IPTV
applications,	How	to	do	it...

IPv4	host	address	/	How	to	do	it...
IPv4	multicasts	/	IPv4	multicasts
IPv4	network	address	/	How	to	do	it...
IPv4	preferences

configuring	/	Configuring	of	IPv4	and	IPv6	Preferences
IPv6	addressing

about	/	IPv6	addressing
rules	/	IPv6	addressing

IPv6	address	types
about	/	IPv6	address	types
Unicast	/	IPv6	address	types
Multicast	/	IPv6	address	types
Anycast	/	IPv6	address	types

IPv6	header	fields
about	/	IPv6	header	fields
version	/	IPv6	header	fields
traffic	class	/	IPv6	header	fields
flow	label	/	IPv6	header	fields
payload	length	/	IPv6	header	fields
next	header	/	IPv6	header	fields
hop	limit	/	IPv6	header	fields
source	and	destination	addresses	/	IPv6	header	fields

IPv6	host	address	/	How	to	do	it...
IPv6	multicasts	/	IPv6	multicasts
IPv6	network	address	/	How	to	do	it...
IPv6	preferences

configuring	/	Configuring	of	IPv4	and	IPv6	Preferences
IPv6	transition	methods

about	/	IPv6	transition	methods
6to4	tunneling	/	IPv6	transition	methods
Teredo	tunneling	/	IPv6	transition	methods
ISATAP	tunneling	/	IPv6	transition	methods
Wireshark	IPv6	filters	/	Wireshark	IPv6	filters

ISATAP	tunneling	method
about	/	IPv6	transition	methods

iterative	mode
about	/	There's	more...

ITU-T	/	How	it	works...

J
JFlow

URL	/	The	NetFlow,	JFlow,	and	SFlow	analyzers
/	The	NetFlow,	JFlow,	and	SFlow	analyzers
jitter

monitoring,	Wireshark	used	/	Monitoring	jitter	and	delay	using
Wireshark,	How	to	do	it...,	How	it	works...,	There's	more...
problems,	discovering	/	Discovering	delay/jitter-related	application
problems,	How	to	do	it...,	How	it	works...

Juniper
URL	/	The	NetFlow,	JFlow,	and	SFlow	analyzers

Juniper	Jflow
URL	/	See	also

L
LAN	switch

about	/	What	is	Wireshark?
LAN	switch	vendors	/	A	brief	overview	of	the	TCP/IP	model
Layer	4	filters	/	Getting	ready
layers,	TCP/IP	model

about	/	The	layers	in	the	TCP/IP	model
Application	Layer	/	The	layers	in	the	TCP/IP	model
Transport	Layer	/	The	layers	in	the	TCP/IP	model
Internet	layer	/	The	layers	in	the	TCP/IP	model
Link	Layer	/	The	layers	in	the	TCP/IP	model

length	field	/	How	it	works...
Libpcap

URL	/	The	Wireshark	GUI
Linux/Unix

Wireshark,	installing	/	Installing	Wireshark	on	Linux/Unix
live	capture

auto	scrolling	/	Auto	scrolling	in	live	capture
LOAD	(*)	/	Getting	ready
Load	Distribution

viewing,	on	Web	/	How	to	do	it...
viewing,	on	specific	website	/	How	to	do	it...

logical	operators
AND/&&	/	Display	filters
OR/||	/	Display	filters
NOT/!	/	Display	filters

lookup	physical	locations
GeoIP,	using	/	Using	GeoIP	to	look	up	physical	locations	of	the	IP
address,	How	to	do	it...,	How	it	works...,	There's	more...

M
$,	modifier	/	How	it	works...
(),	modifier	/	How	it	works...
*,	modifier	/	How	it	works...
+,	modifier	/	How	it	works...
?,	modifier	/	How	it	works...
MAC-based	attacks

discovering	/	Discovering	MAC-	and	ARP-based	attacks,	How	to	do
it...,	There's	more...

MAC	addresses
obtaining	/	Obtaining	MAC	addresses,	Obtaining	network	service	IP
addresses

MAC	or	IP	address	scans
about	/	Identifying	unacceptable	or	suspicious	traffic

Mac	OS	X
Wireshark,	installing	/	Installing	Wireshark	on	Mac	OS	X

macros
configuring	/	Configuring	macros,	How	to	do	it...

Mail	Filters	/	There's	more...
URL	/	See	also

main	toolbar
about	/	Main	Toolbar

main	window
configuring	/	Configuring	the	main	window

malformed	packets
about	/	Malformed	packets

/	How	to	do	it...
malicious	traffic

inspecting	/	Inspecting	malicious	traffic
Man-in-the-Middle	attacks	/	ARP	poisoning	and	Man-in-the-Middle	attacks
Man-in-the-middle	attacks	/	How	it	works...
Manageengine

URL	/	SNMP	platforms
management	frames

about	/	The	IEEE	802.11	packet	structure

beacon	frame	/	The	IEEE	802.11	packet	structure
authentication	frame	/	The	IEEE	802.11	packet	structure
association	request	frame	/	The	IEEE	802.11	packet	structure
associate	response	frame	/	The	IEEE	802.11	packet	structure
deauthentication	frame	/	The	IEEE	802.11	packet	structure
disassociation	frame	/	The	IEEE	802.11	packet	structure
probe	request	frame	/	The	IEEE	802.11	packet	structure
probe	response	frame	/	The	IEEE	802.11	packet	structure
reassociation	(request/response)	frame	/	The	IEEE	802.11	packet
structure

Marker	(M)	/	RTP	principles	of	operation
Master	Key	exchange	/	WPA-Enterprise
MAX	(*)	/	Getting	ready
Maximum	Segment	Size	(MSS)	/	How	it	works...,	How	it	works...
maximum	segment	size	(MSS)	/	Understanding	the	TCP	header	and	its
various	flags
Mbit/s	field	/	How	to	do	it...
Mergecap

about	/	Merging	trace	files	with	Mergecap
used,	for	merging	trace	files	/	Merging	trace	files	with	Mergecap
batch	file	/	Mergecap	batch	file

Mergecap.exe
about	/	Wireshark	command-line	utilities

Mergecap	options
reference	link	/	Mergecap	batch	file

Message	integrity	check	(MIC)	/	WPA-Personal
MetaGeek

reference	link	/	Wireless	interference	and	strength
methodology

troubleshooting	/	Troubleshooting	methodology
methodology	troubleshooting

packet	analysis,	reasons	/	Troubleshooting	methodology
about	/	Troubleshooting	methodology
right	information,	gathering	/	Gathering	the	right	information
general	nature	of	problem,	identifying	/	Establishing	the	general	nature
of	the	problem
half-split	troubleshooting	/	Half-split	troubleshooting	and	other	logic

methods
about	/	Getting	ready

MIN	(*)	/	Getting	ready
Mini	Protocol	Analyzer

URL	/	Network	analysers
modes,	wireless	communications

about	/	Various	modes	in	wireless	communications
infrastructure/managed	mode	/	Various	modes	in	wireless
communications
Ad	Hoc	mode	/	Various	modes	in	wireless	communications
master	mode	/	Various	modes	in	wireless	communications
monitor	mode	/	Various	modes	in	wireless	communications
wireless	interference	/	Wireless	interference	and	strength
strength	/	Wireless	interference	and	strength

modifiers
^	/	How	it	works...
$	/	How	it	works...
|	/	How	it	works...
()	/	How	it	works...
*	/	How	it	works...
+	/	How	it	works...
?	/	How	it	works...
{n}	/	How	it	works...
{n,}	/	How	it	works...
{n,m}	/	How	it	works...

MRTG
URL	/	SNMP	platforms

MS-TS
issues,	analyzing	/	Analyzing	MS-TS	and	Citrix	communications
problems	,	How	to	do	it...,	There's	more…

multicast	/	Getting	ready
Multicast	addresses

about	/	IPv6	address	types
Multicast	Listener	Discovery	(MLD)

about	/	Multicast	Listener	Discovery
Wireshark	ICMPv6	filters	/	Wireshark	ICMPv6	filters

multimedia	applications

about	/	Introduction
Multiple-Input	Multiple-output	(MIMO)	/	Understanding	IEEE	802.11
Multiple	Input	Multiple	Output	(MIMO)	/	How	it	works…
Multiple	Spanning	Tree	(MST)	/	Analyzing	Spanning	Tree	Protocols
Multi	Protocol	Label	Switching	(MPLS)

about	/	Finding	out	what	is	running	over	your	network
Multiprotocol	Label	Switching	(MPLS)

about	/	TCP	options
|,	modifier	/	How	it	works...

N
Nagious

URL	/	SNMP	platforms
Namebench

URL	/	The	resolving	process
name	resolution

about	/	Name	Resolution
changing	/	Configuring	the	name	resolution

Name	Resolution
about	/	Endpoints

Name	service	(port	137)	/	Analyzing	problems	in	the	NetBIOS	protocols
Neighbor	Solicitation	ICMPv6	packet	/	Internet	Control	Message	Protocol
Version	6
net	<net>/<len>	filter	/	Getting	ready
net	<net>	filter	/	Getting	ready
net	<net>	mask	<netmask>	filter	/	Getting	ready
NetBIOS	Datagram	Distribution	Service	(NBDS)	/	How	it	works...
Net	BIOS	Name	Service	(NBNS)	/	How	it	works...
NetBIOS	Name	Service	(NBNS)	/	How	it	works...
NetBIOS	protocols

issues,	analyzing	/	Analyzing	problems	in	the	NetBIOS	protocols,
How	to	do	it...,	General	tests,	Specific	issues,	How	it	works...
services	/	Analyzing	problems	in	the	NetBIOS	protocols
Name	service	(port	137)	/	Analyzing	problems	in	the	NetBIOS
protocols
Datagram	distribution	service	(port	138)	/	Analyzing	problems	in	the
NetBIOS	protocols
Session	service	(port	139)	/	Analyzing	problems	in	the	NetBIOS
protocols
general	tests	/	General	tests
specific	issues	/	Specific	issues,	How	it	works...
application,	freezing	/	Example	1	–	application	freezing
broadcast	storm	/	Example	2	–	broadcast	storm	caused	by	SMB

NetBIOS	Server	Message	Block	(SMB)	/	How	it	works...
NetBIOS	Session	Service	(NBSS)	/	How	it	works...

Netcat	(nc)
for	Linux,	URL	/	Other	stuff

NetFlow	/	The	NetFlow,	JFlow,	and	SFlow	analyzers
network

issues,	analyzing	/	Finding	out	what	is	running	over	your	network,
How	to	do	it...

Network	Access	Control	(NAC)	/	There's	more...
URL	/	See	also

Network	Basic	Input/Output	System	(NetBIOS)
about	/	Layer	5	–	the	session	layer

network	connection
bandwidth,	measuring	over	/	Measuring	bandwidth	and	throughput	per
user	and	per	application	over	a	network	connection,	How	to	do	it...,
See	also
throughput,	measuring	over	/	Measuring	bandwidth	and	throughput	per
user	and	per	application	over	a	network	connection,	How	to	do	it...,
See	also

network	filters
configuring	/	Summary,	Getting	ready,	How	to	do	it...,	There's	more...

network	interface
selecting	/	Selecting	a	network	interface,	Selecting	the	correct	network
interface

Network	Interface	Card	(NIC)	/	Installing	Wireshark	on	Windows,	The
layers	in	the	TCP/IP	model,	Getting	ready

about	/	Layer	1	–	the	physical	layer,	Endpoints
network	interfaces

enabling	/	Enabling	network	interfaces
network	latencies

troubleshooting	/	Troubleshooting	slow	Internet	and	network	latencies
network	layer,	OSI

about	/	Layer	3	–	the	network	layer
Internet	Protocol	/	Internet	Protocol
Address	Resolution	Protocol	(ARP)	/	Address	Resolution	Protocol

network	layer	protocols
about	/	Network	layer	protocols
Wireshark	IPv4	filters	/	Network	layer	protocols
Internet	Group	Management	Protocol	(IGMP)	/	Internet	Group

Management	Protocol
Internet	Control	Message	Protocol	(ICMP)	/	Internet	Control	Message
Protocol
Internet	Protocol	Version	6	(IPv6)	/	Internet	Protocol	Version	6
Internet	Control	Message	Protocol	Version	6	(ICMPv6)	/	Internet
Control	Message	Protocol	Version	6

Network	Mapper	(Nmap)
about	/	Security	assessment	tools
URL	/	Security	assessment	tools

NetworkMiner
URL	/	There's	more...

Network	Time	Protocol	(NTP)	/	Why	use	Wireshark?,	How	it	works...
network	traffic

clear	text	passwords	/	Identifying	unacceptable	or	suspicious	traffic
clear	text	data	/	Identifying	unacceptable	or	suspicious	traffic
password	cracking	attempts	/	Identifying	unacceptable	or	suspicious
traffic
maliciously	formed	packets	/	Identifying	unacceptable	or	suspicious
traffic
phone	home	traffic	/	Identifying	unacceptable	or	suspicious	traffic
flooding	or	Denial	of	Service	(DOS)	attacks	/	Identifying	unacceptable
or	suspicious	traffic
subversive	activities	/	Identifying	unacceptable	or	suspicious	traffic

Next	Header	code	/	IPv6	header	fields
Nmap

reference	link	/	Half-open	scan	(SYN)
Nmap.org	web	page

URL	/	See	also
Nmap	security	scanner

URL	/	Other	stuff
notes	events

about	/	Notes	events	and	understanding	them,	How	to	do	it...,	How	it
works...

notes	tab	/	How	to	do	it...
no_renegotiation	/	How	to	do	it...
Null	Function	packets	/	WEP-open	key
{n,m},	modifier	/	How	it	works...

{n,},	modifier	/	How	it	works...
{n},	modifier	/	How	it	works...

O
offset	filter

structure	/	How	it	works…
OpenNMS

URL	/	SNMP	platforms
open	source	Cacti

URL	/	SNMP	platforms
OPTIONS	/	HTTP	methods
options	field	/	How	it	works...
Orthogonal	Frequency	Division	Multiplexing	(OFDM)	/	Understanding
IEEE	802.11
OS	fingerprinting

about	/	OS	fingerprinting,	OS	fingerprinting
active	fingerprinting	/	OS	fingerprinting
passive	fingerprinting	/	OS	fingerprinting

OSI	layers
about	/	The	seven	OSI	layers
physical	layer	/	Layer	1	–	the	physical	layer
data-link	layer	/	Layer	2	–	the	data-link	layer
network	layer	/	Layer	3	–	the	network	layer
transport	layer	/	Layer	4	–	the	transport	layer
session	layer	/	Layer	5	–	the	session	layer
presentation	layer	/	Layer	6	–	the	presentation	layer
application	layer	/	Layer	7	–	the	application	layer

OSI	model
about	/	The	OSI	model	–	why	it	matters,	The	OSI	and	DARPA
reference	models
importance	/	The	OSI	model	–	why	it	matters
comparing,	with	DARPA	/	The	OSI	model	–	why	it	matters
network	protocols	/	Understanding	network	protocols

out-of-order	packet
about	/	Getting	ready

out-of-order	segments
about	/	TCP	out-of-order	packet	events

Outlook	Web	Access	(OWA)

about	/	Analyzing	e-mail	traffic	and	troubleshooting	e-mail	problems	–
POP,	IMAP,	and	SMTP

P
%	Packets	field	/	How	to	do	it...
packet	analysis

with	Wireshark	/	An	introduction	to	packet	analysis	with	Wireshark
packet	analysis,	Wireshark	used

performing	/	How	to	do	packet	analysis
about	/	An	introduction	to	packet	analysis	with	Wireshark
aspects	/	An	introduction	to	packet	analysis	with	Wireshark

packet	capture
performing	/	Performing	your	first	packet	capture,	Performing	a	packet
capture,	Performing,	verifying,	and	saving	a	good	packet	capture
noise,	filtering	/	Filtering	out	the	noise
display	filter,	applying	/	Applying	a	display	filter
packet	trace,	saving	/	Saving	the	packet	trace
capture	point,	picking	/	Picking	the	best	capture	point
verifying	/	Verifying	a	good	capture,	Performing,	verifying,	and	saving
a	good	packet	capture
bulk	capture	file,	saving	/	Saving	the	bulk	capture	file
conversations	of	interest,	isolating	/	Isolating	conversations	of	interest
location,	determining	/	Preparing	the	tools	and	approach
saving	/	Performing,	verifying,	and	saving	a	good	packet	capture

packet	capture	point
selecting	/	Picking	the	best	capture	point
user	location	/	User	location
server	location	/	Server	location
other	locations	/	Other	capture	locations
mid-network	captures	/	Mid-network	captures

packet	colorization
about	/	Colorization	and	coloring	rules,	Packet	colorization
coloring	rules	/	Colorization	and	coloring	rules

packet	comments	tab	/	How	to	do	it...
Packet	Counter	statistics	/	How	to	do	it...
Packet	Details	pane

data	rate	/	Wireless	networking
channel	frequency	/	Wireless	networking

channel	type	/	Wireless	networking
RF	signal	and	noise	levels	/	Wireless	networking

packet	list
colorizing	/	Colorizing	the	packet	list

packets
switching	/	Switching	and	routing	packets
routing	/	Switching	and	routing	packets
capturing,	on	high	traffic	rate	links	/	Capturing	packets	on	high	traffic
rate	links
marking	/	Marking	and	ignoring	packets
ignoring	/	Marking	and	ignoring	packets
filtered	traffic,	saving	/	Saving	the	filtered	traffic
searching,	Find	dialog	used	/	Searching	for	packets	using	the	Find
dialog
traffic	colorization	/	Colorize	traffic

packets	field	/	How	to	do	it...
packet	structure,	IEEE	802.11

about	/	The	IEEE	802.11	packet	structure
RTS/CTS	/	RTS/CTS

packet	timestamps
working	with	/	Working	with	packet	timestamps
saving	/	How	Wireshark	saves	timestamps
time	display	options	/	Wireshark	time	display	options
time	column,	adding	/	Adding	a	time	column
conversation	versus	a	displayed	packet	time	option	/	Conversation
versus	displayed	packet	time	options
time	display	option,	selecting	/	Choosing	the	best	Wireshark	time
display	option
Time	Reference	option,	using	/	Using	the	Time	Reference	option

packet	trace
saving	/	Saving	the	packet	trace

Padding	(P)	/	RTP	principles	of	operation
Pairwise	Transient	Key	(PTK)	/	WPA-Personal
parameter	column

adding	/	Adding	a	parameter	column
parameter	we	filter	/	What	is	the	parameter	we	filter?
Passive	mode	(PASV)	/	Analyzing	FTP	problems

Password-based	key	derivation	function	(PBKDF2)	/	Summary
password-cracking	traffic

about	/	Password-cracking	traffic
payload	matching	filters

configuring	/	Configuring	byte	offset	and	payload	matching	filters,
How	to	do	it...,	How	it	works…,	There's	more...

Payload	type	/	RTP	principles	of	operation
Pcap	drivers

URL	/	The	Wireshark	GUI
PDML	(*.pdml)	/	Saving	data	in	various	formats
performance	analysis	methodology

about	/	Performance	analysis	methodology
poor	application	performance,	reasons	/	Top	five	reasons	for	poor
application	performance

phone	home	traffic
about	/	Phone	home	traffic

physical	connectivity
confirming	/	Confirming	physical	connectivity

physical	layer,	OSI
about	/	Layer	1	–	the	physical	layer
Ethernet	standard	/	Layer	1	–	the	physical	layer
RJ-45	standard	/	Layer	1	–	the	physical	layer
Cat	5	(Cat	5e	or	Cat	6)	cables	standard	/	Layer	1	–	the	physical	layer
100Base-T,	1000Base-T,	and	100Base-FX	/	Layer	1	–	the	physical
layer
single-mode	and	multimode	fiber	optic	cables	/	Layer	1	–	the	physical
layer

ping	sweep	attack
performing	/	PING	sweep

Plain	text	(*.txt)	/	Saving	data	in	various	formats
Plixer

URL	/	SNMP	platforms
Point	to	Pont	(PPP)	/	The	layers	in	the	TCP/IP	model
poor	performance	reasons,	application

about	/	Top	five	reasons	for	poor	application	performance
tools,	preparing	/	Preparing	the	tools	and	approach
packet	capture	/	Performing,	verifying,	and	saving	a	good	packet

capture
initial	error	analysis	/	Initial	error	analysis
delays,	detecting	/	Detecting	and	prioritizing	delays
delays,	prioritizing	/	Detecting	and	prioritizing	delays
server	processing	time	events	/	Server	processing	time	events
application	turn’s	delay	/	Application	turn's	delay
network	path	latency	/	Network	path	latency
bandwidth	congestion	/	Bandwidth	congestion
data	transport	/	Data	transport

POP3
about	/	Analyzing	e-mail	traffic	and	troubleshooting	e-mail	problems	–
POP,	IMAP,	and	SMTP,	POP3	communications,	POP3

port-range	matching	filters
tcp	portrange	<p1>-<p2>	or	udp	portrange	<p1>-<p2>	/	Getting	ready
tcp	src	portrange	<p1>-<p2>	or	udp	src	portrange	<p1>-<p2>	/	Getting
ready
tcp	dst	portrange	<p1>-<p2>	or	udp	src	portrange	<p1>-<p2>	/	Getting
ready

port	<port>	filter	/	Getting	ready
port	mirror	/	Hub-based	networks
port	mirroring	/	The	switched	environment
port	monitor	/	Hub-based	networks
port	states

disabled	/	Port	states
blocking	/	Port	states
listening	/	Port	states
learning	/	Port	states
forwarding	/	Port	states

POST	/	HTTP	methods
PostScript	(*.ps)	/	Saving	data	in	various	formats
predefined	values	pane	/	Choosing	from	the	filters	menu
preferences,	Wireshark

about	/	Wireshark	preferences
layout	/	Wireshark	preferences
columns	/	Wireshark	preferences
capture	/	Wireshark	preferences
filter	expressions	/	Wireshark	preferences

name	resolution	/	Wireshark	preferences
protocols	/	Wireshark	preferences
options	/	Wireshark	preferences

preferences	menu
user	interface,	configuring	/	Configuring	the	user	interface	in	the
Preferences	menu,	How	to	do	it...
columns,	adding	/	Changing	and	adding	columns
columns,	changing	/	Changing	and	adding	columns
capture	configuration,	changing	/	Changing	the	capture	configuration
name	resolution,	configuring	/	Configuring	the	name	resolution,	How
it	works...

presentation	layer,	OSI
about	/	Layer	6	–	the	presentation	layer

Pre	Shared	Key	(PSK)	/	WPA-Personal
previous	segment	loss

about	/	TCP	out-of-order	packet	events
previous	segment	lost

about	/	Getting	ready
previous	segment	not	captured

about	/	Getting	ready
private	IP	address	ranges	/	IP	networks	and	subnets
processes,	protocol	analyzer

collect	/	How	it	works
convert	/	How	it	works
analyze	/	How	it	works

profiles,	Wireshark
about	/	Wireshark	profiles
creating	/	Creating	a	Wireshark	profile
selecting	/	Selecting	a	Wireshark	profile

Proto	(protocol)	qualifiers	/	How	it	works...
protocol-specific	capture	filter	syntax

reference	link	/	Configuring	capture	filters
protocol-specific	display	filter	syntax

reference	link	/	The	display	filter	syntax
Protocol	data	unit	(PDU)	/	The	layers	in	the	TCP/IP	model
protocol	field	/	How	to	do	it...
protocol	filters

configuring	/	Configuring	specific	protocol	filters,	How	to	do	it...
HTTP	display	filters	/	HTTP	display	filters
DNS	display	filters	/	DNS	display	filters
FTP	display	filters	/	FTP	display	filters

Protocol	Hierarchy
about	/	Protocol	Hierarchy

Protocol	Hierarchy	tool
using,	from	statistics	menu	/	Using	the	Protocol	Hierarchy	tool	from
the	Statistics	menu,	How	to	do	it...,	There's	more...

Protocol	Hierarchy	window
protocol	field	/	How	to	do	it...
%	Packets	field	/	How	to	do	it...
packets	field	/	How	to	do	it...
%	Bytes	field	/	How	to	do	it...
bytes	field	/	How	to	do	it...
Mbit/s	field	/	How	to	do	it...
End	Packets	field	/	How	to	do	it...
End	Bytes	field	/	How	to	do	it...
End	Mbit/s	field	/	How	to	do	it...

protocol	preferences
configuring	/	Configuring	protocol	preferences,	Getting	ready
IPv6	preferences,	configuring	/	Configuring	of	IPv4	and	IPv6
Preferences
IPv4	preferences,	configuring	/	Configuring	of	IPv4	and	IPv6
Preferences
UDP,	configuring	/	Configuring	TCP	and	UDP
TCP,	configuring	/	Configuring	TCP	and	UDP

protocols,	Wireshark	preferences
about	/	Wireshark	preferences
HTTP	/	Wireshark	preferences
IEEE	802.11	/	Wireshark	preferences
IPv4	/	Wireshark	preferences
RTP	/	Wireshark	preferences
TCP	/	Wireshark	preferences
validate	TCP	checksum	if	possible	/	Wireshark	preferences
allow	subdissector	to	reassemble	TCP	streams	/	Wireshark	preferences
relative	sequence	numbers	/	Wireshark	preferences

track	number	of	bytes	in	flight	/	Wireshark	preferences
calculate	conversation	timestamps	/	Wireshark	preferences

protocols	on	Wikipedia
about	/	Protocols	on	Wikipedia
URL	/	Protocols	on	Wikipedia

protocol_version	/	How	to	do	it...
provisional/informational	codes	/	1xx	codes	–	provisional/informational
proxy	server	/	How	it	works...
PSH	/	How	it	works…
PSML	/	Saving	data	in	various	formats
PSML	(*.psml)	/	Saving	data	in	various	formats
PSTN

about	/	How	it	works...
PUT	/	HTTP	methods

Q
QOS	data	packet	/	WEP-open	key
qualifiers

type	/	How	to	use	capture	filters
direction	/	How	to	use	capture	filters
proto	/	How	to	use	capture	filters

R
Radio	Frequency	(RF)	/	Wireless	interference	and	strength
Radio	Frequency	Monitor	Mode	(RFMON)	/	Various	modes	in	wireless
communications
RADIUS	server	/	WPA-Enterprise
range	(offset$	length)	pane	/	Choosing	from	the	filters	menu
Rapid	Spanning	Tree	Protocol	(RSTP)	/	Analyzing	Spanning	Tree	Protocols
Rawshark.exe

about	/	Wireshark	command-line	utilities
Rcvr	window	size	field	/	How	it	works...
Read	filter

about	/	Command	Line-fu
real-world	CTF	challenges

solving	/	Solving	real-world	CTF	challenges
Real	time	transport	protocol	(RTP)	/	Session	Initiation	Protocol	and	Voice
Over	Internet	Protocol
Received	Signal	Strength	Indicator	(RSSI)	/	How	to	do	it…
receive	sequence	counter	(RSC)	/	WPA-Personal
record_overflow	/	How	to	do	it...
recovery	features

flow	control	mechanism	/	The	flow	control	mechanism
slow	Internet,	troubleshooting	/	Troubleshooting	slow	Internet	and
network	latencies
network	latencies,	troubleshooting	/	Troubleshooting	slow	Internet	and
network	latencies
client-side	latency	issues	/	Client-	and	server-side	latencies
server-side	latency	issues	/	Client-	and	server-side	latencies
bottleneck	issues,	troubleshooting	/	Troubleshooting	bottleneck	issues
application-based	issues,	troubleshooting	/	Troubleshooting
application-based	issues

recursive	mode
about	/	There's	more...

redirect	codes	/	Redirect	codes
redirection	codes	/	3xx	codes	–	redirection
redirect	server	/	How	it	works...

registrar	server	/	How	it	works...
relation	pane	/	Choosing	from	the	filters	menu
relative	sequence	numbers	/	How	it	works...
Remote	Desktop	Protocol	(RDP)	/	Analyzing	MS-TS	and	Citrix
communications	problems
Request-to-send	(RTS)	frame	/	The	IEEE	802.11	packet	structure
request	methods	filters	/	How	to	do	it...
Request	Modifiers

Connection	/	Request	Modifiers
Accept	/	Request	Modifiers
User-agent	/	Request	Modifiers
Accept-encoding	/	Request	Modifiers
Accept-language	/	Request	Modifiers
Cookie	/	Request	Modifiers
Accept-charset	/	Request	Modifiers
Accept-ranges	/	Request	Modifiers
Authorization	/	Request	Modifiers
Cache-control	/	Request	Modifiers
Content-length	/	Request	Modifiers
Content-type	/	Request	Modifiers
Date	/	Request	Modifiers
Expect	/	Request	Modifiers
If-match	/	Request	Modifiers
If-modified-since	/	Request	Modifiers
If-range	/	Request	Modifiers
IF-unmodified-since	/	Request	Modifiers
Max-forwards	/	Request	Modifiers
Proxy-authorization	/	Request	Modifiers
Range	/	Request	Modifiers
TE	/	Request	Modifiers
Via	/	Request	Modifiers
Wireshark	HTTP	filters	/	Wireshark	HTTP	filters

Requests	for	Comment	(RFC)
about	/	Requests	for	Comments

res	field	/	How	it	works...
retransmission

about	/	TCP	retransmission	–	where	do	they	come	from	and	why,	How

to	do	it...,	What	are	TCP	retransmissions	and	what	do	they	cause
to	multiple	destinations	/	Case	1	–	retransmissions	to	many
destinations
on	single	connection	/	Case	2	–	retransmissions	on	a	single	connection
patterns	/	Case	3	–	retransmission	patterns
due	to	non-responsive	application	/	Case	4	–	retransmission	due	to	a
non-responsive	application
due	to	delayed	variations	/	Case	5	–	retransmission	due	to	delayed
variations

Retransmission	Time	Out	(RTO)	/	How	to	do	it...,	How	it	works...
RFC	2246,	errors

close_modify	/	How	to	do	it...
unexpected_message	/	How	to	do	it...
bad_record_mac	/	How	to	do	it...
decryption_failed	/	How	to	do	it...
record_overflow	/	How	to	do	it...
decompression_failure	/	How	to	do	it...
handshake_failure	/	How	to	do	it...
bad_certificate	/	How	to	do	it...
unsupported_certificate	/	How	to	do	it...
certificate_revoked	/	How	to	do	it...
certificate_expired	/	How	to	do	it...
certificate_unknown	/	How	to	do	it...
illegal_parameter	/	How	to	do	it...
unknown_ca	/	How	to	do	it...
access_denied	/	How	to	do	it...
decrypt_error	/	How	to	do	it...
export_restriction	/	How	to	do	it...
protocol_version	/	How	to	do	it...
insufficient_security	/	How	to	do	it...
internal_error	/	How	to	do	it...
user_canceled	/	How	to	do	it...
no_renegotiation	/	How	to	do	it...

Riverbed	AirPcap	adapter
about	/	AirPcap	adapters
reference	link	/	AirPcap	adapters

Riverbed	Cascade

URL	/	Network	analysers
root	servers

URL	/	DNS	namespace
Round	Trip	Time	(RTT)	/	How	to	do	it...
round	trip	time	(RTT)	/	ICMP	pings,	Gathering	the	right	information,
Application	turn's	delay
Round	Trip	Time	Measurement	(RTTM)	/	How	it	works...
Round	Trip	Time	window

TCP	stream	graphs,	retrieving	/	Getting	information	through	TCP
stream	graphs	–	the	Round	Trip	Time	window,	How	it	works...

router
monitoring	/	Monitoring	a	router

routers
passing	through	/	Passing	through	routers

routing	problems
analyzing	/	Analyzing	routing	problems,	How	to	do	it...,	There's
more...

RPC	over	HTTPs	/	Analyzing	e-mail	traffic	and	troubleshooting	e-mail
problems	–	POP,	IMAP,	and	SMTP
RST	/	How	it	works…
RTCP	/	Analyzing	SIP	connectivity

about	/	Introduction,	How	it	works...
operation,	principles	/	The	RTCP	principle	of	operation,	There's
more...

RTCP	connectivity
analyzing	/	Analyzing	RTP/RTCP	connectivity,	How	to	do	it...

RTP
about	/	Introduction,	How	it	works...
operation,	principles	/	RTP	principles	of	operation

RTP	connectivity
analyzing	/	Analyzing	RTP/RTCP	connectivity,	How	to	do	it...

RTSP
about	/	Introduction
troubleshooting	/	Troubleshooting	RTSP,	Getting	ready,	How	to	do
it...,	How	it	works...
stream	/	There's	more...

S
S-Tag	(802.1ad)	/	There's	more…
SACK	/	How	it	works...
scanning

about	/	How	it	works...
scans,	security	analysis

about	/	Scans	and	sweeps
ARP	scans	/	ARP	scans
TCP	port	scans	/	TCP	port	scans
UDP	port	scans	/	UDP	port	scans

scenarios
troubleshooting,	for	video	and	surveillance	applications	/
Troubleshooting	scenarios	for	video	and	surveillance	applications,
How	to	do	it...,	How	it	works...
troubleshooting,	for	IPTV	applications	/	Troubleshooting	scenarios	for
IPTV	applications,	How	it	works...
troubleshooting,	for	video	conferencing	applications	/	Troubleshooting
scenarios	for	video	conferencing	applications,	How	to	do	it...

SCTP	/	How	it	works…
about	/	There's	more…

SDP	/	How	it	works...,	Analyzing	SIP	connectivity
about	/	How	it	works...

Second	Level	Domains	(SLDs)
URL	/	DNS	namespace

Seconds	Since	Beginning	of	Capture	/	How	to	do	it...
Seconds	Since	Epoch	/	How	to	do	it...
Seconds	Since	Previous	Captured	Packet	/	How	to	do	it...
Seconds	Since	Previous	Displayed	Packet	/	How	to	do	it...
Secure	File	Transfer	Protocol	(SFTP)	/	Dissecting	FTP	packets
Secure	FTP	(sftp)	/	Unusual	traffic
Secure	Shell	(SSH)	/	Unusual	traffic
security	analysis

about	/	Security	analysis	methodology
baselining	/	The	importance	of	baselining
security	assessment	tools	/	Security	assessment	tools

suspicious	traffic,	identifying	/	Identifying	unacceptable	or	suspicious
traffic
scans	/	Scans	and	sweeps
sweeps	/	Scans	and	sweeps
OS	fingerprinting	/	OS	fingerprinting
malformed	packets	/	Malformed	packets
phone	home	traffic	/	Phone	home	traffic
password-cracking	traffic	/	Password-cracking	traffic
unusual	traffic	/	Unusual	traffic

security	assessment	tools
about	/	Security	assessment	tools
Network	Mapper	(Nmap)	/	Security	assessment	tools

Security	Information	and	Event	Management	Systems	(SIEM)	/	Getting
ready
sequence	number	/	RTP	principles	of	operation
sequence	number	field	/	How	it	works...
server

monitoring	/	The	installation	process
server-side	latency	issues	/	Client-	and	server-side	latencies
server	error	codes	/	5xx	codes	–	server	error
server	errors	/	Server	errors
Server	Message	Block	(SMB)	/	How	it	works...
Server	Message	Block	(SMB)	protocols	/	Application	turn's	delay
service	provider	(SP)	/	There's	more...
Service	Provider	(SP)	/	Getting	ready
Service	Provider	(SP)	network	/	Monitoring	a	router
Service	Set	Identification	(SSID)	/	How	to	do	it…
Service	Set	Identifier	(SSID)	/	Various	modes	in	wireless	communications
Session	Initiation	Protocol	(SIP)	/	Session	Initiation	Protocol	and	Voice
Over	Internet	Protocol
session	layer,	OSI

about	/	Layer	5	–	the	session	layer
Session	service	(port	139)	/	Analyzing	problems	in	the	NetBIOS	protocols
SET_PARAMETER	/	There's	more...
Sevone

URL	/	The	NetFlow,	JFlow,	and	SFlow	analyzers
SFlow

URL	/	The	NetFlow,	JFlow,	and	SFlow	analyzers
sFlow

URL	/	See	also
Simple	Mail	Transfer	Protocol	(SMTP)	/	The	layers	in	the	TCP/IP	model

about	/	Simple	Mail	Transfer	Protocol
usual,	versus	unusual	SMTP	traffic	/	Usual	versus	unusual	SMTP
traffic
Session	Initiation	Protocol	(SIP)	/	Session	Initiation	Protocol	and
Voice	Over	Internet	Protocol
Voice	Over	Internet	Protocol	(VOIP)	/	Session	Initiation	Protocol	and
Voice	Over	Internet	Protocol
Voice	Over	Internet	Protocol	(VOIP)	traffic,	analyzing	/	Analyzing
VOIP	traffic
unusual	traffic	patterns	/	Unusual	traffic	patterns
encrypted	traffic	(SSL/TLS),	decrypting	/	Decrypting	encrypted	traffic
(SSL/TLS)

Simple	Network	Management	Protocol	(SNMP)	/	Monitoring	a	router,	The
layers	in	the	TCP/IP	model
Simtec	Limited

URL	/	HTTP	debuggers
SIP

about	/	How	it	works...
SIP	connectivity

analyzing	/	Analyzing	SIP	connectivity,	Getting	ready,	How	to	do	it...
analyzinmg	/	Analyzing	SIP	connectivity
1xx	codes	(provisional/informational	codes)	/	1xx	codes	–
provisional/informational
2xx	codes	(success	codes)	/	2xx	codes	–	success
3xx	codes	(redirection	codes)	/	3xx	codes	–	redirection
4xx	codes	(client	error	codes)	/	4xx	codes	–	client	error
4xx	codes	(server	error	codes)	/	5xx	codes	–	server	error
6xx	codes	(global	failure	codes)	/	6xx	codes	–	global	failure

SIP	servers
proxy	server	/	How	it	works...
redirect	server	/	How	it	works...
registrar	server	/	How	it	works...

Sliding	Window	mechanism

about	/	TCP	Zero	Window,	Window	Full,	Window	Change,	and	other
Window	indicators

slow	Internet
troubleshooting	/	Troubleshooting	slow	Internet	and	network	latencies

SMB	Mailslot	Protocol	/	A	device	that	generates	Broadcasts
SMPP	(Short	Message	Peer	to	Peer	protocol)	/	Graph	SMS	usage	–	finding
SMS	messages	sent	by	a	specific	subscriber
SMS	messages

by	specific	subscriber,	graphing	/	Graph	SMS	usage	–	finding	SMS
messages	sent	by	a	specific	subscriber

SMTP
about	/	Analyzing	e-mail	traffic	and	troubleshooting	e-mail	problems	–
POP,	IMAP,	and	SMTP,	SMTP	communications
status	codes,	URL	/	SMTP	communications
status	codes	/	SMTP	and	SMTP	error	codes	(RFC3463)

SNMP	platform	/	SNMP	platforms
SNMP	tools	/	SNMP	tools
Socket	Layer/Transport	Layer	Security	(SSL/TLS)

about	/	Analyzing	HTTPS	traffic	–	SSL/TLS	basics,	How	it	works...,
There's	more...

Solarwinds
URL	/	SNMP	tools

SolarWinds
URL	/	SNMP	platforms

SolarWinds	Engineering	toolset
URL	/	SNMP	tools

source	and	destination	ports	/	How	it	works...
SPAN	(Switched	Port	Analyzer)	/	Hub-based	networks
Spanning	Tree	Problems

about	/	Spanning	Tree	Problems
SPOOLS	/	How	it	works...
src	host	<host>	filter	/	Getting	ready
src	net	<net>	filter	/	Getting	ready
src	net	<net>	mask	<netmask>	filter	/	Getting	ready
src	port	<port>	filter	/	Getting	ready
STA	/	WPA-Enterprise
standards,	IEEE	802.11

about	/	Understanding	IEEE	802.11
802.11	/	Understanding	IEEE	802.11
802.11b	/	Understanding	IEEE	802.11
802.11a	/	Understanding	IEEE	802.11
802.11g	/	Understanding	IEEE	802.11
802.11n	/	Understanding	IEEE	802.11

start	window
configuring	/	An	introduction	to	packet	analysis	with	Wireshark,
Starting	our	first	capture
main	toolbar	/	Main	Toolbar
display	filter	toolbar	/	Display	Filter	Toolbar
status	bar	/	Status	Bar

statistics	menu
Summary	tool,	using	from	/	Using	the	Summary	tool	from	the
Statistics	menu,	How	to	do	it...,	How	it	works...
Protocol	Hierarchy	tool,	using	from	/	Using	the	Protocol	Hierarchy
tool	from	the	Statistics	menu,	How	to	do	it...,	There's	more...
Conversations	tool,	using	from	/	Using	the	Conversations	tool	from	the
Statistics	menu,	How	to	do	it...
Endpoints	tool,	using	from	/	Using	the	Endpoints	tool	from	the
Statistics	menu,	How	to	do	it...,	How	it	works...
HTTP	tool,	using	from	/	Using	the	HTTP	tool	from	the	Statistics
menu,	How	to	do	it...

Statistics	menu
about	/	The	Statistics	menu
using	/	Using	the	Statistics	menu
Protocol	Hierarchy	/	Protocol	Hierarchy

statistics	tool
about	/	Introduction
using	/	Introduction

status	bar
about	/	Status	Bar

status	codes
about	/	Status	codes
URL	/	Status	codes

SteelCentral	Packet	Analyzer
about	/	SteelCentral	Packet	Analyzer	Personal	Edition

standard	/	SteelCentral	Packet	Analyzer	Personal	Edition
Personal	Edition	/	SteelCentral	Packet	Analyzer	Personal	Edition
reference	link	/	SteelCentral	Packet	Analyzer	Personal	Edition

storm-control	action	{shutdown	|	trap}	command	/	There's	more…
STP

analyzing	/	Analyzing	Spanning	Tree	Protocols,	Getting	ready
about	/	Analyzing	Spanning	Tree	Protocols
version	types	/	Which	STP	version	is	running	on	the	network?
topology	change	/	Are	there	too	many	topology	changes?
working	/	How	it	works...
frame	fields	/	How	it	works...
port	states	/	Port	states
package	examples	/	There's	more…

STP	frame,	fields
Protocol	ID	/	How	it	works...
Version	/	How	it	works...
Message	Type	/	How	it	works...
flags	/	How	it	works...
Root	Path	Cost	/	How	it	works...
Bridge	ID	/	How	it	works...
Port	ID	/	How	it	works...
Message	Age	/	How	it	works...
Max.	Time	/	How	it	works...
Hello	Time	/	How	it	works...
Forward	Delay	/	How	it	works...

string	calculator
URL	/	See	also

subnets
about	/	IP	networks	and	subnets

substring	operator	filters
configuring	/	Configuring	substring	operator	filters

success	codes	/	Success	codes,	2xx	codes	–	success
SUM	(*)	/	Getting	ready
Summary	tool

using,	from	statistics	menu	/	Using	the	Summary	tool	from	the
Statistics	menu,	How	to	do	it...,	There's	more...

Summary	window	/	How	to	do	it...,	There's	more...

sweeps,	security	analysis
about	/	Scans	and	sweeps
ARP	sweeps	/	ARP	scans
ICMP	ping	sweeps	/	ICMP	ping	sweeps,	TCP	port	scans

switched	environment	/	The	switched	environment
Switched	Port	Analyzer	(SPAN)

about	/	Switch	port	mirroring
switch	monitoring

URL	/	See	also
switch	port	mirroring

about	/	Switch	port	mirroring
advantage	/	Switch	port	mirroring
diagrammatic	representation	/	Switch	port	mirroring

SYN	/	How	it	works…
Synchronization	source	(SSRC)	/	RTP	principles	of	operation
Synchronous	Digital	Hierarchy	(SDH)	/	There's	more...
Synchronous	Optical	Network	(SONet)	/	There's	more...
Syslog

URL	/	Syslog

T
6to4	tunneling	method

about	/	IPv6	transition	methods
TAP

about	/	Test	Access	Ports	and	switch	port	mirroring
diagrammatic	representation	/	Test	Access	Port

TAPs	/	Monitoring	a	router
TCP	/	The	layers	in	the	TCP/IP	model

about	/	Transmission	Control	Protocol,	Introduction,	The	transmission
control	protocol
flagsTopicnabout	/	TCP	flags
options	/	TCP	options
Wireshark	TCP	filters	/	Wireshark	TCP	filters
configuring	/	Configuring	TCP	and	UDP
configuration	/	Configuring	TCP	and	UDP	preferences	for
troubleshooting,	TCP	parameters,	How	it	works...
parameters	/	TCP	parameters
connection	issues	/	TCP	connection	problems,	Getting	ready,	How	to
do	it...,	How	it	works...
retransmission	/	TCP	retransmission	–	where	do	they	come	from	and
why
retransmission	to	multiple	destinations	/	Case	1	–	retransmissions	to
many	destinations
retransmission,	on	single	connection	/	Case	2	–	retransmissions	on	a
single	connection
retransmission,	patterns	/	Case	3	–	retransmission	patterns
retransmission,	due	to	non-responsive	application	/	Case	4	–
retransmission	due	to	a	non-responsive	application
retransmission,	due	to	delayed	variations	/	Case	5	–	retransmission	due
to	delayed	variations
Sequence/Acknowledge	mechanism	/	Regular	operation	of	the	TCP
Sequence/Acknowledge	mechanism
retransmissions	/	What	are	TCP	retransmissions	and	what	do	they
cause,	There's	more...
out-of	order	packet	events	/	TCP	out-of-order	packet	events,	When

will	it	happen?,	How	it	works...
Zero	Window	/	TCP	Zero	Window,	Zero	Window	Probe,	and	Zero
Window	Violation
Zero	Window	Probe	/	TCP	Zero	Window,	Zero	Window	Probe,	and
Zero	Window	Violation
Window	Update	/	TCP	Window	Update
Window	Full	/	TCP	Window	Full
Sliding	Window	mechanism	/	How	it	works...
resets	/	TCP	resets	and	why	they	happen,	How	to	do	it...
resets,	issues	/	Cases	in	which	reset	can	indicate	a	problem
header	/	Understanding	the	TCP	header	and	its	various	flags
flags	/	Understanding	the	TCP	header	and	its	various	flags
communicating	/	How	TCP	communicates
working	/	How	it	works
graceful	termination	/	Graceful	termination
RST	(reset)	packets	/	RST	(reset)	packets
relative,	verses	absolute	numbers	/	Relative	verses	Absolute	numbers
unusual	TCP	traffic	/	Unusual	TCP	traffic
analysis	flags,	checking	in	Wireshark	/	How	to	check	for	different
analysis	flags	in	Wireshark

tcp.analysis	/	Getting	ready
tcp.analysis.duplicate_ack	/	Getting	ready
tcp.analysis.retransmission	/	Getting	ready
tcp.analysis.retransmissions	/	Measuring	application	throughput
tcp.analysis.zero_window	/	Getting	ready,	Measuring	application
throughput
tcp.dstport	==	<value>	/	Getting	ready
tcp.flags	/	Getting	ready
tcp.flags.fin	==	1	/	Getting	ready
tcp.flags.reset	==	1	/	Getting	ready
tcp.port	==	<value>	/	Getting	ready
tcp.srcport	==	<value>	/	Getting	ready
tcp.streameq	2	/	Measuring	application	throughput
tcp.window_size_value	<	<value>	/	Getting	ready
TCP/IP	Guide

URL	/	Books
TCP/IP	model

overview	/	A	brief	overview	of	the	TCP/IP	model
layers	/	The	layers	in	the	TCP/IP	model

TCP/UDP	filters
configuring	/	Configuring	TCP/UDP	filters,	Getting	ready,	How	to	do
it...,	How	it	works...

TCP	attacks
discovering	/	Locating	smart	TCP	attacks,	How	to	do	it...,	There's
more...

TCP	conversations	statistics
about	/	TCP/UDP	conversations	statistics:

TCP	destination	statistics
retrieving	/	How	to	do	it...

tcp	dst	portrange	<p1>-<p2>	or	udp	src	portrange	<p1>-<p2>	filter	/
Getting	ready
tcpdump

about	/	tcpdump
website,	URL	/	tcpdump
Windows	version,	URL	/	tcpdump
tutorial,	URL	/	tcpdump
man	page,	URL	/	tcpdump

TCP	filters
types,	example	/	How	to	do	it...

TCP	flows
viewing,	Flow	Graph	configured	for	/	Configuring	Flow	Graph	for
viewing	TCP	flows,	How	it	works...

TCP	header
about	/	Transmission	Control	Protocol
source	and	Destination	ports	(2	bytes	each)	/	Transmission	Control
Protocol
sequence	number	(4	bytes)	/	Transmission	Control	Protocol
acknowledgment	number	(4	bytes)	/	Transmission	Control	Protocol
flags	(9	bits)	/	Transmission	Control	Protocol
Window	size	(2	bytes)	/	Transmission	Control	Protocol
significant	fields	/	Transmission	Control	Protocol,	Transmission
Control	Protocol
source	and	destination	ports	/	Transmission	Control	Protocol
sequence	number	/	Transmission	Control	Protocol

acknowledgment	number	/	Transmission	Control	Protocol
flags	/	Transmission	Control	Protocol
window	size	/	Transmission	Control	Protocol

TCP	packet
source	and	destination	ports	/	How	it	works...
sequence	number	field	/	How	it	works...
acknowledgement	number	field	/	How	it	works...
header	length	field	/	How	it	works...
res	field	/	How	it	works...
flags	field	/	How	it	works...
Rcvr	window	size	field	/	How	it	works...
checksum	field	/	How	it	works...
options	field	/	How	it	works...

TCP	port	filter
configuring	/	Practice	questions,	How	to	do	it...,	How	it	works…

tcp	portrange	<p1>-<p2>	or	udp	portrange	<p1>-<p2>	filter	/	Getting	ready
TCP	port	scans

about	/	Identifying	unacceptable	or	suspicious	traffic,	TCP	port	scans
TCP	retransmissions

in	stream,	monitoring	/	How	to	monitor	the	number	of	TCP
retransmissions	in	a	stream

TCP	sliding	window	mechanism	/	The	flow	control	mechanism
tcp	src	portrange	<p1>-<p2>	or	udp	src	portrange	<p1>-<p2>	filter	/
Getting	ready
TCP	stream	/	How	to	do	it...
TCP	StreamGraph

about	/	TCP	StreamGraph
round-trip	time	/	TCP	StreamGraph
throughput	/	TCP	StreamGraph

TCP	stream	graphs
about	/	TCP	stream	graphs
Round-trip	time	(RTT)	/	Round-trip	time	graphs
Throughput	graphs	/	Throughput	graphs
Time-Sequence	graph	(tcptrace)	/	The	Time-sequence	graph	(tcptrace)

TCP	streams
following	/	Follow	TCP	streams

/	TCP	streams

TCP	SYN/Port	scans
discovering	/	Discovering	ICMP	and	TCP	SYN/Port	scans,	How	to	do
it...,	How	it	works...,	See	also

TCP	tab
about	/	The	TCP	and	UDP	tabs

TCP	Window	Update	packet	/	Initial	error	analysis
TEARDOWN	command	/	There's	more...
telephony	and	multimedia	analysis	/	Getting	ready,	How	to	do	it...,	How	it
works...,	There's	more...
Temporal	Key	Integrity	Protocol	(TKIP)	/	WPA-Personal
Teredo	tunneling	method

about	/	IPv6	transition	methods
Test	Access	Point	(TAP)	/	Half-split	troubleshooting	and	other	logic
Text2pcap.exe

about	/	Wireshark	command-line	utilities
three-way	handshake	/	The	transmission	control	protocol
throughput

about	/	How	it	works...
measuring,	per	application	over	network	connection	/	Measuring
bandwidth	and	throughput	per	user	and	per	application	over	a	network
connection,	How	to	do	it...,	See	also
measuring,	per	user	over	network	connection	/	Measuring	bandwidth
and	throughput	per	user	and	per	application	over	a	network
connection,	How	to	do	it...,	See	also

Throughput	Graph	window
TCP	stream	graphs,	retrieving	/	Getting	information	through	TCP
stream	graphs	–	the	Throughput	Graph	window,	How	it	works...

Throughput	measurements
with	IO	Graph	/	Throughput	measurements	with	IO	Graph,	Getting
ready
between	end	devices	/	Measuring	throughput	between	end	devices
about	/	Measuring	application	throughput

Time-Sequence	(Stevens)	window
TCP	stream	graphs,	retrieving	/	Getting	ready,	How	to	do	it...,	There's
more...

Time-Sequence	(tcp-trace)	window
TCP	stream	graphs,	retrieving	/	Getting	information	through	TCP

stream	graphs	–	the	Time-Sequence	(tcp-trace)	window,	How	to	do
it...,	How	it	works...

Time-to-Live	(TTL)	field	/	ICMP	traceroutes
time	format

configuring	/	Getting	ready,	How	to	do	it...
timestamp	/	RTP	principles	of	operation
Timestamps	options	(TSopt)	/	How	it	works...
Time	to	live	(TTL)	/	How	it	works...
TLL	/	How	it	works...
toolbars

configuring	/	Configuring	toolbars
using	/	There's	more...

tools
about	/	Other	helpful	tools
HttpWatch	/	HttpWatch
SteelCentral	Packet	Analyzer	/	SteelCentral	Packet	Analyzer	Personal
Edition
AirPcap	Adapters	/	AirPcap	adapters

Top	Level	Domain	servers	(TLDs)
URL	/	DNS	namespace

total	bandwidth
measuring,	on	communication	link	/	Measuring	total	bandwidth	on	a
communication	link,	Getting	ready,	How	to	do	it...,	How	it	works...,
There's	more...

TRACE	/	HTTP	methods
trace	files

editing,	with	Editcap	/	Editing	trace	files	with	Editcap
managing,	with	Mergecap	/	Merging	trace	files	with	Mergecap

traffic
capturing,	with	Dumpcap	/	Capturing	traffic	with	Dumpcap
capturing,	with	Tshark	/	Capturing	traffic	with	Tshark

translation	/	Translation
Transmission	Control	Protocol	(TCP)

about	/	Transmission	Control	Protocol
/	How	it	works
transport	layer,	OSI

about	/	Layer	4	–	the	transport	layer

User	Datagram	Protocol	(UDP)	/	User	Datagram	Protocol
Transmission	Control	Protocol	/	Transmission	Control	Protocol

transport	layer	protocols
TCP	/	Transport	layer	protocols
UDP	/	Transport	layer	protocols

Transport	Layer	Security	(TLS)	/	Colorizing	the	packet	list
Trivial	File	Transfer	Protocol	(TFTP)	/	The	TFTP
Trivial	File	Transfer	Protocol	(TFTP)	traffic	/	The	importance	of	baselining
Tshark

about	/	Capturing	traffic	with	Tshark
used,	for	capturing	traffic	/	Capturing	traffic	with	Tshark

Tshark.exe
about	/	Wireshark	command-line	utilities

Tshark	options
reference	link	/	Capturing	traffic	with	Tshark

TTL
about	/	How	it	works...

TTL	field	/	There's	more...
Type	of	Service	(ToS)	/	How	it	works...
Type	Of	Service	(ToS)	/	Configuring	of	IPv4	and	IPv6	Preferences
type	qualifiers	/	How	it	works...

U
UDP	/	The	layers	in	the	TCP/IP	model

about	/	User	Datagram	Protocol,	Introduction,	The	User	Datagram
Protocol
Wireshark	UDP	filters	/	Wireshark	UDP	filters
configuring	/	Configuring	TCP	and	UDP
configuration	/	Getting	ready,	UDP	parameters
parameters	/	UDP	parameters
header	/	A	UDP	header
working	/	How	it	works
Dynamic	Host	Configuration	Protocol	(DHCP)	/	The	DHCP
Trivial	File	Transfer	Protocol	(TFTP)	/	The	TFTP
unusual	traffic	/	Unusual	UDP	traffic

udp.dstport	==	<value>	/	Getting	ready
udp.port	==	<value>	/	Getting	ready
udp.srcport	==	<value>	/	Getting	ready
UDP	conversations	statistics

about	/	TCP/UDP	conversations	statistics:
UDP	destination	statistics

retrieving	/	How	to	do	it...
UDP	header

source	and	destination	port	number	/	User	Datagram	Protocol,	User
Datagram	Protocol
length	/	User	Datagram	Protocol,	User	Datagram	Protocol
checksum	/	User	Datagram	Protocol,	User	Datagram	Protocol
fields	/	User	Datagram	Protocol,	User	Datagram	Protocol
about	/	A	UDP	header
source	port	field	/	A	UDP	header
destination	port	field	/	A	UDP	header
packet	length	field	/	A	UDP	header
checksum	field	/	A	UDP	header

UDP	port	filter
configuring	/	Practice	questions,	How	it	works…

UDP	port	scans
about	/	Identifying	unacceptable	or	suspicious	traffic,	UDP	port	scans

UDP	tab
about	/	The	TCP	and	UDP	tabs

unexpected_message	/	How	to	do	it...
Unicast	addresses

about	/	IPv6	address	types
Global	Unicast	/	IPv6	address	types
Link-local	/	IPv6	address	types
Unique	local	/	IPv6	address	types

Uniform	Resource	Identifier	(URI)	/	HTTP	Methods
Uniform	Resource	Locator	(URL)	/	Request
unknown_ca	/	How	to	do	it...
unsupported_certificate	/	How	to	do	it...
unusual	FTP	/	Unusual	FTP
unusual	traffic

about	/	Unusual	traffic
unusual	traffic	patterns

discovering	/	Discovering	unusual	traffic	patterns,	How	to	do	it...,	How
it	works...,	There's	more...

upper	layer	/	How	it	works...
USBPcap

about	/	USBPcap
User	Agent	(UA)

about	/	How	to	do	it...
User	Agent	Client	(UAC)	/	How	it	works...
User	Agents	(UAs)	/	Analyzing	SIP	connectivity
User	Agent	Server	(UAS)	/	How	it	works...
User	Datagram	Protocol	(UDP)

about	/	User	Datagram	Protocol
user	interface

configuring,	in	preferences	menu	/	Configuring	the	user	interface	in
the	Preferences	menu,	How	to	do	it...

user	interface	essentials
about	/	Wireshark	user	interface	essentials
title	/	Wireshark	user	interface	essentials
menu	/	Wireshark	user	interface	essentials
main	toolbar	(icons)	/	Wireshark	user	interface	essentials
display	filter	toolbar	/	Wireshark	user	interface	essentials

packet	list	pane	/	Wireshark	user	interface	essentials
packet	details	pane	/	Wireshark	user	interface	essentials
packet	bytes	pane	/	Wireshark	user	interface	essentials
status	bar	/	Wireshark	user	interface	essentials

user_canceled	/	How	to	do	it...
usual	SMTP	traffic

versus	unusual	SMTP	traffic	/	Usual	versus	unusual	SMTP	traffic
UTC	Date	and	Time	of	Day	/	How	to	do	it...

V
value	pane	/	Choosing	from	the	filters	menu
ver	/	How	it	works...
Version	(V)	/	RTP	principles	of	operation
video	and	surveillance	applications

scenarios,	troubleshooting	/	Troubleshooting	scenarios	for	video	and
surveillance	applications,	How	to	do	it...,	How	it	works...

video	conferencing	applications
scenarios,	troubleshooting	/	Troubleshooting	scenarios	for	video
conferencing	applications,	How	to	do	it...

Views	/	SteelCentral	Packet	Analyzer	Personal	Edition
Virtual	LAN	(VLAN)	/	Layer	2	–	the	data-link	layer
viruses	/	How	it	works...
VirusTotal

reference	link	/	Inspecting	malicious	traffic
VLAN

about	/	Analyzing	VLANs	and	VLAN	tagging	issues
internal	traffic,	analyzing	/	Monitoring	traffic	inside	a	VLAN

vlan	<vlan_id>	filter	/	Getting	ready
VLAN	tagged	port

tagged	frames,	viewing	through	/	Viewing	tagged	frames	going
through	a	VLAN	tagged	port,	How	it	works...,	There's	more…

VLAN	tagging	issues
analyzing	/	Getting	ready

Voice	Over	Internet	Protocol	(VOIP)
about	/	Session	Initiation	Protocol	and	Voice	Over	Internet	Protocol
traffic,	analyzing	/	Analyzing	VOIP	traffic
packets,	resembling	for	playback	/	Reassembling	packets	for	playback

VOIP	traffic
analyzing	/	Analyzing	VOIP	traffic
packets,	reassembling	for	playback	/	Reassembling	packets	for
playback

VRFs
about	/	Finding	out	what	is	running	over	your	network

W
WAF

URL	/	See	also
WAN	links

about	/	WAN	links
physical	speed-of-light	propagation	delay	/	WAN	links
network	routing/geographical	distance	/	WAN	links
serialization	delay	/	WAN	links
queuing	delays	/	WAN	links

warning	events
about	/	Warning	events	and	understanding	them,	How	it	works...

warnings	tab	/	How	to	do	it...
Web	Application	Firewalls	(WAF)	/	Getting	ready,	There's	more...
Web	Filters

about	/	There's	more...
URL	/	See	also

Websense
URL	/	See	also

WEP
open	key	/	Usual	and	unusual	WEP	–	open/shared	key	communication,
WEP-open	key
shared	key	/	Usual	and	unusual	WEP	–	open/shared	key
communication,	The	shared	key
about	/	Usual	and	unusual	WEP	–	open/shared	key	communication
personal	/	WPA-Personal
traffic,	decrypting	/	Decrypting	WEP	and	WPA	traffic

Wi-Fi	Protected	Access	(WPA)
about	/	WPA-Personal
enterprise	/	WPA-Enterprise
traffic,	decrypting	/	Decrypting	WEP	and	WPA	traffic

wide	area	networks	(WANs)	/	Layer	1	–	the	physical	layer
WIFi	Locator	/	How	to	do	it…
WildPackets	OmniPeak

URL	/	Network	analysers
Window	Full,	TCP

about	/	TCP	Window	Full
Windows

Wireshark,	installing	/	Installing	Wireshark	on	Windows
Window	Scaling	Graph	window

TCP	stream	graphs,	retrieving	/	Getting	information	through	TCP
stream	graphs	–	the	Window	Scaling	Graph	window,	How	to	do	it...,
There's	more...

Windows	Size	(WSopt)	/	How	it	works...
Window	Update,	TCP

about	/	TCP	Window	Update
WinPcap

URL	/	The	Wireshark	GUI
WinPCap	(Windows	capture	driver)

URL	/	Useful	Wireshark	links
wireless	frame	types

management	frames	/	Wireless	networking
control	frames	/	Wireless	networking

Wireless	LAN	(Wi-Fi)	/	Analyzing	wireless	(Wi-Fi)	problems
Wireless	LAN	(Wi-Fi)	problems

analyzing	/	Analyzing	wireless	(Wi-Fi)	problems,	How	to	do	it…
Wireless	LAN	standards

working	/	How	it	works…
wireless	networking

about	/	Wireless	networking
Wireshark

installing	/	Installing	Wireshark
URL	/	Installing	Wireshark,	Performing	a	packet	capture,	The	TCP	and
UDP	tabs
installing,	on	Windows	/	Installing	Wireshark	on	Windows
installing,	on	Mac	OS	X	/	Installing	Wireshark	on	Mac	OS	X
installing,	on	Linux/Unix	/	Installing	Wireshark	on	Linux/Unix
URL	for	documentation	/	Installing	Wireshark	on	Linux/Unix
packet	capture,	performing	/	Performing	your	first	packet	capture,
Performing	a	packet	capture
network	interface,	selecting	/	Selecting	a	network	interface
user	interface	essentials	/	Wireshark	user	interface	essentials
display	filters	/	Wireshark	display	filters

command-line	utilities	/	Wireshark	command-line	utilities
about	/	Introduction	to	Wireshark,	What	is	Wireshark?
locating	/	A	brief	overview	of	the	TCP/IP	model,	How	to	do	packet
analysis
updated	version,	URL	/	Getting	ready
stable	release,	URL	/	Getting	ready
server,	monitoring	/	The	installation	process
router,	monitoring	/	Monitoring	a	router
firewall,	monitoring	/	Monitoring	a	firewall
reference	link	/	What	is	Wireshark?,	Passing	through	routers,
Summary
working	/	How	it	works
capture	of	data,	starting	/	The	layers	in	the	TCP/IP	model,	ARP
poisoning
advantages	/	Why	use	Wireshark?
start	window,	configuring	/	An	introduction	to	packet	analysis	with
Wireshark,	Starting	our	first	capture
packet	analysis	/	An	introduction	to	packet	analysis	with	Wireshark
time	format,	configuring	/	Capturing	methodologies,	How	to	do	it...
coloring	rules,	configuring	/	Summary,	Getting	ready,	How	to	do	it...
user	interface	in	preferences	menu,	configuring	/	Configuring	the	user
interface	in	the	Preferences	menu,	How	to	do	it...
protocol	preferences,	configuring	/	Configuring	protocol	preferences,
Getting	ready
statistics	tool	/	Introduction
Expert	Infos	window	/	How	it	works...
for	telephony	/	Using	Wireshark's	features	for	telephony	and
multimedia	analysis,	Getting	ready,	How	to	do	it...,	How	it	works...
for	multimedia	analysis	/	Getting	ready,	How	to	do	it...,	How	it
works...
used,	for	monitoring	jitter	/	Monitoring	jitter	and	delay	using
Wireshark,	How	to	do	it...,	How	it	works...,	There's	more...
used,	for	monitoring	delay	/	Monitoring	jitter	and	delay	using
Wireshark,	How	to	do	it...,	How	it	works...,	There's	more...
open	source	software,	URL	/	Useful	Wireshark	links
Statistics	menu	/	The	Statistics	menu
analysis	flags,	checking	/	How	to	check	for	different	analysis	flags	in

Wireshark
Wireshark$	Capture	Filter	window	/	How	it	works...
Wireshark.exe	file

about	/	Wireshark	command-line	utilities
Wireshark	2.0	(Wireshark	Qt)	/	IO	Graph	–	Wireshark	2.0
Wireshark	ARP	filters

about	/	Wireshark	ARP	filters
Wireshark	DHCP	filters

about	/	Wireshark	DHCP	filters
Wireshark	DHCPv6	filters

about	/	Wireshark	DHCPv6	filters
Wireshark	DNS	filters

about	/	Wireshark	DNS	filters
Wireshark	filter	page

URL	/	Interesting	websites
Wireshark	filters

URL	/	Interesting	websites
Wireshark	GUI

installation	process	/	The	installation	process
about	/	The	Wireshark	GUI

Wireshark	IGMP	filters
about	/	Wireshark	IGMP	filters

Wireshark	IPv4	filters
about	/	Wireshark	IPv4	filters

Wireshark	links
URL	/	Useful	Wireshark	links
downloads	page,	URL	/	Useful	Wireshark	links
learning	page,	URL	/	Useful	Wireshark	links

Wireshark	profiles
creating	/	Create	new	Wireshark	profiles

Wireshark	TCP	filters
about	/	TCP	options

Wireshark	UDP	filters
about	/	User	Datagram	Protocol

Wireshark	v2
translation	/	Translation
graph	improvements	/	Graph	improvements

TCP	streams	/	TCP	streams
USBPcap	/	USBPcap

Wireshark	wiki
about	/	Wireshark	wiki
URL	/	Wireshark	wiki

WLAN	tab
about	/	The	WLAN	tab

workstation	IP	configuration
obtaining	/	Obtaining	the	workstation	IP	configuration

worms	/	How	it	works...

X
1xx	codes	/	1xx	codes	–	provisional/informational
2xx	codes	/	2xx	codes	–	success
3xx	codes	/	3xx	codes	–	redirection
4xx	codes	/	4xx	codes	–	client	error
5xx	codes	/	5xx	codes	–	server	error
6xx	codes	/	6xx	codes	–	global	failure
X	Axis

configuring	/	X-Axis	configuration
XML	Packet	Details	(*.pdml)	/	Saving	data	in	various	formats
XML	Packet	Summary	(*.psml)	/	Saving	data	in	various	formats
Xplico

URL	/	There's	more...,	Other	stuff

Y
Y	Axis

configuring	/	Y-Axis	configuration

Z
Zabbix

URL	/	SNMP	platforms
Zenmap	/	Security	assessment	tools
Zero	Window,	TCP

about	/	TCP	Zero	Window,	Zero	Window	Probe,	and	Zero	Window
Violation

Zero	window	notification	/	The	flow	control	mechanism
Zero	Window	Probe,	TCP

about	/	TCP	Zero	Window,	Zero	Window	Probe,	and	Zero	Window
Violation

	Wireshark Revealed: Essential Skills for IT Professionals
	Credits
	Preface
	What this learning path covers
	What you need for this learning path
	Who this learning path is for
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Module 1
	1. Getting Acquainted with Wireshark
	Installing Wireshark
	Installing Wireshark on Windows
	Installing Wireshark on Mac OS X
	Installing Wireshark on Linux/Unix
	Performing your first packet capture
	Selecting a network interface
	Performing a packet capture
	Wireshark user interface essentials
	Filtering out the noise
	Applying a display filter
	Saving the packet trace
	Summary
	2. Networking for Packet Analysts
	The OSI model – why it matters
	Understanding network protocols
	The seven OSI layers
	Layer 1 – the physical layer
	Layer 2 – the data-link layer
	Layer 3 – the network layer
	Internet Protocol
	Address Resolution Protocol
	Layer 4 – the transport layer
	User Datagram Protocol
	Transmission Control Protocol
	Layer 5 – the session layer
	Layer 6 – the presentation layer
	Layer 7 – the application layer
	Encapsulation
	IP networks and subnets
	Switching and routing packets
	Ethernet frames and switches
	IP addresses and routers
	WAN links
	Wireless networking
	Summary
	3. Capturing All the Right Packets
	Picking the best capture point
	User location
	Server location
	Other capture locations
	Mid-network captures
	Both sides of specialized network devices
	Test Access Ports and switch port mirroring
	Test Access Port
	Switch port mirroring
	Capturing packets on high traffic rate links
	Capturing interfaces, filters, and options
	Selecting the correct network interface
	Using capture filters
	Configuring capture filters
	Capture options
	Capturing filenames and locations
	Multiple file options
	Ring buffer
	Stop capture options
	Display options
	Name resolution options
	Verifying a good capture
	Saving the bulk capture file
	Isolating conversations of interest
	Using the Conversations window
	The Ethernet tab
	The TCP and UDP tabs
	The WLAN tab
	Wireshark display filters
	The Display Filter window
	The display filter syntax
	Typing in a display filter
	Display filters from a Conversations or Endpoints window
	Filter Expression Buttons
	Using the Expressions window button
	Right-click menus on specific packet fields
	Following TCP/UDP/SSL streams
	Marking and ignoring packets
	Saving the filtered traffic
	Summary
	4. Configuring Wireshark
	Working with packet timestamps
	How Wireshark saves timestamps
	Wireshark time display options
	Adding a time column
	Conversation versus displayed packet time options
	Choosing the best Wireshark time display option
	Using the Time Reference option
	Colorization and coloring rules
	Packet colorization
	Wireshark preferences
	Wireshark profiles
	Creating a Wireshark profile
	Selecting a Wireshark profile
	Summary
	5. Network Protocols
	The OSI and DARPA reference models
	Network layer protocols
	Wireshark IPv4 filters
	Wireshark ARP filters
	Internet Group Management Protocol
	Wireshark IGMP filters
	Internet Control Message Protocol
	ICMP pings
	ICMP traceroutes
	ICMP control message types
	ICMP redirects
	Wireshark ICMP filters
	Internet Protocol Version 6
	IPv6 addressing
	IPv6 address types
	IPv6 header fields
	IPv6 transition methods
	Wireshark IPv6 filters
	Internet Control Message Protocol Version 6
	Multicast Listener Discovery
	Wireshark ICMPv6 filters
	Transport layer protocols
	User Datagram Protocol
	Wireshark UDP filters
	Transmission Control Protocol
	TCP flags
	TCP options
	Wireshark TCP filters
	Application layer protocols
	Dynamic Host Configuration Protocol
	Wireshark DHCP filters
	Dynamic Host Configuration Protocol Version 6
	Wireshark DHCPv6 filters
	Domain Name Service
	Wireshark DNS filters
	Hypertext Transfer Protocol
	HTTP Methods
	Host
	Request Modifiers
	Wireshark HTTP filters
	Additional information
	Wireshark wiki
	Protocols on Wikipedia
	Requests for Comments
	Summary
	6. Troubleshooting and Performance Analysis
	Troubleshooting methodology
	Gathering the right information
	Establishing the general nature of the problem
	Half-split troubleshooting and other logic
	Troubleshooting connectivity issues
	Enabling network interfaces
	Confirming physical connectivity
	Obtaining the workstation IP configuration
	Obtaining MAC addresses
	Obtaining network service IP addresses
	Basic network connectivity
	Connecting to the application services
	Troubleshooting functional issues
	Performance analysis methodology
	Top five reasons for poor application performance
	Preparing the tools and approach
	Performing, verifying, and saving a good packet capture
	Initial error analysis
	Detecting and prioritizing delays
	Server processing time events
	Application turn's delay
	Network path latency
	Bandwidth congestion
	Data transport
	TCP StreamGraph
	IO Graph
	IO Graph – Wireshark 2.0
	Summary
	7. Packet Analysis for Security Tasks
	Security analysis methodology
	The importance of baselining
	Security assessment tools
	Identifying unacceptable or suspicious traffic
	Scans and sweeps
	ARP scans
	ICMP ping sweeps
	TCP port scans
	UDP port scans
	OS fingerprinting
	Malformed packets
	Phone home traffic
	Password-cracking traffic
	Unusual traffic
	Summary
	8. Command-line and Other Utilities
	Wireshark command-line utilities
	Capturing traffic with Dumpcap
	Capturing traffic with Tshark
	Editing trace files with Editcap
	Merging trace files with Mergecap
	Mergecap batch file
	Other helpful tools
	HttpWatch
	SteelCentral Packet Analyzer Personal Edition
	AirPcap adapters
	Summary
	2. Module 2
	1. Introducing Wireshark
	Introduction
	Locating Wireshark
	Getting ready
	How to do it...
	Monitoring a server
	Monitoring a router
	Monitoring a firewall
	How it works...
	There's more...
	See also
	Starting the capture of data
	Getting ready
	How to do it...
	How to choose the interface to start the capture
	How to configure the interface you capture data from
	How it works...
	There's more...
	See also
	Configuring the start window
	Getting ready
	Main Toolbar
	Display Filter Toolbar
	Status Bar
	How to do it...
	Configuring toolbars
	Configuring the main window
	Name Resolution
	Colorizing the packet list
	Auto scrolling in live capture
	Using time values and summaries
	Getting ready
	How to do it...
	How it works...
	Configuring coloring rules and navigation techniques
	Getting ready
	How to do it...
	How it works...
	See also
	Saving, printing, and exporting data
	Getting ready
	How to do it...
	Saving data in various formats
	How to print data
	How it works...
	Configuring the user interface in the Preferences menu
	Getting ready
	How to do it...
	Changing and adding columns
	Changing the capture configuration
	Configuring the name resolution
	How it works...
	Configuring protocol preferences
	Getting ready
	How to do it...
	Configuring of IPv4 and IPv6 Preferences
	Configuring TCP and UDP
	How it works...
	There's more...
	2. Using Capture Filters
	Introduction
	Configuring capture filters
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Configuring Ethernet filters
	Getting ready
	How to do it...
	How it works…
	There's more...
	See also
	Configuring host and network filters
	Getting ready
	How to do it...
	How it works…
	There's more...
	See also
	Configuring TCP/UDP and port filters
	Getting ready
	How to do it...
	How it works…
	There's more...
	See also
	Configuring compound filters
	Getting ready
	How to do it...
	How it works…
	There's more...
	See also
	Configuring byte offset and payload matching filters
	Getting ready
	How to do it...
	How it works…
	There's more...
	See also
	3. Using Display Filters
	Introduction
	Configuring display filters
	Getting ready
	How to do it...
	Choosing from the filters menu
	Writing the syntax directly into the display filter window
	Choosing a parameter in the packet pane and defining it as a filter
	How it works...
	There's more...
	What is the parameter we filter?
	Adding a parameter column
	Saving the displayed data
	Configuring Ethernet, ARP, host, and network filters
	Getting ready
	How to do it...
	Ethernet filters
	ARP filters
	IP and ICMP filters
	Complex filters
	How it works...
	Ethernet broadcasts
	IPv4 multicasts
	IPv6 multicasts
	See also
	Configuring TCP/UDP filters
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Configuring specific protocol filters
	Getting ready
	How to do it...
	HTTP display filters
	DNS display filters
	FTP display filters
	How it works...
	See also
	Configuring substring operator filters
	Getting ready
	How to do it...
	How it works...
	Configuring macros
	Getting ready
	How to do it...
	How it works...
	4. Using Basic Statistics Tools
	Introduction
	Using the Summary tool from the Statistics menu
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using the Protocol Hierarchy tool from the Statistics menu
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using the Conversations tool from the Statistics menu
	Getting ready
	How to do it...
	How it works...
	There's more...
	Ethernet conversations statistics
	IP conversations statistics
	TCP/UDP conversations statistics:
	Using the Endpoints tool from the Statistics menu
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using the HTTP tool from the Statistics menu
	Getting ready
	How to do it...
	How it works...
	There's more...
	Configuring Flow Graph for viewing TCP flows
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating IP-based statistics
	Getting ready
	How to do it...
	How it works...
	There's more...
	5. Using Advanced Statistics Tools
	Introduction
	Configuring IO Graphs with filters for measuring network performance issues
	Getting ready
	How to do it...
	Filter configuration
	X-Axis configuration
	Y-Axis configuration
	How it works...
	There's more...
	Throughput measurements with IO Graph
	Getting ready
	How to do it...
	Measuring throughput between end devices
	Measuring application throughput
	How it works...
	There's more...
	Graph SMS usage – finding SMS messages sent by a specific subscriber
	Graphing number of accesses to the Google web page
	Advanced IO Graph configurations with advanced Y-Axis parameters
	Getting ready
	How to do it...
	How to monitor inter-frame time delta statistics
	How to monitor the number of TCP retransmissions in a stream
	How to monitor a number of field appearances
	How it works...
	There's more...
	Getting information through TCP stream graphs – the Time-Sequence (Stevens) window
	Getting ready
	How to do it...
	How it works...
	There's more...
	Getting information through TCP stream graphs – the Time-Sequence (tcp-trace) window
	Getting ready
	How to do it...
	How it works...
	There's more...
	Getting information through TCP stream graphs – the Throughput Graph window
	Getting ready
	How to do it...
	How it works...
	There's more...
	Getting information through TCP stream graphs – the Round Trip Time window
	Getting ready
	How to do it...
	How it works...
	There's more...
	Getting information through TCP stream graphs – the Window Scaling Graph window
	Getting ready
	How to do it...
	How it works...
	There's more...
	6. Using the Expert Infos Window
	Introduction
	The Expert Infos window and how to use it for network troubleshooting
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Error events and understanding them
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Warning events and understanding them
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Notes events and understanding them
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	7. Ethernet, LAN Switching, and Wireless LAN
	Introduction
	Discovering broadcast and error storms
	Getting ready
	How to do it...
	Spanning Tree Problems
	A device that generates Broadcasts
	Fixed pattern broadcasts
	How it works...
	There's more…
	See also
	Analyzing Spanning Tree Protocols
	Getting ready
	How to do it...
	Which STP version is running on the network?
	Are there too many topology changes?
	How it works...
	Port states
	There's more…
	Analyzing VLANs and VLAN tagging issues
	Getting ready
	How to do it...
	Monitoring traffic inside a VLAN
	Viewing tagged frames going through a VLAN tagged port
	How it works...
	There's more…
	See also
	Analyzing wireless (Wi-Fi) problems
	Getting ready
	How to do it…
	How it works…
	8. ARP and IP Analysis
	Introduction
	Analyzing connectivity problems with ARP
	Getting ready
	How to do it...
	ARP poisoning and Man-in-the-Middle attacks
	Gratuitous ARP
	ARP sweeps
	Requests or replies, and who is the sender
	How many ARPs
	How it works...
	There's more...
	Using IP traffic analysis tools
	Getting ready
	How to do it...
	IP statistics tools
	How it works...
	There's more...
	Using GeoIP to look up physical locations of the IP address
	Getting ready
	How to do it...
	How it works...
	There's more...
	Finding fragmentation problems
	Getting ready
	How to do it...
	How it works...
	There's more...
	Analyzing routing problems
	Getting ready
	How to do it...
	How it works...
	There's more...
	Finding duplicate IPs
	Getting ready
	How to do it...
	How it works...
	There's more...
	Analyzing DHCP problems
	Getting ready
	How to do it...
	How it works...
	There's more...
	9. UDP/TCP Analysis
	Introduction
	Configuring TCP and UDP preferences for troubleshooting
	Getting ready
	How to do it...
	UDP parameters
	TCP parameters
	How it works...
	There's more…
	TCP connection problems
	Getting ready
	How to do it...
	How it works...
	There's more…
	TCP retransmission – where do they come from and why
	Getting ready
	How to do it...
	Case 1 – retransmissions to many destinations
	Case 2 – retransmissions on a single connection
	Case 3 – retransmission patterns
	Case 4 – retransmission due to a non-responsive application
	Case 5 – retransmission due to delayed variations
	Finding what it is
	How it works...
	Regular operation of the TCP Sequence/Acknowledge mechanism
	What are TCP retransmissions and what do they cause
	There's more...
	See also
	Duplicate ACKs and fast retransmissions
	Getting ready
	How to do it...
	How it works...
	There's more...
	TCP out-of-order packet events
	Getting ready
	How to do it...
	When will it happen?
	How it works...
	TCP Zero Window, Window Full, Window Change, and other Window indicators
	Getting ready
	How to do it...
	TCP Zero Window, Zero Window Probe, and Zero Window Violation
	TCP Window Update
	TCP Window Full
	How it works...
	There's more…
	TCP resets and why they happen
	Getting ready
	How to do it...
	Cases in which reset is not a problem
	Cases in which reset can indicate a problem
	How it works...
	10. HTTP and DNS
	Introduction
	Filtering DNS traffic
	Getting ready
	How to do it...
	How it works...
	There's more...
	Analyzing regular DNS operations
	Getting ready
	How to do it...
	How it works...
	DNS operation
	DNS namespace
	The resolving process
	There's more...
	Analysing DNS problems
	Getting ready
	How to do it...
	DNS cannot resolve a name
	DNS slow responses
	How it works...
	There's more...
	Filtering HTTP traffic
	Getting ready
	How to do it...
	How it works...
	HTTP methods
	Status codes
	There's more...
	Configuring HTTP preferences
	Getting ready
	How to do it...
	Custom HTTP headers fields
	How it works...
	There's more...
	Analyzing HTTP problems
	Getting ready
	How to do it...
	Informational codes
	Success codes
	Redirect codes
	Client errors
	Server errors
	How it works...
	There's more...
	Exporting HTTP objects
	Getting ready
	How to do it...
	How it works...
	There's more...
	HTTP flow analysis and the Follow TCP Stream window
	Getting ready
	How to do it...
	How it works...
	There's more...
	Analyzing HTTPS traffic – SSL/TLS basics
	Getting ready
	How to do it...
	How it works...
	There's more...
	11. Analyzing Enterprise Applications' Behavior
	Introduction
	Finding out what is running over your network
	Getting ready
	How to do it...
	There's more...
	Analyzing FTP problems
	Getting ready
	How to do it...
	How it works...
	There's more...
	Analyzing e-mail traffic and troubleshooting e-mail problems – POP, IMAP, and SMTP
	Getting ready
	How to do it...
	POP3 communications
	SMTP communications
	Some other methods and problems
	How it works...
	POP3
	SMTP and SMTP error codes (RFC3463)
	There's more...
	Analyzing MS-TS and Citrix communications problems
	Getting ready
	How to do it...
	How it works...
	There's more…
	Analyzing problems in the NetBIOS protocols
	Getting ready
	How to do it...
	General tests
	Specific issues
	How it works...
	There's more…
	Example 1 – application freezing
	Example 2 – broadcast storm caused by SMB
	Analyzing database traffic and common problems
	Getting ready
	How to do it...
	How it works...
	There's more...
	12. SIP, Multimedia, and IP Telephony
	Introduction
	Using Wireshark's features for telephony and multimedia analysis
	Getting ready
	How to do it...
	How it works...
	There's more...
	Analyzing SIP connectivity
	Getting ready
	How to do it...
	1xx codes – provisional/informational
	2xx codes – success
	3xx codes – redirection
	4xx codes – client error
	5xx codes – server error
	6xx codes – global failure
	How it works...
	There's more...
	Analyzing RTP/RTCP connectivity
	Getting ready
	How to do it...
	How it works...
	RTP principles of operation
	The RTCP principle of operation
	There's more...
	Troubleshooting scenarios for video and surveillance applications
	Getting ready
	How to do it...
	How it works...
	There's more...
	Troubleshooting scenarios for IPTV applications
	Getting ready
	How to do it...
	How it works...
	There's more...
	Troubleshooting scenarios for video conferencing applications
	Getting ready
	How to do it...
	Troubleshooting RTSP
	Getting ready
	How to do it...
	How it works...
	There's more...
	13. Troubleshooting Bandwidth and Delay Problems
	Introduction
	Measuring total bandwidth on a communication link
	Getting ready
	How to do it...
	How it works...
	There's more...
	Measuring bandwidth and throughput per user and per application over a network connection
	Getting ready
	How to do it...
	How it works...
	See also
	Monitoring jitter and delay using Wireshark
	Getting ready
	How to do it...
	How it works...
	There's more...
	Discovering delay/jitter-related application problems
	Getting ready
	How to do it...
	How it works...
	There's more...
	14. Understanding Network Security
	Introduction
	Discovering unusual traffic patterns
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Discovering MAC- and ARP-based attacks
	Getting ready
	How to do it...
	How it works...
	There's more...
	Discovering ICMP and TCP SYN/Port scans
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Discovering DoS and DDoS attacks
	Getting ready
	How to do it...
	How it works...
	There's more...
	Locating smart TCP attacks
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Discovering brute-force and application attacks
	Getting ready
	How to do it...
	How it works...
	There's more...
	A. Links, Tools, and Reading
	Useful Wireshark links
	tcpdump
	Some additional tools
	SNMP tools
	SNMP platforms
	The NetFlow, JFlow, and SFlow analyzers
	HTTP debuggers
	Syslog
	Other stuff
	Network analysers
	Interesting websites
	Books
	3. Module 3
	1. Welcome to the World of Packet Analysis with Wireshark
	Introduction to Wireshark
	A brief overview of the TCP/IP model
	The layers in the TCP/IP model
	An introduction to packet analysis with Wireshark
	How to do packet analysis
	What is Wireshark?
	How it works
	Capturing methodologies
	Hub-based networks
	The switched environment
	ARP poisoning
	Passing through routers
	Why use Wireshark?
	The Wireshark GUI
	The installation process
	Starting our first capture
	Summary
	Practice questions
	2. Filtering Our Way in Wireshark
	An introduction to filters
	Capture filters
	Why use capture filters
	How to use capture filters
	An example capture filter
	Capture filters that use protocol header values
	Display filters
	Retaining filters for later use
	Searching for packets using the Find dialog
	Colorize traffic
	Create new Wireshark profiles
	Summary
	Practice questions
	3. Mastering the Advanced Features of Wireshark
	The Statistics menu
	Using the Statistics menu
	Protocol Hierarchy
	Conversations
	Endpoints
	Working with IO, Flow, and TCP stream graphs
	IO graphs
	Flow graphs
	TCP stream graphs
	Round-trip time graphs
	Throughput graphs
	The Time-sequence graph (tcptrace)
	Follow TCP streams
	Expert Infos
	Command Line-fu
	Summary
	Exercise
	4. Inspecting Application Layer Protocols
	Domain name system
	Dissecting a DNS packet
	Dissecting DNS query/response
	Unusual DNS traffic
	File transfer protocol
	Dissecting FTP communications
	Passive mode
	Active mode
	Dissecting FTP packets
	Unusual FTP
	Hyper Text Transfer Protocol
	How it works – request/response
	Request
	Response
	Unusual HTTP traffic
	Simple Mail Transfer Protocol
	Usual versus unusual SMTP traffic
	Session Initiation Protocol and Voice Over Internet Protocol
	Analyzing VOIP traffic
	Reassembling packets for playback
	Unusual traffic patterns
	Decrypting encrypted traffic (SSL/TLS)
	Summary
	Practice questions
	5. Analyzing Transport Layer Protocols
	The transmission control protocol
	Understanding the TCP header and its various flags
	How TCP communicates
	How it works
	Graceful termination
	RST (reset) packets
	Relative verses Absolute numbers
	Unusual TCP traffic
	How to check for different analysis flags in Wireshark
	The User Datagram Protocol
	A UDP header
	How it works
	The DHCP
	The TFTP
	Unusual UDP traffic
	Summary
	Practice questions
	6. Analyzing Traffic in Thin Air
	Understanding IEEE 802.11
	Various modes in wireless communications
	Wireless interference and strength
	The IEEE 802.11 packet structure
	RTS/CTS
	Usual and unusual WEP – open/shared key communication
	WEP-open key
	The shared key
	WPA-Personal
	WPA-Enterprise
	Decrypting WEP and WPA traffic
	Summary
	Practice questions
	7. Network Security Analysis
	Information gathering
	PING sweep
	Half-open scan (SYN)
	OS fingerprinting
	ARP poisoning
	Analyzing brute force attacks
	Inspecting malicious traffic
	Solving real-world CTF challenges
	Summary
	Practice questions
	8. Troubleshooting
	Recovery features
	The flow control mechanism
	Troubleshooting slow Internet and network latencies
	Client- and server-side latencies
	Troubleshooting bottleneck issues
	Troubleshooting application-based issues
	Summary
	Practice questions
	9. Introduction to Wireshark v2
	The intelligent scroll bar
	Translation
	Graph improvements
	TCP streams
	USBPcap
	Summary
	Practice questions
	Bibliography
	Index

